化疗药物在肿瘤免疫微环境调节中的应用*
2017-07-03谭松巍
孔 苗, 谭松巍
华中科技大学同济医学院药学院药剂学系,武汉 430030
综 述
化疗药物在肿瘤免疫微环境调节中的应用*
孔 苗, 谭松巍△
华中科技大学同济医学院药学院药剂学系,武汉 430030
癌症; 化疗; 免疫抑制; 肿瘤微环境
尽管肿瘤的诊疗技术在不断的探索中进步,我国恶性肿瘤患者死亡率仍然呈现持续增长的趋势,癌症已经超过心血管疾病成为威胁人类健康的第一大杀手。肿瘤的形成需经历一个复杂的过程,是机体内癌基因活化、抑癌基因失活以及稳定性基因发生改变的综合结果。但实际上,在肿瘤的整个发生发展过程中,肿瘤微环境和免疫系统同时发挥着重要的作用。“肿瘤免疫监视”学说认为,一旦细胞发生癌变,免疫系统能够对其进行识别、消灭,阻止肿瘤的发生[1]。但是肿瘤细胞的异质性和高突变性决定了肿瘤细胞会发生各种突变,从而逃脱免疫监视[2-3]。随着肿瘤细胞的不断进化和肿瘤微环境的逐步建立,有些肿瘤细胞最终将摆脱机体的免疫监视,不断增殖并在临床上形成肿瘤[4]。肿瘤发展与免疫系统的相互作用是一个长期的动态变化过程,肿瘤的突变往往伴随着对肿瘤特异性免疫反应的抑制,最终建立起一个肿瘤免疫抑制的微环境[5-6]。
传统的治疗方式都单纯地将目标集中于肿瘤细胞,无论是手术切除、化疗、放疗还是免疫治疗等方式都是以直接攻击肿瘤细胞为主要手段来治疗肿瘤,却忽略了肿瘤免疫微环境的作用。尽管这些治疗方式在初期有所成效,肿瘤生长会受到一定程度的抑制,但不断发展的肿瘤微环境仍然会为肿瘤提供更加有利的条件以对抗肿瘤治疗,从而导致肿瘤的耐药、复发和转移。调节肿瘤免疫抑制微环境将有利于增强机体内在的抗肿瘤反应,并能与外来的治疗手段协同产生更强的肿瘤抑制效果。传统观点认为,化疗药物治疗主要依赖于直接的细胞毒性杀伤肿瘤细胞,这种非选择性的杀伤往往使抗肿瘤免疫细胞也受到了一定的损伤。随着研究的深入,越来越多的研究表明,一些化疗药物在一定剂量下,不仅不会抑制免疫系统,还会参与肿瘤免疫抑制微环境的调节,促进抗肿瘤免疫应答,协同免疫系统增强抗肿瘤作用[5-7]。尤其在单一免疫治疗效果尚不能令人满意的背景下,这种协同增效更显得意义重大。因此,本文将从肿瘤免疫抑制微环境的研究现状和化疗药物免疫调节的机制两个方面展开综述。
1 肿瘤免疫抑制微环境产生的原因
肿瘤微环境是一个复杂多变的网络体系,主要由肿瘤细胞、免疫细胞、基质细胞和细胞外基质等组成[8],为肿瘤的生长、侵袭和转移提供有利的发展条件。肿瘤免疫系统受到肿瘤微环境的抑制,浸润的免疫效应细胞多数表现为免疫功能低下,甚至严重缺陷[7-9],这种肿瘤免疫抑制微环境的形成是肿瘤长期发展过程中多种抑制途径共同导致的结果。
1.1 肿瘤抗原呈递过程异常
1.1.1 肿瘤抗原表达异常 免疫系统对肿瘤细胞的清除依赖于免疫效应细胞对肿瘤细胞表面抗原的识别,然而肿瘤细胞会低表达甚至不表达肿瘤抗原,影响树突状细胞(dendritic cell,DC)对T细胞的激活,躲避细胞毒性T细胞(cytotoxic T lymphocyte,CTL)的识别和杀伤。研究发现,肿瘤细胞在与单克隆和多克隆的转基因CTL(可特异性识别肿瘤抗原P1A)体外共培养后,会发生抗原突变,使得P1A不易被CTL识别[10]。除发生抗原突变外,肿瘤细胞还可通过丢失抗原以逃避免疫系统的识别。如癌胚抗原(carcinoma embryonic antigen,CEA)可从肿瘤细胞表面脱落,导致免疫效应细胞无法识别肿瘤细胞。类似于肿瘤抗原丢失,肿瘤细胞也可脱落自然杀伤细胞2家族成员D(natural killer cell group-2 ligand D,NKG2D)配体,以此逃避NK细胞的识别和攻击。
1.1.2 主要组织相容性复合体(major histocompability complex,MHC)表达下调 肿瘤抗原往往要与MHC-Ⅰ类分子结合后,才能被呈递至肿瘤细胞表面,进而被免疫效应细胞所识别,因此抗原呈递相关MHC-Ⅰ类分子表达异常的肿瘤细胞更易躲避免疫系统的监视[11]。一般来说,肿瘤细胞可通过缺失MHC-Ⅰ类基因结构或抑制MHC-Ⅰ类基因转录来下调MHC-Ⅰ类分子的表达。人类的MHC编码的分子表达于白细胞上,称为人类白细胞抗原(human leucocyte antigen,HLA)。在人类肿瘤中,多数恶性肿瘤如黑色素瘤、乳腺癌、胃癌、卵巢癌等,它们的HLA-Ⅰ类抗原表达下调,其下调程度与肿瘤的恶性程度及转移呈正相关。
