淡水环境中微塑料的赋存、来源和生态毒理效应研究进展
2017-10-16丁剑楠张闪闪邹华张云朱荣
丁剑楠,张闪闪,邹华*,张云,朱荣
淡水环境中微塑料的赋存、来源和生态毒理效应研究进展
丁剑楠1,2,张闪闪1,邹华1,2*,张云1,2,朱荣1
1. 江南大学环境与土木工程学院,江苏 无锡 214122;2. 江苏省水处理技术与材料协同创新中心,江苏 苏州 215009
塑料制品在当今社会中被大量生产和使用,导致其不断进入水环境。环境中的塑料垃圾会进一步分解为很多粒径小于5 mm的塑料残片,即微塑料。微塑料作为一类新型污染物,已受到国内外学者和公众的广泛关注。然而,现阶段有关微塑料污染的研究主要集中在海洋环境,而内陆淡水环境与人类接触频繁,其微塑料污染应受到更多重视。为全面了解淡水环境中微塑料污染现状,加强对微塑料污染的风险监控,文章总结了近些年的相关研究,综述了淡水环境中微塑料的赋存、来源和生态毒理效应。有关研究表明,微塑料污染可能在全世界淡水环境中普遍存在,其在淡水水体、沉积物和淡水生物中均有赋存;而中国内陆淡水环境中微塑料的污染可能尤为严重。淡水环境中微塑料的来源尚不明确,主要直接来源可能包括污水处理厂的尾水排放、水环境中塑料垃圾的风化降解以及水土流失或地表径流形成的陆源输入;而初始源头可能包括了个人护理品、合成纺织品、工业原料以及城镇、农业、旅游、工业区塑料垃圾的不当处置。另外,微塑料会对淡水生物造成物理性损伤和生化水平胁迫,并有可能与其他污染物形成复合污染,对淡水生物产生交互效应。因此,对淡水环境中微塑料污染的深入研究已刻不容缓。今后可在环境因素对微塑料污染特征的影响、微塑料污染的源解析、微塑料与污染物的生态交互效应这三方面加强研究。文章可为淡水环境中微塑料的污染和生态风险研究提供理论参考。
微塑料;淡水环境;赋存;来源;生态毒理效应
塑料制品在当今社会中被广泛应用,其在全球范围内的年产量已超过 3×108t,并且正以 0.2×108t·a-1的速度增长。由于大量的生产和使用,塑料制品不可避免地会进入水环境。据估算,全球海洋表面漂浮着超过2.5×105t塑料垃圾(Eriksen et al.,2014)。这些塑料垃圾经过物理降解、光降解和生物降解作用,会进一步分解形成粒径小于5 mm的微塑料(Law et al.,2014)。微塑料的种类繁多,以材质划分,目前环境中检出的微塑料主要包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚酯(PEst)和聚对苯二甲酸类(PET)(Wagner et al.,2014;屈沙沙等,2017);在形状上则分为塑料粒料、微纤维、塑料颗粒、泡沫塑料和薄膜等(王昆等,2017)。
作为一类新型污染物,微塑料已受到国内外学者的高度关注,而目前的微塑料污染调查主要集中在海洋环境(Cole et al.,2011;Do Sul et al.,2014),包括加拿大(Desforges et al.,2014)、巴西(Miranda et al.,2016)、西欧(Steer et al.,2017)、中国(Zhao et al.,2014),甚至南极洲(Cincinelli et al.,2017)附近海域,均报道了微塑料的检出。微塑料的大量赋存会对生物产生毒性效应,造成严重的生态风险(Wright et al.,2013;周倩等,2015),甚至可能通过食物链传递(Setälä et al.,2014),威胁人体健康。海洋环境中的微塑料污染在河口地区尤为严重,表明陆地河流输入是近海水体中微塑料的重要来源(Browne et al.,2011;Vendel et al.,2017;Zhao et al.,2014)。然而,目前内陆淡水环境中微塑料的污染研究尚处于起步阶段。相较于海洋环境,内陆淡水环境与人类接触更为频繁,因此开展淡水环境中微塑料水体污染与生态风险的研究已刻不容缓。
本文通过文献调研,对淡水环境中微塑料的赋存现状、来源以及生态毒理效应的研究进行了综述,可为淡水环境中微塑料的污染和生态风险研究提供理论参考。
1 淡水环境中微塑料的赋存现状
1.1 水体
现阶段微塑料水体检测方法尚未标准化,导致微塑料的环境污染调查工作无法充分开展。目前的微塑料定量分析主要通过目检法实现,利用体视显微镜,对微塑料颗粒进行人工计数,该方法较为费时费力,且误差较大;Micro-FT-IR、Micro-Raman、Pyr-GC-MS等高效定量分析方法能够大大提高微塑料定量分析的准确性,但成本较高(王昆等,2017)。因此,发展准确、迅速且成本较低的微塑料水体检测方法是现阶段的当务之急。
根据有限的研究结果,微塑料污染可能广泛存在于淡水水体中。在北美五大湖流域,漂浮在水面的微塑料的平均丰度高达43000 ind·km-2(Eriksen et al.,2013)。而在欧洲多个国家的淡水湖泊或河流中,均已检测出微塑料的水体赋存(Eerkes-Medrano et al.,2015),其中瑞士日内瓦湖的微塑料最高丰度已达到48146 ind·km-2(Faure et al.,2012)。值得注意的是,Free et al.(2014)在位于亚洲地区的蒙古国北部的库苏古尔湖表层水中,同样发现了微塑料污染,其平均丰度为20264 ind·km-2;该区域地理位置偏远,且人口稀少,这表明在缺乏有效防治措施的情况下,微塑料可能会受径流、季风等因素的作用,迁移扩散至各类水域,最终对淡水环境和人类健康造成不可估量的风险。
