APP下载

垃圾焚烧飞灰浸出毒性及生物可利用性研究

2017-07-05胡晶陶元黄碧捷王美林

绿色科技 2017年10期
关键词:重金属

胡晶 陶元 黄碧捷++王美林

摘要:指出了垃圾焚烧飞灰堆积过程中,会在浸出液或酸雨影响下导致重金属浸入土壤及水体,造成污染,并伴随营养级对生物造成不利影响。阐述了垃圾焚烧飞灰的污染特性,探讨了pH值、飞灰粒径、液固比和重金属形态对焚烧飞灰中重金属浸出的影响,对比总结了生物模拟法和植物指示法相关重金属的生物可利用性的研究方法。

关键词:飞灰;重金属;浸出毒性;生物可利用性

中图分类号:X705

文献标识码:A 文章编号:16749944(2017)10000303

1 引言

生活垃圾焚烧处理凭借其设施占地少、减量效果明显等特点,在土地资源稀缺的大背景下,已成为城市垃圾处置的主要方式。但其燃烧过程中会产生含有二噁英类和易于浸出的Pb、Zn、Cr、Cd等多种重金属有害物质的飞灰,其污染问题也引起了广泛的关注。由于焚烧飞灰中含有对周围环境和人体健康具有潜在危害,《国家危险废物名录》已将生活垃圾焚烧飞灰列为危险废物。飞灰在渗滤液或酸雨作用下,会导致重金属浸入土壤或水体中,不仅会污染周围环境,而且会被植物或动物吸收,通过食物链在各个营养级上富集、放大,造成对动植物的巨大伤害,而评价重金属对生物的危害,就涉及到对其生物可利用性的相关研究。笔者对垃圾焚烧飞灰的污染特性进行了说明,对现有飞灰内重金属浸出影响因素进行了探讨,对其生物可利用性的研究方法进行了对比和总结,可为控制焚烧飞灰中重金属的浸出和探究浸出重金属对生物的危害提供参考依据。

2 生活垃圾焚烧飞灰的污染特性

城市垃圾焚烧过程中会产生相当于原垃圾质量3%~5%的垃圾焚烧飞灰,生活垃圾焚烧飞灰的粒径基本分布在10~50 μm,比表面积为4.08 m2/g[1]。飞灰中除了含Ca、K、Si、Al、Mg等金属元素的氧化物及氯化物和含硫化合物等其他复杂组分外[2],还富集了二噁英和呋喃等有机污染物。

2.1 重金属

焚烧飞灰中重金属含量一般占飞灰总量的0.5%~3%,有的甚至达到了9.3%,其中Zn、Pb、Cu和Cr的含量较高[3],主要来源于废旧电池、电器、镀金材料等原件。我国典型生活垃圾焚烧飞灰中Zn一般范围为2088~14129 mg/kg;Pb为782.6~9901 mg/kg;Cu为728.0~2162 mg/kg;Cr为232.0~716.23 mg/kg[4]。重金属不能被生物降解,一旦进入动植物体内,在食物链的生物放大作用下,成倍进行富集,最后进入人体,与人体内的酶及蛋白质等发生反应,使其失去活性,或在人体某器官内积累,引起慢性中毒。

2.2 二噁英

垃圾焚烧过程中会产生二噁英类及其他痕量有机污染物,飞灰对二噁英排放的贡献占总排放源的58%~88%[7],且二噁英的形成起着重要作用,飞灰上吸附的各种金属元素,及其氯化物和氧化物为二噁英形成的所需物质及催化剂。二噁英中主要污染物为多氯联苯并二噁英(PCDDs)和多氯联苯并呋喃(PCDFs)[5],长期在人体内累积会对人体免疫功能和生殖功能造成巨大损伤。

3 焚烧飞灰中重金属的浸出

焚烧飞灰堆积过程中,在浸出液或酸雨影响下,其中含有的重金属会浸出,重金属浸出过程受多种因素的影响,如pH值、飞灰粒径、液固比、重金属形态等。

3.1 浸提液pH值

飞灰中的大多数重金属易在酸性条件下浸出,而且这种规律性与飞灰一般呈碱性有关,飞灰中重金属的浸出受到浸提液pH值和飞灰本身的pH值二者间的共同作用。张乔等[6]改变浸提液的pH值,得到Cd、As、Cr等重金属在浸取液pH值≤4.89时的浸出浓度远远大于pH值≥4.89时的,即在中性和碱性条件下均小于酸性条件下的浸出量。丁世敏等[7]使用水平振荡法研究也得到了相似的结果,重金属的浸出量随初始pH值升高而减小。