1.1.3 缺乏共刺激信号 T细胞的活化不仅需要T细胞受体与抗原肽-MHC分子复合物结合产生的第一信号,还需要抗原呈递细胞或肿瘤细胞上的共刺激分子(costimulating molecules,CM)与T细胞上的CM受体结合提供的第二信号。仅表达MHC-Ⅰ类抗原而缺乏共刺激分子的肿瘤细胞所参与的抗原呈递过程仍然不能激活T细胞、产生有效的免疫反应,反而导致免疫耐受[12]。B7家族分子及其相应受体是参与T细胞活化最重要的共刺激分子对,各个分子与其受体的结合对T细胞的活化和增殖起重要作用。研究表明,多数恶性肿瘤细胞下调B7-1、B7-2分子的表达,无法产生足够的T细胞激活信号,使T细胞克隆无能,同时还能上调B7-H1、B7-H4分子的表达,这些抑制性共刺激分子与受体结合后会产生抑制性信号,诱导T细胞凋亡,抑制机体的抗肿瘤免疫反应[13-14]。
1.2 肿瘤细胞免疫抑制性分子的表达
自杀相关因子(factor associated suicide,Fas)是一种重要的诱导细胞凋亡的死亡受体。通常情况下,T细胞可通过Fas/FasL介导的促凋亡作用抑制Fas阳性靶细胞,但肿瘤细胞不仅可以主动减少Fas表达或进行Fas突变以避免T细胞的攻击作用,还能高表达FasL,与T细胞的Fas结合来引起T细胞的凋亡[15]。肿瘤细胞除了Fas/FasL分子表达异常、抵抗凋亡之外,还会高表达其他一些免疫抑制性的分子,诱导免疫效应细胞凋亡。例如,肿瘤细胞高表达的吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)可以促进色氨酸降解。一方面,色氨酸的缺乏会使T细胞停滞于细胞周期G1期,抑制T细胞的增殖;另一方面,色氨酸降解会产生具有细胞毒性和促凋亡作用的代谢物,这些产物对T细胞和NK细胞均产生抑制和诱导凋亡的作用[16]。此外,肿瘤细胞表面高表达的B7-H1分子(又称程序性死亡配体programmed death ligand 1,PD-L1),与T细胞抑制性受体PD-1结合后,能产生T细胞耐受,促进白细胞介素10(interleukin-10,IL-10)分泌,诱导T细胞凋亡[14,17-18]。
1.3 免疫抑制性因子的分泌
丁柔走了之后,周桥就抱怨:“以前我一穷二白的时候嫌我没斗志分得干脆,现在有事业有人脉就回头找我帮忙了,什么世道嘛?”周桥的言语之间竟有一丝嫌恶。
肿瘤微环境中存在许多免疫抑制性的细胞因子,如转化生长因子β(transforming growth factor-β,TGF-β)、IL-10、IL-6等,均可以通过直接或间接的方式抑制抗肿瘤免疫反应。TGF-β能阻碍免疫效应细胞的增殖,阻断DC的成熟,从而抑制CTL和NK细胞的活化,同时也能减少抗肿瘤免疫细胞因子干扰素γ(interferon-γ,IFN-γ)和肿瘤坏死因子α(tumor necrosis factor,TNF-α)的产生,还能抑制IFN-γ诱导黑色素瘤细胞MHC-Ⅱ类抗原表达[19]。IL-10能降低DC上共刺激分子的表达,抑制肿瘤抗原呈递,还可改变T细胞表型和抑制T细胞活性,阻断T细胞对肿瘤细胞的攻击。此外,TNF可引起部分肿瘤血管出血性坏死,特异性杀伤肿瘤细胞,调节机体的免疫功能,而肿瘤能表达可溶性TNF结合蛋白,阻断TNF的杀伤作用[20]。
除了细胞因子之外,血管内皮生长因子(vascular endothelial growth factor,VEGF)也在肿瘤免疫逃逸的多个环节中发挥重要作用。VEGF作为特异的内皮细胞刺激因子,能够促进肿瘤新生血管的生成,增加血管的渗透性,促进肿瘤细胞的浸润和转移;还能抑制DC的熟化,影响其抗原呈递功能,并诱导成熟DC表达PD-L1,进而影响T细胞的活化和CTL的产生[21-22]。
1.4 免疫抑制性细胞的富集