中国淡水环境的微塑料污染调查同样较为匮乏,从现有报道来看,中国淡水水体的微塑料污染可能十分严重。Wang et al.(2017a)近期调查发现,武汉的城市湖泊和河流普遍受到了微塑料污染,其中,北湖的微塑料丰度最高,为(8925±1591)ind·m-3;武汉地区的微塑料污染与人口密度间呈现出明显的正相关性,靠近市区的水体微塑料丰度远高于郊区。Zhao et al.(2015)对位于中国东南沿海的3个城市河口的调查发现,台州椒江口、温州瓯江口和福州闽江口水体中均存在微塑料污染,丰度范围在100~4100 ind·m-3,且三地的微塑料污染水平与当地的经济产业结构息息相关。另外,在太湖的表层水体中同样报道了微塑料的赋存,丰度为3.4~25.8 ind·L-1,其中漂浮在水面的微塑料丰度达到了 0.01×106~6.8×106ind·km-2,远高于武汉、台州、温州、福州和国外其他地区的淡水水域;太湖西北部竺山湾和梅梁湾的微塑料污染状况尤为严重,这可能是由于该区域毗邻苏锡常城市圈,人口密度大,人类活动频繁所致(Su et al.,2016)。Zhang et al.(2015;2017)发现,三峡大坝附近的长江干流微塑料丰度高达 34.1×105~136×105ind·km-2,而香溪河回水区则为 0.55×105~342×105ind·km-2,均比其他淡水水体中的微塑料丰度高出约 1~3个数量级,表明三峡库区存在着严重的微塑料污染;作者同时指出,水力条件和面源输入是影响三峡库区微塑料分布和赋存水平的重要因素。总体上,中国淡水水体的微塑料污染较严重,丰度高于世界其他地区。这一方面是由于中国人口密度较大,另一方面是由于中国缺乏合理的塑料垃圾监管处置措施。Jambeck et al.(2015)报道称,2010年中国有76%(约8.82×106t)的塑料垃圾没有妥善处置,而美国该项比例仅为 2%(约 2.8×104t)。因此,尽快开展中国淡水水体中微塑料污染的调查和防治工作已显得极为迫切。
1.2 沉积物
除水体之外,沉积物是微塑料在淡水环境中另一个重要的“汇”(Horton et al.,2017a;Wagner et al.,2014)。在世界范围内,每千克淡水环境沉积物中微塑料的数量范围在几十到几百个之间(Horton et al.,2017a),甚至要高于水体中的赋存水平。其中,德国莱茵河岸边沉积物中微塑料丰度较高,达到了228~3763 ind·kg-1(Klein et al.,2015)。中国淡水环境沉积物中同样检出了微塑料的赋存。在长江下游的太湖(Su et al.,2016)以及长江口(Peng et al.,2017)沉积物中,微塑料的丰度分别达到了 11.0~234.6 ind·kg-1和 20~340 ind·kg-1。位于长江中上游的三峡香溪河回水区沉积物中,微塑料的丰度达到 80~864 ind·m-2,该地区沉积物中微塑料的空间分布与水体分布并不一致,而与水力条件有一定的相关性:一般在流速较低的河段,沉积物中微塑料丰度较高(Zhang et al.,2017)。Wang et al.(2017b)对位于珠江流域的北江的调查发现,该地沉积物中微塑料丰度达到了178~544 ind·kg-1,高于目前已知的长江流域沉积物污染水平。另外需要注意的是,近期在中国西藏色林错流域的沉积物中,已经发现了微塑料的赋存,其丰度为8~563 ind·m-2,表明青藏高原等偏远地区的微塑料污染同样不容忽视(Zhang et al.,2016)。
1.3 淡水生物
由于水环境中微塑料的大小与浮游生物近似,因此极易被水生生物吞食,累积在生物体内(Jabeen et al.,2017),甚至通过食物链逐级传递(Setälä et al.,2014)。虽然海洋生物对微塑料的累积已有广泛报道(Do Sul et al.,2014),但是现阶段有关淡水生物对微塑料累积赋存的研究还相当匮乏,且多集中于淡水鱼类。野生淡水鱼类体内的微塑料主要存在于肠道中,其赋存特征与季节、鱼类生活特性以及微塑料颗粒特征等有关。Dantas et al.(2012)对巴西某河口的调查发现,在雨季后期,石首鱼(Stellifer spp.)肠道内的微塑料含量最高。Zhang et al.(2017)指出,以浮游生物为食的鱼类更易摄食微塑料,且野生鱼类肠道内的微塑料以纤维状为主,这可能是由于纤维状微塑料具有较高的可变形性,更易被鱼类吞食。此外,Su et al.(2016)首次在中国太湖的蛤类体内检出了微塑料的赋存,其体内微塑料累积量是底泥中的38~3810倍,表明底栖无脊椎动物同样可能会赋存较多的微塑料。
1.4 污染特征