3.2 焚烧飞灰粒径

一般而言,飞灰孔隙率较高,比表面积越大,其重金属吸附能力越强,所浸出重金属量越多,而飞灰比表面积与粒径呈现了一种相关性。邝薇等[8]研究得到焚烧飞灰中含量较高的重金属均呈现像小颗粒富集的趋势,而含量较少的与粒径未表现出明显的相关性;王春峰等[9]通过TCLP实验,得到Cu、Pb、Zn的浸出量随飞灰粒径增大先增大后減小,而As和V的浸出量逐渐增大;以欧盟标准进行实验时,Cu和Pb的浸出量随粒径增大而减小,As和V随粒径增大而增大。

3.3 液固比

液固比也是影响重金属浸出的因素之一,席北斗等[10]研究得到在醋酸缓冲溶液中,重金属浸出质量浓度随液固比的增加而先升高再降低,且均在液固比为40 L/kg时达到最大浸出量。谭中欣等[11]将液固比从10∶1上升至20∶1时,重金属Cd、Cr、Pb、Cu、Hg、Mn的浸出率都呈现增加的趋势。

3.4 焚烧飞灰中重金属形态

焚烧飞灰中的重金属形态会直接影响重金属的浸出行为和自然界中的迁移转化,一般将重金属化学形态分成可交换态、碳酸盐态、铁锰氧化态、有机结合态、原生硫化态和残渣态[12]。对焚烧飞灰中重金属形态分析,不仅可以研究其浸出特性,还可以根据其中几种主要重金属的形态含量分布,对焚烧飞灰做出风险评价。当某种重金属主要以可交换态存在时,代表此重金属易于浸出,危险性高;飞灰中以残渣态存在的重金属不易在强酸性溶液中浸出,最为稳定、危害性最小[13]。

4 焚烧飞灰中重金属的生物可利用性研究

焚烧飞灰中浸出的重金属,会进入土壤和水体,土壤和水体中的动植物在进行生命活动时,会将重金属吸收至体内,在食物链的作用下,最终进入人体,对人体产生不利影响。焚烧飞灰中重金属的危害最终体现在对生物体的影响上,被生物利用吸收的部分为污染的有效部分,即重金属的生物可利用性,焚烧飞灰中重金属的生物可利用性研究方法主要有生物模拟法和植物指示法[14]。

4.1 生物模拟法

健康风险评价中,土壤或焚烧飞灰重金属的生物可利用性通常是指经口无意摄入的污染物质中重金属被消化道吸收的最大量,需要准确判定重金属在胃肠阶段不同階段的溶出动态。体外实验方法操作简单、费用低,结果较为准确,发展技术也相对较为成熟,常用的体外实验方法包括PBET(physiologically based extraction test)、IVG(in vitro gastrointesinal method)、SBET(simplified bioaccessibility extraction test)、UBM(the unified bioaccessibility method )等[15](表1)。

表1 研究重金属生物可利用性的几种体外提取法

名称胃液及肠液组分胃液及肠液pH 提取时间

PBET胃液中含有胃蛋白酶、苹果酸盐、柠檬酸盐、乙酸等有机酸;肠液中含有胆汁盐和胰液素胃液pH为1.3;肠液pH为7.02h,2hSBET胃液组分为甘氨酸胃液pH为1.51h

IVG胃液中含有氯化钠和胃蛋白酶;肠液中含有胰酶和胆汁;并整个过程中通入氩气胃液pH为1.8;肠液pH为5.51h,1h

UBM胃相阶段加入唾液( 包含氯化钾、磷酸二氢钠、尿素等),胃液( 包含粘液素、胃蛋白酶等;肠相阶段加入肠液( 包括胰酶、脂肪酶、牛血清蛋白等),胆汁(包含氯化钠、碳酸氢钠、尿素、氯化钙、胆汁盐等)胃液pH为1.2;肠液pH为6.5 1h,4h

由于不同体外提取方法都是参考人体消化液组成设定的,而其模拟液组成存在很大的差异,每种方法都对不同的重金属有较好的相关性,且试用于不同的环境。吴小飞等[17]使用SBET、PBET、IVG和UBM四种体外提取法,对不同酸碱度土壤中几种主要重金属的生物可给性进行了分析,得出IVG和PBET适用于酸性土壤,SBET和UBM适用于偏碱性土壤(表1)[16]。

4.2 植物指示法

为更好表现植物与土壤或焚烧飞灰中重金属之间的相关性,可用植物指示法来验证。植物指示法包括田间试验法和植物盆栽法2 种,前者在田间条件下,以植物吸收土壤中重金属的量来表示土壤中重金属的生物有效性,其试验结果能较客观地反应大田的真实情况;后者是将供试土壤装入试验盆钵中,并植入试验的植物,在控制温度及湿度条件下进行培养,培养结束后,通过测定全株植物或植物不同部位的重金属含量来判断重金属的生物有效性以及植物对它们的累积情况[14]。