肿瘤在生长过程中会诱导免疫抑制细胞分化、增殖并向肿瘤部位聚集,主要包括髓系来源的免疫抑制细胞(myeloid-derived suppressor cell,MDSC)、调节性T细胞(regulatory T cell,Treg)、M2型肿瘤相关巨噬细胞(tumor-associated macrophage,TAM),还包括肿瘤相关树突状细胞(tumor-associated dendritic cell,TADC),调节性B细胞(Breg)和外泌体(exosome)等。MDSC主要由巨噬细胞、DC和粒细胞的前体细胞组成,其数量在肿瘤微环境中异常增加。MDSC的聚集可以释放多种促血管生成因子,直接促进肿瘤血管生成,还可以上调免疫抑制性因子的表达,如精氨酸酶1、活性氧簇和诱导型一氧化氮合成酶,诱导已活化的T细胞凋亡[23-25]。Treg已经被证明可以通过产生IL-10、TGF-β和IL-35以抑制DC,分泌颗粒酶和穿孔素直接杀伤效应细胞,还能与T细胞竞争消耗IL-2,抑制效应细胞增殖。同时,Treg高表达CD39和CD73分子,能促进腺苷产生,进而与效应细胞表面的腺苷受体结合而发挥抑制作用[26]。巨噬细胞在肿瘤部位可分化为抑制肿瘤生长的M1型和促肿瘤生长的M2型。M2型巨噬细胞(即TAM)与肿瘤血管生成和淋巴管生成密切相关,直接参与肿瘤增殖和转移的过程,诱导肿瘤耐药,还能分泌IL-10、TGF-β等细胞因子抑制免疫应答[27],分泌PD-L1、CTL相关抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)等分子促使CTL凋亡、抑制CTL活化[28],引起免疫抑制。此外,许多证据表明,肿瘤能干扰单核细胞向正常DC的分化,并促使其向同系的其它单核细胞分化,在肿瘤微环境发挥免疫抑制的功能,这类细胞称为肿瘤相关树突状细胞(TADC)。TADC的表面抗原呈递相关分子MHC-Ⅰ、MHC-Ⅱ以及活化分子CD80、CD86等表达极低,抗原处理呈递能力低下,同时高表达信号转导及转录激活蛋白3(signal transducers and activators of transcription protein 3,STAT3),抑制IL-12的转录、DC的成熟和T细胞的激活[29-30]。还有B淋巴细胞的一种特殊亚型——Breg,能分泌IL-10、TGF-β和IL-35,并促进Treg生成,同样也发挥免疫抑制的作用[31]。另外,最近比较受关注的一个研究热点——exosome,它作为细胞间交流的重要物质,具有广泛的免疫调节功能,部分肿瘤细胞分泌的exosome参与了MDSC、Treg和TAM等免疫抑制性细胞的生存和分泌效应物质的过程,也为形成免疫抑制微环境提供了有利条件[32]。
2 化疗药物的免疫调节作用
2.1 增加免疫杀伤敏感性
2.1.1 增加肿瘤细胞免疫原性 化疗药物可以提高肿瘤细胞的免疫原性以促进抗原呈递和效应细胞识别,包括:①诱导细胞表面暴露抗原和抗原呈递相关分子。如吉西他滨(gemcitabine,GEM)能通过DNA去甲基化作用诱导癌睾抗原(cancer testis antigen,CTA)和MHC-Ⅰ类分子的表达上调;氟尿嘧啶(fluorouracil,5-Fu)能增强CEA在结肠癌细胞和乳腺癌细胞上的表达;马法兰和丝裂霉素能上调肿瘤细胞共刺激分子B7的表达,促进肿瘤细胞向淋巴细胞呈递抗原[33-34]。②促进表达具有免疫调节作用的蛋白。如替莫唑胺(temozolomide,TMZ)和蒽环类药物等能够促使肿瘤细胞内质网的钙网蛋白(calreticulin,CRT)转运至细胞表面,释放吞噬信号,促使DC对肿瘤细胞的识别和吞噬[35-36];多数化疗药物还能诱导肿瘤细胞表面暴露热休克蛋白(heat shock proteins,HSP),HSP能与肿瘤抗原肽形成肽-HSP复合物,有利于DC对肿瘤细胞的识别和抗原呈递[37];蛋白酶体抑制剂硼替佐米、组蛋白去乙酰化酶抑制剂等可上调肿瘤细胞NKG2D配体的表达,增强NK细胞对肿瘤细胞的识别和杀伤作用[38-39]。③促进释放免疫活性物质。一些化疗药物如奥沙利铂(oxaliplatin,OXA)、阿霉素(doxorubicine,DOX)可促使凋亡肿瘤细胞释放内源性危险信号三磷酸腺苷(adenosine triphosphate,ATP)和高迁移率蛋白B1(high mobility group box-1 protein,HMGB1),ATP可与DC的嘌呤P2X7受体作用,促进DC熟化并增强CTL活性,HMGB1能募集并激活未成熟的DC,增强DC抗原处理和呈递能力[40-42]。事实上,化疗药物引起肿瘤凋亡并产生免疫原性物质,从而促进抗肿瘤免疫反应的这一现象又被称为免疫原性细胞死亡(immunogenic cell death,ICD)。具有ICD效应的化疗药物可诱导DC的增殖和熟化,促进抗原呈递给T细胞,增强抗肿瘤免疫反应,这一类化疗药物在传统化疗的基础上为免疫治疗策略提供了新的思路[42-44]。