目前,淡水环境中微塑料的污染主要在北美和西欧(Eerkes-Medrano et al.,2015;Horton et al.,2017a),以及中国部分地区(Jabeen et al.,2017;Peng et al.,2017;Su et al.,2016;Wang et al.,2017b,a;Zhang et al.,2015,2016,2017;Zhao et al.,2014,2015)检出;另外,在巴西(Dantas et al.,2012;Possatto et al.,2011;Ramos et al.,2012)、蒙古(Free et al.,2014)和印度(Sruthy et al.,2017)也偶有微塑料检出(图 1)。总体上看,微塑料的污染水平在人口密集地区较高,但在人口稀少的偏远地区,仍可能会出现一定水平的微塑料污染。相较于海洋环境,淡水环境受人类活动影响更大,其微塑料污染也会受到更多因素的影响,包括流域周边的城镇化水平(Eriksen et al.,2013;Su et al.,2016;Wang et al.,2017a)、经济产业结构(Zhao et al.,2015)、垃圾处置状况(Free et al.,2014)、水文气候条件(Zhang et al.,2017)以及微塑料的理化特性(Besseling et al.,2017)等。因此,淡水环境的微塑料污染在世界范围内显现出很大的地区差异性。
图1 各国(地区)淡水环境中微塑料检出报道次数(至2017年6月)Fig. 1 The number of reports for occurrence of microplastics in the freshwater environment among different countries or regions(till June, 2017)
以中国为例,中国淡水环境中有关微塑料检出的报道主要集中于2014年以后,并有逐年增加的趋势(Jabeen et al.,2017;Peng et al.,2017;Su et al.,2016;Wang et al.,2017b,a;Zhang et al.,2015,2016,2017;Zhao et al.,2014,2015),这表明近年来中国学者对淡水环境中的微塑料污染已经愈发重视。根据目前的调查结果,微塑料污染在中国淡水环境中已普遍存在,并显现出一些本土化特征。
首先,从污染水平上看,中国淡水环境中的微塑料赋存丰度高于其他国家和地区(Su et al.,2016;Wang et al.,2017b;Zhang et al.,2015,2017)。另外,中国淡水环境中检出的微塑料种类繁多,主要包括 4类:PP、PE、PS和 PET(图 2);其中 PP和PE类检出率最高,这可能是由于这两类塑料制品在中国的产量较高(智研咨询集团,2016)。在大小上,中国淡水环境中的微塑料粒径以<2 mm为主(Peng et al.,2017;Su et al.,2016;Wang et al.,2017a;Zhang et al.,2015;Zhao et al.,2015),如武汉城市水体中的<2 mm 的微塑料占 80%以上(Wang et al.,2017a),椒江口、瓯江口和闽江口漂浮微塑料中0.5~2 mm粒径范围占70%以上(Zhao et al.,2015),这与中国近海海域的微塑料大小相近(章海波等,2016)。但需要指出的是,现阶段中国淡水环境的微塑料污染调查还不够全面,相关研究主要集中在长江中下游地区(Jabeen et al.,2017;Peng et al.,2017;Su et al.,2016;Wang et al.,2017a;Zhang et al.,2015,2017;Zhao et al.,2014),该地区人口密集,工业较发达,因此微塑料的污染可能较为严重;而除了珠江流域出现了一次微塑料检出的报道外(Wang et al.,2017b),在中国其他主要水系,如黄河、淮河和松花江流域,有关微塑料污染的调查至今还没有开展。因此,应尽快调查这些地区的微塑料赋存特征,明晰中国淡水环境中微塑料污染的分布规律。
图2 中国淡水环境中各种微塑料检出比例(至2017年6月)Fig. 2 The rates of various microplastics classes detected in the freshwater environment of China (till June, 2017)
2 淡水环境中微塑料的来源
目前,即便在相关研究较多的海洋环境中,其微塑料污染的主要来源也仍然没有明确的结论,而淡水环境中微塑料的源解析工作则更加匮乏。水环境中微塑料的来源大致分为两类:一是较大塑料产品的逐级裂解,最终形成粒径小于5 mm的微塑料,二是化妆品、药物、抛光料等产品中塑料微珠的直接使用(屈沙沙等,2017;王昆等,2017)。本文通过比较分析现有研究结果,初步推测了淡水环境中微塑料污染的主要来源和途径(见图3)。微塑料污染的直接来源可能包括污水处理厂的尾水排放、水体中塑料垃圾的风化降解以及水土流失或地表径流形成的陆源输入(Browne et al.,2011;Eerkes-Medrano et al.,2015;Hüffer et al.,2017;Horton et al.,2017a;Wagner et al.,2014),但这些推论还存在争议。Carr et al.