植物指示法实验周期长,易受周围环境的影响,导致有许多不可控因素,而且不同植物对重金属吸收种类有所不同,油菜容易吸收Cd,而对Zn、Cr的吸收却较少;藕对Pb的吸收明显,而对Cr、Cd和Zn的吸收相对较少[18]。对于重金属的生物可利用性研究,不能只选用一种植物进行,其结果不具有代表性,并不适用于大多数的植物类型。

5 结论

(1) 浸出液pH值、飞灰粒径、液固比和重金属形态均会影响重金属浸出,为使实验更严谨,可以控制重金属浸出的某些影响因素,根据飞灰的不同性质改变相应的浸提条件。

(2) 在选择浸提液浓度和种类时,也需考虑焚烧飞灰本身的pH值,根据其调节浸出液pH值,以得到重金属的最大浸出量;重金属有向小颗粒飞灰富集的趋势,故在进行重金属浸出实验时,最好选择较小粒径的焚烧飞灰;液固比的改变,实际上也是浸出液pH值的间接改变,在进行浸出实验时,液固比和pH值两者可作为协同因素。

(3) 研究焚烧飞灰中重金属的生物可利用性,使用较多的方法为生物模拟法和植物指示法。体外模拟胃肠法是模拟将含有重金属的土壤或焚烧飞灰直接由口摄入,进入胃肠的吸收过程,但和真实通过食物链进入人体的过程有所差别。在用植物指示法研究重金属的生物可利用性时,不同植物对于不同种类的重金属吸收能力有所差异,需考虑到研究的重金属和选择的植物种类。

参考文献:

[1]

杨立波.生活垃圾焚烧飞灰中二噁英与汞的分布特性研究[D].上海:上海大学,2013.

[2]余纯丽,龙良俊,魏星跃,等.自然堆存下的飞灰污染物浸出毒性研究[J].环境工程学报.2009,3(6).

[3]叶噋旻,王 伟,高兴保,等.我国垃圾焚烧飞灰性质及其重金属浸出特性[J].环境科学,2017,28(11).

[4]武志明.我国典型区域生活垃圾焚烧飞灰污染特性及环境安全评价研究[D].上海:上海大学,2013.

[5]吴卫东,蔡 欢,李合义,等.垃圾焚烧飞灰中二噁英类的研究概况[J].干旱环境检测,2010,24(4).

[6]张 乔,夏凤毅,田一光,等.垃圾焚烧发电厂飞灰浸出毒性的研究[J].温州大学学报(自然科学版),2007,28(4).

[7]丁世敏,幸元会,封享华,等.重庆垃圾焚烧飞灰中重金属浸出特征研究[J].西南师范大学学报,2009,34(1).

[8]邝 薇,钟 山,陈孟林,等.垃圾焚烧飞灰中重金属的污染特性[J].环境科学与技术,2012,35(8).

[9]王春峰,陈冠飞,朱艳臣,等.不同粒径垃圾焚烧飞灰重金属浸出及生物可给性[J].环境科学,2016,37(12).

[10]席北斗,王 琪,张晓萱,等.不同浸出毒性鉴别方法对垃圾焚烧飞灰浸出毒性鉴别的适宜性[J].环境科学研究,2005(18).

[11]陆泗进,何立环,孙 聪.2种连续提取法提取三种类型土壤中重金属研究[J].北方环境,2013,29(1).

[12]李国臣,李泽琴,高 岚.土壤重金属生物可利用性的研究进展[J].土壤通报,2012,43(6).

[13]Jiao Facun,Zhang Lian,Dong Zhongbing,et al.Study on the species of heavy metal in MSW incineration fly ash and their leaching behavior[J].Fuel Processing Technology,2016(13):108~115.

[14]蔡美芳,吴仁人,李开明,等.植物性食物中重金属生物可利用性研究进展[J].环境科学与技术,2014,37(11).

[15]姜 林,彭 超,钟茂生,等.基于污染场地土壤中重金属人体可给性的健康风险评价[J].环境科学研究,2014,27(4).

[16]王 菲,方凤满.体外胃肠模拟评估土壤和灰尘中重金属生物可给性研究进展[J].卫生研究,2014,43(4).

[17]吴小飞,王振兴,李莎莎,等.体外提取方法对土壤重金属生物可给性的影响[J].扬州大学学报,2015,18(2):75~78.

[18]高永华,王 金,赵 莉,等.污灌区土壤-植物系统中重金属分布与迁移转化特征研究[J].河北农业大学学报,2006,29(5).

猜你喜欢

重金属
沉淀/吸附法在电镀废水重金属处理中的应用
试析食品中常见的重金属污染途径及检测方法
漓江
鱼头中重金属含量真的很高?
吃蘑菇不会重金属中毒
空心菜是蔬菜里的“毒中之王”吗
重金属不都是“坏的”
蘑菇富集重金属?不可能!
湖南大学制备出新型重金属吸附剂
喝纯牛奶真的可解重金属中毒吗?