2.1.2 促进DC功能 化疗药物除了可以提高肿瘤细胞的免疫原性之外,还可以直接促进DC的数量和功能。研究表明,胰腺癌晚期患者在给予GEM治疗2个月后发现体内CD11c+DC的数目明显增加[45];低剂量的DOX、丝裂霉素C和甲氨蝶呤可以上调DC的CD40、CD80和CD86表达而诱导DC熟化,增强肿瘤抗原向CD8+T细胞的呈递过程,同时增加IL-12p70的表达,减少IL-10的表达[42];大部分拓扑异构酶抑制剂和抗微管药物如长春新碱、长春花碱以及紫杉醇(paclitaxel,PTX)除了上调黑色素瘤细胞、脑胶质瘤细胞抗原的表达,也可以在低剂量下促进CD40、CD83表达,诱导DC熟化[42,46-47]。
2.1.3 促进CTL杀伤作用 CTL主要通过释放穿孔素、颗粒酶(granzyme,Grz)杀伤肿瘤细胞和通过Fas/FasL介导靶细胞凋亡。早期研究表明,甘露糖-6-磷酸受体(mannose-6-phosphate receptor,MPR)可以与GrzB结合,并在GrzB所引起的细胞杀伤中起促进作用。化疗药物PTX、DOX和顺铂(cisplatin,CIS)可以上调肿瘤细胞表面MPR的表达,增加GrzB的渗透作用,从而促进GrzB介导的CTL杀伤作用[48]。有研究进一步发现,当使用PTX、DOX或CIS处理肿瘤细胞后,针对特异性抗原的CTL除了杀伤表达特异性抗原的肿瘤细胞之外,还能诱导邻近未表达特异性抗原的肿瘤细胞发生凋亡,这说明化疗药物上调肿瘤细胞表面MPR的表达导致肿瘤细胞对CTL的杀伤更加敏感,小量的CTL在化疗作用的协同下即可发挥强大的抗肿瘤杀伤效果[41]。此外,蒽环类药物可下调肿瘤细胞表面B7-H1分子的表达,减少其对T细胞的抑制[49];亦可促进肿瘤中能特异性分泌IFN-γ的CD8+αβ T细胞的表达,刺激肿瘤浸润淋巴结中CD8+T细胞的增殖[50-51]。
2.2 清除免疫抑制性细胞
免疫抑制性细胞作为肿瘤微环境中的一大群体,对免疫抑制网络的形成起重要作用,化疗药物可通过各种机制清除或抑制免疫抑制性细胞,从而解除免疫抑制。
2.2.1 MDSC 近年来针对MDSC靶向消除的方式主要分为:①直接清除MDSC,如低剂量GEM、5-Fu可直接诱导MDSC凋亡[52-53];②促进MDSC分化,如多西他赛(docetaxel,DTX)可抑制MDSC的STAT3磷酸化,促进MDSC向M1型巨噬细胞转化,全反式维甲酸(all-trans retinoic acid,ATRA)可促使MDSC向巨噬细胞、DC、粒细胞分化[54-56];③阻断MDSC功能,如环氧合酶2(cyclooxygenase-2,COX-2)抑制剂、磷酸二酯酶5抑制剂能够下调MDSC的精氨酸1基因和诱导型一氧化氮合成酶的表达,从而减少MDSC对T细胞的抑制。
2.2.2 Treg 清除Treg以解除免疫抑制也是当前调节免疫微环境的主要策略。临床研究表明,慢性B型淋巴细胞性白血病患者在接受氟达拉滨治疗之后Treg水平明显降低[57];在一项TMZ治疗大鼠脑胶质瘤模型的实验中,研究者依据人类TMZ的用药方案,对大鼠分别采用了30、10、2、0.5 mg/kg的口服剂量,在连续灌胃21 d后,发现低剂量组(2和0.5 mg/kg)大鼠脾脏中的Treg数量明显降低,而高剂量组(30和10 mg/kg)并无此作用[58]。此外,低剂量环磷酰胺(cyclophosphamide,CTX)可直接抑制Treg的功能,还能通过抑制Treg生存所需的重要分子来选择性地清除Treg[59];PTX可通过影响凋亡调节蛋白Bcl-2/Bax的表达诱导Treg凋亡,促进CTL的增殖[60]。