(2016)发现美国南加利福尼亚州的三级污水处理厂尾水中几乎没有微塑料的检出,而二级污水处理厂尾水中的微塑料丰度也较低,平均每 1.14 升尾水中仅含有 1个微塑料颗粒;大部分微塑料在一级处理工艺段(撇油撇沫和沉淀)中已被有效去除,因此该作者认为污水处理厂尾水可能并不是淡水环境中微塑料污染的主要来源。然而,Murphy et al.(2016)对苏格兰格拉斯哥某大型二级污水处理厂(日处理量 260954 m3)的调查发现,虽然尾水中微塑料的最终去除率高达98.41%,但每天仍有约6.5×107个微塑料颗粒被排入受纳水体,表明污水厂是微塑料污染的重要点源。比较两者的报道可知,污水厂对微塑料污染的贡献大小可能与其规模、所处地区以及进水类型有关。此外,Horton et al.(2017a)指出陆源微塑料会通过地表径流进入河流和湖泊。该研究团队对英国泰晤士河流域进行了调查,发现雨水管道排水口下游的沉积物中出现了大粒径(1~4 mm)微塑料的大量赋存,最高丰度达到了660 ind·kg-1;该处微塑料以片状为主,作者认为这很可能是周边城市道路的油漆路标被雨水冲刷后,通过雨水收集管道的排放,最终赋存在了泰晤士河沉积物中(Horton et al.,2017b)。另外,Klein et al.(2015)在德国莱茵河岸边带沉积物中同样发现了微塑料的大量赋存(228~3763 ind·kg-1),进一步证实了陆源输入对淡水环境微塑料污染的重要性。
淡水环境中微塑料的初始源头则更加难以追溯。Carr et al.(2016)发现污水厂进水中微塑料颗粒的颜色、形状和大小与牙膏配方中的PE微粒均十分相似,表明牙膏等个人护理品中的塑料微粒很可能是淡水环境中微塑料污染的源头之一。此外,合成纺织品、工业原料以及城镇、农业、旅游、工业区塑料垃圾的不当处置,均会造成微塑料的污染,并通过各种途径进入淡水环境(图3)。其中,衣物等人工合成纤维纺织品的清洗被认为是微塑料污染的重要源头(Browne et al.,2011;Peng et al.,2017)。Hernandez et al.(2017)在实验室模拟了家用洗衣机清洗衣物的过程,发现洗衣机的排水中含有大量的纤维状微塑料,且使用洗涤剂后,洗衣机排水中微塑料含量/(每克纺织品含有0.1 mg纤维状微塑料)远高于未使用洗涤剂的洗衣机排水(每克纺织品含有0.025 mg纤维状微塑料)。此外,船舶运输、工业原料泄漏、风力传送等过程也会造成淡水环境中一定程度的微塑料污染(McDevitt et al.,2017)。总体来看,目前学术界对淡水环境中微塑料污染的源解析还存在很多不足,亟待加强相关研究。
图3 淡水环境中微塑料的可能主要来源Fig. 3 Potential main sources of microplastics in the freshwater environment
3 微塑料对淡水生物的生态毒理效应
目前有关微塑料生态毒理效应的研究主要集中在海洋生物,结果表明,微塑料能够在基因、细胞、组织和个体等各种水平上对海洋生物产生毒理效应(周倩等,2015)。然而,有关淡水生物生态毒理效应的研究还十分匮乏。
3.1 微塑料的单一毒理效应
野生淡水鱼类和底栖无脊椎动物会吞食并累积环境中的微塑料。实验室研究则进一步证实微塑料能够在浮游动物大型溞(Daphnia magna)体内大量累积(Besseling et al.,2014;Nasser et al.,2016;Rehse et al.,2016;Rosenkranz et al.,2009);此外,钩虾(Gammarus fossarum)(Blarer et al.,2016)、端足虫(Hyalella azteca)(Au et al.,2015)、夹杂带丝蚓(Lumbricus variegates)(Imhof et al.,2013)和青鳉鱼(Oryzias latipes)(Rochman et al.,2013a)等不同营养级的淡水生物均会累积微塑料。然而,近期也有报道指出金鱼(Carassius auratus)能够迅速排泄微塑料,因而微塑料不会在其肠道中累积(Grigorakis et al.,2017),表明微塑料在淡水生物中的累积可能存在种间差异。
微塑料一旦在淡水生物体内累积后,会造成各种物理性损伤,最终可能会对水生系统造成无法预知的生态风险。例如,纳米级微塑料会通过静电作用吸附在月牙藻(Pseudokirchneriella subcapitata)(Nolte et al.,2017)、小球藻(Chlorella spp.)和栅藻(Scenedesmus spp.)(Bhattacharya et al.,2010)表面,阻碍藻胞对光子和CO2的吸收利用,从而降低藻类的光合作用效率,导致藻类生长受到抑制(Bhattacharya et al.,2010)。