APP下载

浅析滤波器

2017-10-14李祥朱凌进

神州·中旬刊 2017年9期
关键词:通带沃斯比雪夫

李祥+朱凌进

摘要:电源滤波器是由电容、电感和电阻组成的滤波电路。滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。

关键词:滤波器;作用与类型

1.滤波器简介

滤波器是一种对信号有处理作用的器件或电路。分为有源滤波器和无源滤波器。

滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为XL·XC=K2,故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率者,称为m常数滤波器。所谓截止频率,亦即与滤波器有尖锐谐振的频率。通带与带阻滤波器都是m常数滤波器,m为截止频率与被衰减的其他频率之衰减比的函数。每一m常数滤波器的阻抗与K常数滤波器之间的关系,均由m常数决定,此常数介于0~1之间。当m接近零值时,截止频率的尖锐度增高,但对于截止频的倍频之衰减率将随着而减小。最合于实用的m值为0.6。至于那一频率需被截止,可调节共振臂以决定之。m常数滤波器对截止频率的衰减度,决定于共振臂的有效Q值之大小。若达K常数及m常数滤波器组成级联电路,可获得尖锐的滤波作用及良好的频率衰减。

2.滤波器作用

滤波器,顾名思义,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间‘是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。随着数字式电子计算机(一般简称计算机)技术的产生和飞速发展,为了便于计算机对信号进行处理,产生了在抽样定理指导下将连续时间信号变换成离散时间信号的完整的理论和方法。也就是说,可以只用原模拟信号在一系列离散时间坐标点上的样本值表达原始信号而不丢失任何信息,波、波形、信号这些概念既然表达的是客观世界中各种物理量的变化,自然就是现代社会赖以生存的各种信息的载体。信息需要传播,靠的就是波形信号的传递。信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,有时,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了。

3.滤波器大致类型

巴特沃斯响应(最平坦响应)

巴特沃斯响应能够最大化滤波器的通带平坦度。该响应非常平坦,非常接近DC信号,然后慢慢衰减至截止频率点为-3dB,最终逼近-20ndB/decade的衰减率,其中n为滤波器的阶数。巴特沃斯滤波器特别适用于低频应用,其对于维护增益的平坦性来说非常重要。

贝塞尔响应

除了会改变依赖于频率的输入信号的幅度外,滤波器还会为其引入了一个延迟。延迟使得基于频率的相移产生非正弦信号失真。就像巴特沃斯响应利用通带最大化了幅度的平坦度一样,贝塞尔响应最小化了通带的相位非线性。

切贝雪夫响应

在一些应用当中,最为重要的因素是滤波器截断不必要信号的速度。如果你可以接受通带具有一些纹波,就可以得到比巴特沃斯滤波器更快速的衰减。

4.滤波器选取

几种低通原型滤波器是现代网络综合法设计滤波器的基础,各种低通、高通、带通、带阻滤波器大都是根据此特性推导出来的。正因如此,才使得滤波器的设计得以简化,精度得以提高。

理想的低通滤波器应该能使所有低于截止频率的信号无损通过,而所有高于截止频率的信号都应该被无限的衰减,从而在幅频特性曲线上呈现矩形,故而也称为矩形滤波器(brick-wallfilter)。遗憾的是,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。根据所选的逼近函数的不同,可以得到不同的响应。虽然逼近函数多种多样,但是考虑到实际电路的使用需求,我们通常会选用“巴特沃斯响应”或“切比雪夫响应”。

“巴特沃斯响应”带通滤波器具有平坦的响应特性,而“切比雪夫响应”带通滤波器却具有更陡的衰减特性。所以具体选用何种特性,需要根据电路或系统的具体要求而定。但是,“切比雪夫响应”滤波器对于元件的变化最不敏感,而且兼具良好的选择性与很好的驻波特性(位于通带的中部),所以在一般的应用中,推荐使用“切比雪夫响应”滤波器。

5.總结

滤波器在现实生活中运用十分广泛,不仅仅是其简单方便,也是由于其性能帮助我们去除不必要的噪声影响,得到更加精确的数据波形,这才是科学严谨的态度。

参考文献:

[1]张爱琴.滤波器的发展与展望[J].电子科技,1995(2):7-11.

[2]安东尼奥著,程湘君等译.数字滤波器分析与设计[M].西安:陕西科技技术出版社,1984:89-102.

[3]罗军益,李磊民,陈泉根.IIR滤波器的设计研究[J].微计算机信息,2007:44-52.endprint

猜你喜欢

通带沃斯比雪夫
分圆多项式与切比雪夫多项式的类比探究
自己的歌
安迪·高兹沃斯——塑造自然的艺术家
一种结构紧凑的超宽带带通滤波器
第四类切比雪夫型方程组的通解
基于方差的切比雪夫不等式的推广及应用
基于宽谱光源的可调多通带微波光子学滤波器研究
切比雪夫多项式零点插值与非线性方程求根
雨天
非等纹响应低通滤波器研究