2.2.3 TAM 针对TAM的治疗研究也越来越多,主要包括抑制巨噬细胞的募集、逆转TAM表型改变和清除TAM等方式。根据目前化疗药物影响TAM的相关研究,大部分化疗药物的使用均会导致巨噬细胞在肿瘤组织的浸润,进而引起抗肿瘤效果下降[61-63],因此抑制巨噬细胞的募集主要依赖于多种招募因子(CCL2、CSF-1等)分泌抑制剂或相应受体阻断剂来实现。化疗药物针对TAM的抑制作用主要发挥于后两者。例如,白藜芦醇类似物HS-1793可促进M2型向M1型的转化,并诱导M1型释放IFN-γ[64];COX-2抑制剂依托度酸可降低CD14和CD163的表达,从而抑制M2型巨噬细胞的分化[65];洛伐他丁通过降低血小板生长因子的表达,引起M2型TAM极化异常[66];曲贝替定通过肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor related apoptosis inducing ligand,TRAIL)受体激活外源性凋亡通路,从而特异性抑制TAM[67];氯膦酸盐脂质体表现出清除TAM的作用,从而增强索拉非尼对肿瘤血管生成、生长和转移的抑制[68]。
2.3 促进肿瘤血管正常化
近年来抗血管生成药物的促进抗肿瘤免疫作用成为一个研究热点。由于肿瘤促血管生成因子的过度表达,肿瘤血管生成功能紊乱,最终导致肿瘤微环境的血液灌注不足、缺氧、酸度增高以及组织间隙压升高。这种不正常的微环境改变同时也影响了免疫效应细胞的浸润、增殖和功能的发挥。阻断促血管生成因子,如VEGF将有利于改善肿瘤血管的结构化和功能化的异常,从而促进抗肿瘤免疫反应[69]。一项研究显示,使用抗血管生成药物西地尼布治疗脑胶质瘤可以延长患者存活率,这与西地尼布促使肿瘤血管趋于正常化、改善血液灌注和供氧增加有关[70-71],由于血管的功能恢复,免疫效应细胞向肿瘤部位的浸润增加,同时缺氧环境的缓解也使得肿瘤微环境的免疫抑制状态得到改善。此外,针对VEGF的抗血管生成药物还可以促进DC成熟,并增强DC抗原呈递功能,从而促进T细胞的活化[72-73]。舒尼替尼、内皮抑制素等均可减少肿瘤微环境中Treg及其分泌的IL-10和TGF-β的表达水平[74-75]。
综上,化疗药物参与肿瘤微环境免疫系统的调节作用主要概括为增加免疫杀伤敏感性、清除免疫抑制性细胞以及促进肿瘤血管正常化。每种化疗药物对于免疫微环境的作用各有不同,在此将一些主要的化疗药物的免疫调节机制总结在表1中。
3 结语
传统的化疗具有较强的毒副作用,并伴随复发和转移的问题。近年来,免疫治疗作为一种新兴的技术引起了人们的广泛关注。免疫治疗一般依赖于疫苗免疫、抗体治疗或者T细胞过继治疗等手段,诱导机体产生增强的抗肿瘤免疫。但面对肿瘤细胞的免疫逃逸行为,仅增强抗肿瘤免疫而不改善免疫抑制的问题,治疗效果依然不能令人满意。越来越多的研究将靶向、调节肿瘤免疫抑制微环境作为关键,与免疫治疗相结合以实现更好的抗肿瘤效果,并在化疗联合免疫治疗的领域取得了一些进展。例如,在治疗胰腺癌时,先注射DC疫苗,再给予GEM化疗作用,可显著抑制肿瘤、提高存活率[98];低剂量的CTX可与IL-2基因修饰的肿瘤疫苗、IL-1联合,引起的协同抗肿瘤效果高于单一的疫苗治疗效果;Pfirschke等[9]利用OXA联合CTX治疗条件遗传性肺腺癌,提高肿瘤免疫原性,增加肿瘤对于联合的PD-L1抗体治疗的敏感性;Zhao等[99]借助纳米载体将化疗药物CDDO-Me转运至黑色素瘤,减少Treg和MDSC的数量,从而增强了Trp2疫苗的抗肿瘤作用。这一系列的结果均表明肿瘤免疫抑制微环境的改造对于抑制肿瘤发展和提高抗肿瘤效果有着重要的意义。
表1 部分化疗药物的免疫调节机制
化疗药物靶向作用于肿瘤免疫抑制微环境是当前肿瘤联合治疗的一个研究热点。联合化疗药物的免疫治疗将会进一步改善免疫耐受和免疫抑制的现状,维持有效、持久的抗肿瘤免疫应答。但在联合治疗方案中化疗药物剂量、给药途径和给药时机等问题都需要在对化疗药物免疫调节机制的详尽研究的基础上进行设计,需要开展更多相关的临床研究,以便早日让化疗免疫联合治疗的方式广泛用于恶性肿瘤的治疗。
[1] 文亚平,高丽华,黎明.肿瘤与免疫系统的相互作用及肿瘤免疫治疗新策略[J].中国肿瘤,2011,20(2):103-107.