微塑料会堵塞浮游动物的摄食器官和消化道(Au et al.,2015;Besseling et al.,2014;Blarer et al.,2016;Nasser et al.,2016;Rehse et al.,2016;Rosenkranz et al.,2009),降低其摄食率(Nasser et al.,2016),或直接干扰其摄食过程(Au et al.,2015;Blarer et al.,2016),导致能量缺乏,生长、活动、繁殖能力减弱(Au et al.,2015;Besseling et al.,2014;Casado et al.,2013;Rehse et al.,2016),甚至引起个体死亡(Au et al.,2015;Besseling et al.,2014;Blarer et al.,2016;Casado et al.,2013)。此外,微塑料的累积还会引起青鳉鱼肝脏出现肝糖原耗竭和脂肪空泡等病理现象(Rochman et al.,2013a)。除了物理性损伤,微塑料自身还会浸出增塑剂等化学物质,从而对淡水生物造成毒理效应。Lithner et al.(2009)研究了多种塑料制品浸出成分对大型溞的影响,发现PVC和聚氨酯(PU)会对大型溞产生急性毒性。总体来看,现阶段有关微塑料对淡水生物毒理效应的研究还主要局限于个体和组织水平,今后应从细胞和基因水平深入研究微塑料的毒性效应机制,积累更多的毒理学基础数据。
3.2 微塑料与复合污染物的联合毒理效应
水环境中存在多种污染物,而微塑料粒径小,比表面积大,且具有疏水性,极有可能成为其他污染物的载体,形成复合污染(Rochman et al,2013b;Teuten et al,2009)。微塑料吸附的环境污染物在生物体内释放,可能会产生一系列毒理效应(屈沙沙等,2017)。针对单一微塑料的生态毒理效应研究显然不足以反映水环境污染的真实风险,研究微塑料与其他污染物复合污染的联合效应成为当前的关键问题。目前有关微塑料复合污染的研究刚刚起步,主要集中在与重金属(HMs)、多环芳烃(PAHs)和多氯联苯(PCBs)等传统污染物对海洋生物的联合效应。微塑料可以改变水环境中HMs、PAHs和PCBs的生物有效性(Brennecke et al.,2016;Karami et al.,2016;Oliveira et al.,2013;Sleight et al.,2017),进而引起海洋生物的蛋白质合成、能量储存和生物转化等生理过程的复杂变化(Karami et al.,2016;Oliveira et al.,2013)。同时,微塑料对代谢酶效能的抑制会削弱PAHs的代谢转化,提高其在生物体内的累积水平(Paul-Pont et al.,2016)。需要注意的是,近期已有研究指出微塑料能够吸附水体中的全氟化合物(PFCs)(Wang et al.,2015)、药物及个人护理品(PPCPs)(Wu et al.,2016)和多溴联苯醚(PBDEs)(Wardrop et al.,2016)等新型污染物,并对这些新型污染物的迁移、转化和生态毒理效应产生影响(Browne et al.,2013;Fonte et al.,2016;Wardrop et al.,2016)。
由于更接近人类活动区域,淡水环境中传统和新型污染物的种类和浓度都要高于海洋环境,然而目前还没有出现微塑料复合污染对淡水生物生态毒理效应研究的相关报道(Horton et al.,2017a),这应是将来重点关注的研究领域。
4 总结与展望
海洋环境中的微塑料污染问题已经受到了数年的关注,在联合国环境规划署2014年发布的年鉴《UNEP Year Book 2014: Emerging Issues in Our Global Environment》(UNEP,2014)中,已将其上升为全球性政策问题予以重视。通过文献综述,发现淡水环境中微塑料的污染同样十分严重,且会对淡水生态系统产生负面效应。然而,相关的研究刚刚起步,针对这些问题开展系统性的工作已迫在眉睫。
首先,国内外淡水环境中微塑料赋存水平和分布状况的基础数据还十分匮乏,尤其是水文水质和气候等环境因素对微塑料污染特征的影响需要深入研究。一些野外调查工作虽然初步探讨了河流流速或降水对微塑料污染的影响,但仍缺乏系统的研究,建议今后结合环境监测与环境行为模拟等多种途径对该问题进行深入探索。
其次,国内外学者对淡水环境中微塑料的主要来源和污染途径还没有形成共识。由于塑料制品被广泛应用于人类的生产生活中,且淡水环境的污染受纳途径较复杂,因此对微塑料污染的源解析工作十分必要。现阶段应尽快建立微塑料污染的源解析技术标准,分析环境中微塑料的迁移转化过程,为微塑料污染来源和途径的确定提供技术支撑和理论基础。
最后,微塑料与淡水环境中的其他物质,尤其是新型污染物的复合污染研究尚未开展。由于特殊的理化特征,微塑料极有可能通过不同方式结合环境中的污染物,这是否会对淡水生物产生联合毒性效应,或者改变其他污染物的生物累积和食物链传递过程,将是今后需要重点研究的问题之一,该方面的研究对环境中微塑料生态健康风险评估标准的制定具有重要意义。
AU S Y, BRUCE T F, BRIDGES W C, et al. 2015. Responses of Hyalella azteca to acute and chronic microplastic exposures [J]. Environmental Toxicology and Chemistry, 34(11): 2564-2572.
