APP下载

基于成本最小化的连锁零售企业配送中心选址研究

2017-07-05朱海鹏

商业经济研究 2017年12期
关键词:配送中心优化模型选址

朱海鹏

内容摘要:本文在分析连锁零售企业配送中心选址的目标与要素基础上,构建了配送中心成本最小化的选址模型,并设计了三种方案。在模型中运用遗传算法,对成本最小的配送中心设置方案进行探究,发现配送中心选址于运输距离恰当、服务水平高且庫存成本低的城镇,可使连锁零售企业的物流成本最小。最后,结合算例分析对研究结果进行了总结,以期为我国连锁零售企业发展提供借鉴与参考。

关键词:成本最小化 连锁零售企业 配送中心 选址 优化模型

连锁零售企业配送中心选址的目标与成本要素分析

(一)选址目标

连锁零售商品配送中心是进行社会物流组织的重要节点,其运作模式的主要特点在于从商品生产者汇集各种商品资源,随后进行分类和产品配送集约化活动,进而实现物流活动规模经济性,降低零售商品物流成本。因此,零售商品受资源分布、市场需求以及运输等因素影响,配送中心选址规划在同一区域内的各个地点,各式布局方案会导致整个物流系统运作成本产生较大差异。为用户提供更好服务,实现更高的社会效益,是进行零售商品物流中心选址、建设的重心问题。在进行配送中心选址过程中,目标应该以费用较低、服务较好、辐射区域大以及社会效益高作为主要目标。其中,费用低包括建设费用和经营费用在内的总费用最低;服务好是物流中心选择的地址应该保证连锁零售商品能够及时、完好地送达给用户;辐射强以及社会效益高是指零售商品配送中心选址,应从整区域物流系统出发,使其地域分布与区域物流资源和需求分布相互适应,适应地方经济发展的实际情况。

(二)成本要素分析

从成本最小化视角出发,选择连锁零售企业配送中心的所处地址,即权衡连锁零售企业的物流配送成本。根据物流成本的功能,可将运输成本与固定设施成本视为连锁零售企业配送中心选址的成本要素。

具体而言,运输成本即为在货物运送中产生的物流费用,主要发生于在原材料采购、产品产销与退货等环节。运输成本分为固定支付与自营运输费用。其中,固定运输费用包括固定车辆费用、人工费用和运输机构费用。支付运输费是指支付的运费及其他费用之和。而自营运输费用则不同,既包括固定运输费,又包括变动车辆费和变动人工费。变动车辆费是指道路使用费、燃料费、车辆维修费等总和。根据货物运输的距离与具体范围,可将运输成本划分为两类,一是城镇配送中心向各门店运送货物的成本,二是区域配送中心向城市配送中心运送货物的成本。

固定设施成本是指那些不随企业净物流量变动而变动的成本,一旦设备已发生变动则需要考虑折旧问题,主要有基础设施和仓储机械、设备折旧。为提高仓储或配送中心的技术竞争力,通常运用加速折旧方法,及时收回投资并更新相关设施。固定设施成本既包括员工工资、奖金、福利及五险一金等费用,还包括仓库维护费,如仓储设施、设备维护与修理费等。其中,后者通常占总投资额的3%-5%。

连锁零售企业配送中心选址成本最小化的模型构建

(一)前提概述

围绕连锁零售企业二级配送系统(见图1)进行分析。主要研究内容包括:门店订货周期、配送中心安全库存因子 Ai、Aj,及配送服务提供中心位置和数量的确定等。

(二)模型假设与变量选取

1.案例与假设。假设在两座城市中,连锁零售企业各有门店n1和n2个,且两座城市均具备配送中心建立的前提条件。配送中心从工厂订购了大批量某产品,将其储存于配送中心内部,并采用多点停留方式,为各门店送货,将送货时间设定为第二天开始前,或门店经营结束后。设定三个可供选择的配送中心选址方案,见图2所示。

方案—:设定n1和n2门店有两个配送中心A点与B点,所在城市门店都由A与B配送;方案二:仅在第一个城市设立配送中心C点,所在城市门店都由C点配送;方案三:仅在第二个城市设定配送中心D点,所在城市门店都由D点配送。根据上述方案设计,进行如下假设:

除去时间与空间增长趋势,门店n1、n2需求量在变化。设定日需求量正态分布 N(μRi,σ2Ri),其中i=1,2,……,(n1+n2) 为连锁零售门店序号。 μRi、σ2Ri统计值可从之前销售经验和当地经济、居民收入情况进行统计。库存策略。配送中心管理人员采用周期检查方式,在门店结束营业时,对货物库存剩余开展盘查,并根据盘查结果发布订单信息。L天是生产商向配送中心发货的提前期,其中包括备货、运输与采购时间;为不影响连锁零售门店正常营业,配送中心在门店结束营业后或在第二天营业之前,将货送到,提前期为0天;货物从订货到送达提前期为1天。连锁零售企业总部统一采购订货成本为O,配送中心与门店采用电子通知方式;并设定紧急供货成本S。连锁零售企业门店消费者忠诚度比例为θ。

2.变量选取。为更好建立模型,本文特定义如表1所示。

(三)模型建立

1.配送中心库存费用。推断城市配送中心的需求量近似服从正态分布 N(μj,σ2j)。其中

由上述模型推理得出:无缺货成本时,通过设定安全库因子,可保证配送中心的零缺货概率大于服务水平。

为此,城市配送中心无缺货概率可得:

进一步,xj~N(μj,Lσ2j) ,可从上述模型得知,单位时间内,连锁零售企业门店配送中心库存持有成本与订货成本之和为:

2.运输成本。对配送中心两种运输成本进一步细分可知,当零售门店脱离本市配送中心,且由其他城市配送中心配送货物时,整体运输成本由城间运输成本与内部运输成本共同构成。而门店在本市配送中心范围内时,配送成本仅为货物运输成本。那么,设定从城市配送中心j到门店i的单位运输成本为gii;区域配送点到城市配送中心单位运输成本为dj。由此得到下述总的运输成本公式:

3.系统总成本模型。通过以上分析,可得系统总成本目标函数为:

将系统目标设定为总成本最小化,根据约束条件,决策变量设为 kj,ki,Ni,Yj,Zij,可得到如下系统数学模型:

其中 Zij,Xi,Yj为0-1变量。可为周边门店提供服务的开放式配送中心,用式(9)表示;零售门店与配送中心服务水平约束分别用式(10)、(11)表示;每个门店有且只有一個配送中心为其服务,用公式(12)表示。

(四)模型求解

上述总成本模型为整数规划模型,运行相对复杂。涉及到候选城市配送中心及其组合方式,同时随着数量上升指数也在升级。由此可知,采用常规算法效率与速度难以提升,而经过与其他算法对比,遗传算法以其运算速度快、运行结果精准等特征,为本文所采用。通过分析系统总成本函数,发现该函数为 ki的下限函数,对其求导得到 ,即随着 ki增大,系统总成本也在递增,满足约束条件Ei≥Ti 的最小ki值可得最优解。进一步的分析,对公式(8)关于ki 求导: ,那么在上述条件下,也可得到同样最优解。

算例分析

(一)算例设定

为了简化运算流程,更好地对模型进行优化分析,对上述案例中两个城市分布的两个连锁零售店为案例。设定模型变量及参数值,如表2所示,并规定:配送中心服务水平≥80%,门店目标服务水平≥95%。

通过MATLAB软件计算得出表3结果,从表3所给数据结果来看,三种方案设计下,能够得到成本最优解。由表3分析,连锁零售门店的货物由本区域配送中心进行配送,较由其他城市配送中心配送的安全库存因子小,但零售门店的服务水平较高,符合实际情况,所以模型结果数据有效。另外,三方案从成本与服务水平进行分析,方案一中设立配送中心,最能节省成本;方案二中城市2门店由城市1配送中心配送,增加了运输成本,但总成本得到减少额多于运输成本,表明同城配送系统总成本未必最低;在方案三中,生产厂商与配送中心的运输成本较其他方案高,从需求量视角而言,城市1较城市2的门店需求大,若在城市2设立配送中心,则运输成本、库存水平与运量均较高。由此可以看出,最劣的方案为方案三,与所得结果相同。

(二)需求敏感性分析

构建模型中假设连锁性零售门店所面临的需求稳定,但实际中,需求处于不稳定状态。由此,先考虑需求变化对物流配送系统总成本与最佳方案筛选的影响。

需求标准差的敏感性分析。一般情况下,节假日或连锁零售企业的短期促销行为,会造成需求的短期波动。运用需求分布表示,则为μ基本不变,σ波动较大。在需求标准差改变,但需求总量固定条件下,上述方案中,配送系统的总成本均保持不变。可见,方案选择不受需求短期波动影响。

基于恒定方差系数的需求敏感性分析。经济或市场占有率增长会使需求长期增多,此时cv为需求的方差系数。其变化微小,可视为恒定。因此,当经济或市场占有率正向或负向变动,造成需求均值长期正向或反向变化时,总物流配送成本会与需求呈近似线形关系,即同向显著变化。方案①中总物流成本的变动幅度最小,方案③中总物流成本的改变幅度最大,当需求增加未超+25%之时,方案②始终是最优解;当需求增长幅度超+25%时,方案①是最优。以此得知,总体物流成本的变动幅度随需求不相关的成本占总成本比的增多而降低,需求不断增多将影响最佳方案筛选结果。连锁零售企业对配送中心的设置决策中,既需考虑当前需求之下的总体物流成本,又要考虑长期性需求变动趋势。在本算例之中,若将来需求降低,或增幅不大时,方案②是最优,若需求增幅较大,则需在方案①和②之间重新权衡。

(三)运输距离的敏感性分析

1.城市之间运输距离的敏感性分析。城市之间运输路线的变化,使得城间距离随之发生改变。对于方案一而言,不存在城间运输。因此,两城之间的距离变化不会对方案—产生影响。通过对比方案二和方案三可知,由于后者城间运输量较大,因此其最小总成本波动幅度大于前者。总体而言,城间运输量可显著影响配送系统总成本,且二者呈正向影响关系。即运送量增加,总成本越大。同时,各个方案的城间运输量不同时,则由城间距离决定方案的选择。

2.生产商与配送中心距离的敏感性分析。供应商与运输路线改变,会影响生产商与配送中心的距离参数。而二者距离的转变对以上三种方案均有影响,但对方案二与方案三的影响相对较小,对方案—影响最大。若想让方案—最优,则需将生产商与配送中心距离缩短超过30%。所以可知,生产商与配送中心间的距离,对方案选择与配送中心总成本具有较大影响。因此,除考虑模型测算出的结果外,连锁企业配送中心选址还需对敏感性分析结果进行综合评估,进而做出最优选址方案。

参考文献:

1.邹德玲,倪晓峰.连锁零售企业配送中心选址研究[J].价格月刊,2010(7)

2.刘伯超.物流配送中心选址适合度研究[J].商业时代,2012(35)

猜你喜欢

配送中心优化模型选址
基于人工鱼群算法优化神经网络在网络入侵检测中的应用研究
浅议农产品配送中心发展对策