[2] Hanahan D,Weinberg R A.Hallmarks of cancer:The next generation[J].Cell,2011,144(5):646-674.
[3] Greaves M,Maley C C.Clonal evolution in cancer[J].Nature,2012,481(7381):306-313.
[4] 王盛典,贾明明.肿瘤免疫微环境在肿瘤常规治疗效应中的作用[J].中国肿瘤生物治疗杂志,2012,19(3):229-238.
[5] Galluzzi L,Buqué A,Kepp O,et al.Immunological effects of conventional chemotherapy and targeted anticancer agents[J].Cancer Cell,2015,28(6):690-714.
[6] Da Silva C G,Rueda F,Löwik C W,et al.Combinatorial prospects of nano-targeted chemoimmunotherapy[J].Biomaterials,2016,83:308-320.
[7] Galluzzi L,Senovilla L,Zitvogel L,et al.The secret ally:Immunostimulation by anticancer drugs[J].Nat Rev Drug Discov,2012,11(3):215-233.
[8] Zou W P.Immunosuppressive networks in the tumour environment and their therapeutic relevance[J].Nat Rev Cancer,2005,5(4):263-274.
[9] Pfirschke C,Engblom C,Rickelt S,et al.Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy[J].Immunity,2016,44(2):343-354.
[10] Bai X F,Liu J,Li O,et al.Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes[J].J Clin Invest,2003,111(10):1487-1496.
[11] Algarra I,García-Lora A,Cabrera T,et al.The selection of tumor variants with altered expression of classical and nonclassical MHC class Ⅰ molecules:Implications for tumor immune escape[J].Cancer Immunol Immunother,2004,53(10):904-910.
[12] Wang S D,Li H Y,Li B H,et al.The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma[J].Int Immunopharmacol,2016,38:81-89.
[13] Cheng C,Qu Q X,Shen Y,et al.Overexpression of B7-H4 in tumor infiltrated dendritic cells[J].J Immunoassay Immunochem,2011,32(4):353-364.
[14] Blank C,Kuball J,Voelkl S,et al.Blockade of PD-L1(B7-H1)augments human tumor-specific T cell responsesinvitro[J].Int J Cancer,2006,119(2):317-327.
[15] Rabinovich G A,Gabrilovich D,Sotomayor E M.Immunosuppressive strategies that are mediated by tumor cells[J].Annu Rev Immunol,2007,25:267-296.
[16] Zulfiqar B,Mahroo A,Nasir K,et al.Nanomedicine and cancer immunotherapy:Focus on indoleamine 2,3-dioxygenase inhibitors[J].Onco Targets Ther,2017,10:463-476.
[17] Makkouk A,Weiner G.Cancer immunotherapy and breaking immune tolerance-new approaches to an old challenge[J].Cancer Res,2015,75(1):5-10.
[18] Joyce J A,Fearon D T.T cell exclusion,immune privilege,and the tumor microenvironment[J].Science,2015,348(6230):74-80.
[19] Zheng Y,Tang L,Mabardi L,et al.Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or non-internalizing receptors[J].ACS Nano,2017,Doi:10.1021/acsnano.7b00078.
[20] Balkwill F.Tumour necrosis factor and cancer[J].Nat Rev Cancer,2009,9(5):361-371.
[21] Pardoll D M.The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264.
[22] Gavalas N G,Tsiatas M,Tsitsilonis O,et al.Vegf directly suppresses activation of T cells from ascites secondary to ovarian cancer via vegf receptor type 2[J].Br J Cancer,2012,107(11):1869-1875.
[23] Haque A,Banik N L,Ray S K.Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma[J].Neurochem Res,2007,32(12):2203-2209.
[24] Kullberg M,Martinson H,Mann K,et al.Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells[J].Nanomedicine,2015,11(6):1355-1363.
[25] Gabrilovich D I,Nagaraj S.Myeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev Immunol,2009,9(3):162-174.
[26] Larmonier N,Marron M,Zeng Y,et al.Tumor-derived CD4(+)CD25(+)regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10.[J].Cancer Immunol Immunother,2007,56(1):48-59.