BESSELING E, QUIK J T K, SUN M, et al. 2017. Fate of nano-and microplastic in freshwater systems: A modeling study [J].Environmental Pollution, 220(Part A): 540-548.
BESSELING E, WANG B, LÜRLING M, et al. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna [J]. Environmental Science & Technology, 48(20): 12336-12343.
BHATTACHARYA P, LIN S, TURNER J P, et al. 2010. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis [J]. The Journal of Physical Chemistry C, 114(39): 16556-16561.
BLARER P, BURKHARDT-HOLM P. 2016. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum [J]. Environmental Science and Pollution Research, 23:23522-23532.
BRENNECKE D, DUARTE B, PAIVA F, et al. 2016. Microplastics as vector for heavy metal contamination from the marine environment [J].Estuarine, Coastal and Shelf Science, 178: 189-195.
BROWNE M A, CRUMP P, NIVEN S J, et al. 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks [J].Environmental Science & Technology, 45(21): 9175-9179.
BROWNE M A, NIVEN S J, GALLOWAY T S, et al. 2013. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Current Biology, 23(23): 2388-2392.
CARR S A, LIU J, TESORO A G. 2016. Transport and fate of microplastic particles in wastewater treatment plants [J]. Water Research, 91:174-182.
CASADO M P, MACKEN A, BYRNE H J. 2013. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery [J]. Environment International, 51: 97-105.
CINCINELLI A, SCOPETANI C, CHELAZZI D, et al. 2017. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence,distribution and characterization by FTIR [J]. Chemosphere, 175:391-400.
COLE M, LINDEQUE P, HALSBAND C, et al. 2011. Microplastics as contaminants in the marine environment: a review [J]. Marine Pollution Bulletin, 62(12): 2588-2597.
DANTAS D V, BARLETTA M, DA COSTA M F. 2012. The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums (Sciaenidae) [J]. Environmental Science and Pollution Research, 19(2): 600-606.
DESFORGES J P W, GALBRAITH M, DANGERFIELD N, et al. 2014.Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 79(1-2): 94-99.
DO SUL J A I, COSTA M F. 2014. The present and future of microplastic pollution in the marine environment [J]. Environmental Pollution, 185:352-364.
EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. 2015.Microplastics in freshwater systems: a review of the emerging threats,identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 75: 63-82.
ERIKSEN M, LEBRETON L C M, CARSON H S, et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea [J]. PloS ONE, 9(12):e111913.
ERIKSEN M, MASON S, WILSON S, et al. 2013. Microplastic pollution in the surface waters of the Laurentian Great Lakes [J]. Marine Pollution Bulletin, 77(1-2): 177-182.
FAURE F, CORBAZ M, BAECHER H, et al. 2012. Pollution due to plastics and microplastics in Lake Geneva and in the Mediterranean Sea [J].Archives Des Sciences, 65: 157-164.
FONTE E, FERREIRA P, GUILHERMINO L. 2016. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps):Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation [J]. Aquatic Toxicology, 180: 173-185.
FREE C M, JENSEN O P, MASON S A, et al. 2014. High-levels of microplastic pollution in a large, remote, mountain lake [J]. Marine Pollution Bulletin, 85(1): 156-163.
GRIGORAKIS S, MASON S A, DROUILLARD K G. 2017. Determination of the gut retention of plastic microbeads and microfibers in goldfish(Carassius auratus) [J]. Chemosphere, 169: 233-238.
HERNANDEZ E, NOWACK B, MITRANO D M. 2017. Synthetic textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing [J]. Environmental Science & Technology, 51(12):7036-7046.
HORTON A A, SVENDSEN C, WILLIAMS R J, et al. 2017b. Large microplastic particles in sediments of tributaries of the River Thames,UK–Abundance, sources and methods for effective quantification [J].Marine Pollution Bulletin, 114(1): 218-226.
HORTON A A, WALTON A, SPURGEON D J, et al. 2017a. Microplasticsin freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 586: 127-141.
HÜFFER T, PRAETORIUS A, WAGNER S, et al. 2017. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles [J].Environmental Science & Technology, 51(5): 2499-2507.
IMHOF H K, IVLEVA N P, SCHMID J, et al. 2013. Contamination of beach sediments of a subalpine lake with microplastic particles [J]. Current Biology, 23(19): R867-R868.
JABEEN K, SU L, LI J, et al. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China [J]. Environmental Pollution,221: 141-149.
JAMBECK J R, GEYER R, WILCOX C, et al. 2015. Plastic waste inputs from land into the ocean [J]. Science, 347: 768-771.
KARAMI A, ROMANO N, GALLOWAY T, et al. 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus) [J].Environmental Research, 151: 58-70.
KLEIN S, WORCH E, KNEPPER T P. 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany [J]. Environmental Science &Technology, 49(10): 6070-6076.