[27] Wu A,Wei J,Kong L,et al.Glioma cancer stem cells induce immunosuppressive macrophages/microglia[J].Neuro Oncol,2010,12(11):1113-1125.
[28] Bloch O,Crane C A,Kaur R,et al.Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages[J].Clin Cancer Res,2013,19(12):3165-3175.
[29] Gottfried E,Kreutz M,Mackensen A.Tumor-induced modulation of dendritic cell function[J].Cytokine Growth Factor Rev,2008,19(1):65-77.
[30] Iwata-Kajihara T,Sumimoto H,Kawamura N,et al.Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors[J].J Immunol,2011,187(1):27-36.
[31] 沈梦,任秀宝.B淋巴细胞参与肿瘤免疫抑制机制的研究进展[J].中国肿瘤生物治疗杂志,2016,23(1):135-139.
[32] 王运刚,王胜军.外泌体在免疫抑制性肿瘤微环境形成中的作用[J].细胞与分子免疫学杂志,2015,31(10):1417-1420.
[33] Adair S J,Hogan K T.Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class Ⅰ major histocompatibility complex-encoded molecules[J].Cancer Immunol Immunother,2009,58(4):589-601.
[34] Natsume A,Wakabayashi T,Tsujimura K,et al.The DNA demethylating agent 5-aza-2′-deoxycytidine activatesNY-ESO-1 antigenicity in orthotopic human glioma[J].Int J Cancer,2008,122(11):2542-2553.
[35] Kim T G,Kim C H,Park J S,et al.Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model[J].Clin Vaccine Immunol,2010,17(1):143-153.
[36] Ma Y,Adjemian S,Mattarollo S R,et al.Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells[J].Immunity,2013,38(4):729-741.
[37] Spisek R,Charalambous A,Mazumder A,et al.Bortezomib enhances dendritic cell(DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells:therapeutic implications[J].Blood,2007,109(11):4839-4845.
[38] Armeanu S,Krusch M,Baltz K M,et al.Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma[J].Clin Cancer Res,2008,14(11):3520-3528.
[39] Soriani A,Zingoni A,Cerboni C,et al.ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype[J].Blood,2009,113(15):3503-3511.
[40] Liu W M,Fowler D W,Smith P,et al.Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses[J].Br J Cancer,2010,102(1):115-123.
[41] Ramakrishnan R,Assudani D,Nagaraj S,et al.Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice[J].J Clin Invest,2010,120(4):1111-1124.
[42] Shurin G V,Tourkova I L,Kaneno R,et al.Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism[J].J Immunol,2009,183(1):137-144.
[43] Krysko D V,Garg A D,Kaczmarek A,et al.Immunogenic cell death and damps in cancer therapy[J].Nat Rev Cancer,2012,12(12):860-875.
[44] Kroemer G,Galluzzi L,Kepp O,et al.Immunogenic cell death in cancer therapy[J].Annu Rev Immunol,2013,31(1):51-72.
[45] Soeda A,Morita-Hoshi Y,Makiyama H,et al.Regular dose of gemcitabine induces an increase in CD14+monocytes and CD11c+dendritic cells in patients with advanced pancreatic cancer[J].Jpn J Clin Oncol,2009,39(12):797-806.
[46] Haggerty T J,Dunn I S,Rose L B,et al.Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells[J].Cancer Immunol Immunother,2011,60(1):133-144.
[47] Pinzon-Charry A,Schmidt C W,Lopez J A.The key role of CD40 ligand in overcoming tumor-induced dendritic cell dysfunction[J].Breast Cancer Res,2006,8(1):402.
[48] Motyka B,Korbutt G,Pinkoski M J,et al.Mannose 6-phosphate/insulin-like growth factor Ⅱ receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis[J].Cell,2000,103(3):491-500.
[49] Ghebeh H,Lehe C,Barhoush E,et al.Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells:role of B7-H1 as an anti-apoptotic molecule[J].Breast Cancer Res,2010,12(4):R48.
[50] Sistigu A,Yamazaki T,Vacchelli E,et al.Cancer cell-autonomous contribution of typeI interferon signaling to the efficacy of chemotherapy[J].Nat Med,2014,20(11):1301-1309.
[51] Ma Y,Aymeric L,Locher C,et al.Contribution of IL-17-producing γδ T cells to the efficacy of anticancer chemotherapy[J].J Exp Med,2011,208(3):491-503.
[52] Ishizaki H,Manuel E R,Song G Y,et al.Modified vaccinia ankara expressing survivin combined with gemcitabine generates specific antitumor effects in a murine pancreatic carcinoma model[J].Cancer Immunol Immunother,2011,60(1):99-109.
[53] Kanterman J,Sade-Feldman M,Biton M,et al.Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes[J].Cancer Res,2014,74(21):6022-6035.