LAW K L, THOMPSON R C. 2014. Microplastics in the seas [J]. Science,345(6193): 144-145.
LITHNER D, DAMBERG J, DAVE G, et al. 2009. Leachates from plastic consumer products–screening for toxicity with Daphnia magna [J].Chemosphere, 74(9): 1195-1200.
MCDEVITT J P, CRIDDLE C S, MORSE M, et al. 2017. Addressing the issue of microplastics in the wake of the Microbead-Free Waters Act—a new standard can facilitate improved policy [J]. Environmental Science & Technology, 51(12): 6611-6617.
MIRANDA D A, DE CARVALHO-SOUZA G F. 2016. Are we eating plastic-ingesting fish? [J]. Marine Pollution Bulletin, 103(1-2):109-114.
MURPHY F, EWINS C, CARBONNIER F, et al. 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 50(11): 5800-5808.
NASSER F, LYNCH I. 2016. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna [J].Journal of Proteomics, 137: 45-51.
NOLTE T M, HARTMANN N B, KLEIJN J M, et al. 2017. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption [J]. Aquatic Toxicology, 183: 11-20.
OLIVEIRA M, RIBEIRO A, HYLLAND K, et al. 2013. Single and combined effects of microplastics and pyrene on juveniles (0+group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae) [J].Ecological Indicators, 34: 641-647.
PAUL-PONT I, LACROIX C, FERNÁNDEZ C G, et al. 2016. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation [J]. Environmental Pollution, 216: 724-737.
PENG G, ZHU B, YANG D, et al. 2017. Microplastics in sediments of the Changjiang Estuary, China [J]. Environmental Pollution, 225: 283-290.
POSSATTO F E, BARLETTA M, COSTA M F, et al. 2011. Plastic debris ingestion by marine catfish: an unexpected fisheries impact [J]. Marine Pollution Bulletin, 62(5): 1098-1102.
RAMOS J A A, BARLETTA M, COSTA M F. 2012. Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds[J]. Aquatic Biology, 17: 29-34.
REHSE S, KLOAS W, ZARFL C. 2016. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna [J]. Chemosphere, 153: 91-99.
ROCHMAN C M, HOH E, HENTSCHEL B T, et al. 2013b. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris [J]. Environmental Science & Technology, 47(3): 1646-1654.
ROCHMAN C M, HOH E, KUROBE T, et al. 2013a. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress [J].Scientific Reports, 3: 3263.
ROSENKRANZ P, CHAUDHRY Q, STONE V, et al. 2009. A comparison of nanoparticle and fine particle uptake by Daphnia magna [J].Environmental Toxicology and Chemistry, 28(10): 2142-2149.
SETÄLÄ O, FLEMING-LEHTINEN V, LEHTINIEMI M. 2014. Ingestion and transfer of microplastics in the planktonic food web [J].Environmental Pollution, 185: 77-83.
SLEIGHT V A, BAKIR A, THOMPSON R C, et al. 2017. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish [J]. Marine Pollution Bulletin, 116(1-2): 291-297.
SRUTHY S, RAMASAMY E V. 2017. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India [J]. Environmental Pollution, 222:315-322.
STEER M, COLE M, THOMPSON R C, et al. 2017. Microplastic ingestion in fish larvae in the western English Channel [J]. Environmental Pollution, 226: 250-259.
SU L, XUE Y, LI L, et al. 2016. Microplastics in Taihu Lake, China [J].Environmental Pollution, 216: 711-719.
TEUTEN E L, SAQUING J M, KNAPPE D R U, et al. 2009. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 364(1526): 2027-2045.
UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP). 2014.UNEP Year Book 2014: Emerging Issues in Our Global Environment[M]. Nairobi, Kenya: United Nations Environment Programme Publishing: 48-53.
VENDEL A L, BESSA F, ALVES V E N, et al. 2017. Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures [J]. Marine Pollution Bulletin,117(1-2): 448-455.
WAGNER M, SCHERER C, ALVAREZ-MUÑOZ D, et al. 2014.Microplastics in freshwater ecosystems: what we know and what we need to know [J]. Environmental Sciences Europe, 26: 1-9.
WANG F, SHIH K M, LI X Y. 2015. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide(FOSA) on microplastics [J]. Chemosphere, 119: 841-847.
WANG J, PENG J, TAN Z, et al. 2017b. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition,abundance, surface textures and interaction with heavy metals [J].Chemosphere, 171: 248-258.
WANG W, NDUNGU A W, LI Z, et al. 2017a. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China [J]. Science of the Total Environment, 575: 1369-1374.WARDROP P, SHIMETA J, NUGEGODA D, et al. 2016. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish [J]. Environmental Science & Technology, 50(7):4037-4044.
WRIGHT S L, THOMPSON R C, GALLOWAY T S. 2013. The physical impacts of microplastics on marine organisms: a review [J].Environmental Pollution, 178: 483-492.
WU C, ZHANG K, HUANG X, et al. 2016. Sorption of pharmaceuticals and personal care products to polyethylene debris [J]. Environmental Science and Pollution Research, 23(9): 8819-8826.
ZHANG K, GONG W, LV J, et al. 2015. Accumulation of floating microplastics behind the Three Gorges Dam [J]. Environmental Pollution, 204: 117-123.
ZHANG K, SU J, XIONG X, et al. 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China [J].Environmental Pollution, 219: 450-455.
ZHANG K, XIONG X, HU H, et al. 2017. Occurrence and characteristics of microplastic pollution in Xiangxi bay of Three Gorges Reservoir,China [J]. Environmental Science & Technology, 51(7): 3794-3801.
ZHAO S Y, ZHU L X, LI D J. 2015. Microplastic in three urban estuaries,China [J]. Environmental Pollution, 206: 597-604.
ZHAO S Y, ZHU L X, WANG T, et al. 2014. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution [J]. Marine Pollution Bulletin, 86(1-2):562-568.
屈沙沙, 朱会卷, 刘锋平, 等. 2017. 微塑料吸附行为及对生物影响的研究进展[J]. 环境卫生学杂志, 7: 75-78.
王昆, 林坤德, 袁东星. 2017. 环境样品中微塑料的分析方法研究进展[J] . 环境化学, 36(1): 27-36.
章海波, 周倩, 周阳, 等. 2016. 重视海岸及海洋微塑料污染,加强防治科技监管研究工作[J]. 中国科学院院刊, 31(10): 1182-1189.
智研咨询集团. 2016. 2016—2022年中国聚烯烃市场专项研究及投资前景评估报告[R]. 北京: 智研咨询集团: 64-71.
周倩, 章海波, 李远, 等. 2015. 海岸环境中微塑料污染及其生态效应研究进展[J]. 科学通报, 60(33): 3210-3220.
Abstract: Due to the massive production and consumption in modern society, plastic products are delivered into the aquatic environment. The plastic waste in the aquatic environment would break down into numerous small plastic fragments with a size <5 mm, namely microplastics. As emerging environmental contaminants, microplastics have been received global attention from both scientific and public communities. Nowadays, most of the available literature concentrates mainly on the microplastics pollution in the marine environment. Due to the frequent contact with people, the microplastics pollution in the terrestrial freshwater environment should be considered more carefully. In order to get a thorough understanding of the microplastics pollution in the freshwater environment and strengthen the risk management, the occurrence, source and ecotoxicological effect of microplastics in the freshwater environment were reviewed based on the previous studies in recent years. The occurrences of microplastics have been reported in water, sediments and organisms, indicating that the microplastics pollution may be distributed worldwide in the freshwater environment. Moreover, it seems that the microplastics pollution in China is more significant than that in other countries.To date, the sources of microplastics in the freshwater environment are still not very well characterized. The main direct sources of microplastics may include effluents of wastewater treatment plants, degradation of plastic waste in the aquatic environment, and terrestrial input by soil erosion or runoff, while personal care products, synthetic textiles, industrial materials, and mismanaged plastic waste from urban, agricultural, touristic and industrial areas are considered the ultimate origins of microplastics in the freshwater environment. Microplastics can trigger physical effects and biochemical perturbations in freshwater organisms.Furthermore, it may lead to combined pollution with other contaminants, eventually inducing interactive effects on freshwater organisms. Collectively, there is an urgent need to investigate the microplastics pollution in the freshwater environment. In the future,the influence of environmental factors on the microplastics pollution characteristic, the analysis of the sources of microplastics, and the interactive effects between microplastics and other contaminants on freshwater organisms should be further studied. This paper would provide a theoretical reference for the study concerning the microplastics pollution and the ecological risk in freshwater environments.
Key words: microplastics; freshwater environment; occurrence; source; ecotoxicological effect
Occurrence, Source and Ecotoxicological Effect of Microplastics in Freshwater Environment
DING Jiannan1,2, ZHANG Shanshan1, ZOU Hua1,2*, ZHANG Yun1,2, ZHU Rong1
1. School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;2. Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou 215009, China
10.16258/j.cnki.1674-5906.2017.09.023
X171.5
A
1674-5906(2017)09-1619-08
丁剑楠, 张闪闪, 邹华, 张云, 朱荣. 2017. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展[J]. 生态环境学报, 26(9): 1619-1626.
DING Jiannan, ZHANG Shanshan, ZOU Hua, ZHANG Yun, ZHU Rong. 2017. Occurrence, source and ecotoxicological effect of microplastics in freshwater environment [J]. Ecology and Environmental Sciences, 26(9): 1619-1626.
科技部国家重点研发计划项目(2016YFE0123600);江苏省自然科学基金青年项目(BK20170188);中央高校基本科研业务费专项资金项目(JUSRP11714)
丁剑楠(1988年生),男,助理研究员,博士,从事新型污染物的环境行为和生态毒理研究。E-mail: djn@jiangnan.edu.cn*通信作者:邹华(1972年生),男,教授,博士,从事天然水体污染控制和环境生物技术研究。E-mail: zouhua@jiangnan.edu.cn
2017-06-16