[54] Kodumudi K N,Woan K,Gilvary D L,et al.A novel chemoimmunomodulating property of docetaxel:Suppression of myeloid-derived suppressor cells in tumor bearers[J].Clin Cancer Res,2010,16(18):4583-4594.
[55] Kusmartsev S,Cheng F,Yu B,et al.All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination[J].Cancer Res,2003,63(15):4441-4449.
[56] Mirza N,Fishman M,Fricke I,et al.All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients[J].Cancer Res,2006,66(18):9299-9307.
[57] Beyer M,Kochanek M,Darabi K,et al.Reduced frequencies and suppressive function of CD4+CD25hiregulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine[J].Blood,2005,106(6):2018-2025.
[58] Banissi C,Ghiringhelli F,Chen L,et al.Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J].Cancer Immunol Immunother,2009,58(10):1627-1634.
[59] Lutsiak M E C,Semnani R T,De Pascalis R,et al.Inhibition of CD4+25+T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide[J].Blood,2005,105(7):2862-2868.
[60] Liu N,Zheng Y,Zhu Y,et al.Selective impairment of CD4+CD25+Foxp3+regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J].Int Immunopharmacol,2011,11(2):212-219.
[61] Shree T,Olson O C,Elie B T,et al.Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer[J].Genes Dev,2011,25(23):2465-2479.
[62] Mitchem J B,Brennan D J,Knolhoff B L,et al.Targeting tumor-infiltrating macrophages decreases tumor-initiating cells,relieves immunosuppression and improves chemotherapeutic responses[J].Cancer Res,2013,73(3):1128-1141.
[63] Hughes R,Qian B Z,Rowan C,et al.Perivascular M2 macrophages stimulate tumor relapse after chemotherapy[J].Cancer Res,2015,75(17):3479-3491.
[64] Jeong S K,Yang K,Park Y S,et al.Interferon gamma induced by resveratrol analog,HS-1793,reverses the properties of tumor associated macrophages[J].Int Immunopharmacol,2014,22(2):303-310.
[65] Na Y R,Yoon Y N,Son D I,et al.Cyclooxygenase-2 inhibition blocks m2 macrophage differentiation and suppresses metastasis in murine breast cancer model[J].PLoS One,2013,8(5):e63451.
[66] Mira E,Carmona-Rodríguez L,Tardáguila M,et al.A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors[J].Oncotarget,2013,4(12):2288-2301.
[67] Germano G,Frapolli R,Belgiovine C,et al.Role of macrophage targeting in the antitumor activity of trabectedin[J].Cancer Cell,2013,23(2):249-262.
[68] Zhang W,Zhu X D,Sun H C,et al.Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects[J].Clin Cancer Res,2010,16(13):3420-3430.
[69] Huang Y,Goel S,Duda D G,et al.Vascular normalization as an emerging strategy to enhance cancer immunotherapy[J].Cancer Res,2013,73(10):2943-2948.
[70] Emblem K E,Mouridsen K,Bjornerud A,et al.Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy[J].Nat Med,2013,19(9):1178-1183.
[71] Sorensen A G,Emblem K E,Polaskova P,et al.Increased survival of glioblastoma patients who respond to anti-angiogenic therapy with elevated blood perfusion[J].Cancer Res,2012,72(2):402-407.
[72] Voron T,Marcheteau E,Pernot S,et al.Control of the immune response by pro-angiogenic factors[J].Front Oncol,2014,4:70.
[73] 李星宇,梁婧,李岩.血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应[J].山东大学学报:医学版,2015,(7):19-23,28.
[74] 李莎,李岩,梁婧,等.DC-CIK联合化疗治疗结肠癌的临床研究[J].中国免疫学杂志,2012,(9):835-839.
[75] Tartour E,Pere H,Maillere B,et al.Angiogenesis and immunity:A bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy[J].Cancer Metastasis Rev,2011,30(1):83-95.
[76] Lesterhuis W J,Punt C J A,Hato S V,et al.Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice[J].J Clin Invest,2011,121(8):3100-3108.
[77] Tesniere A,Schlemmer F,Boige V,et al.Immunogenic death of colon cancer cells treated with oxaliplatin[J].Oncogene,2009,29(4):482-491.
[78] Alizadeh D,Trad M,Hanke N T,et al.Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J].Cancer Res,2014,74(1):104-118.
[79] Sevko A,Michels T,Vrohlings M,et al.Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model[J].J Immunol,2013,190(5):2464-2471.
[80] Hu J,Kinn J,Zirakzadeh A A,et al.The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation[J].Clin Exp Immunol,2013,172(3):490-499.
[81] Kang T H,Mao C P,Lee S Y,et al.Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity[J].Cancer Res,2013,73(8):2493-2504.
[82] Chang C L,Hsu Y T,Wu C C,et al.Dose-dense chemotherapy improves mechanisms of antitumor immune response[J].Cancer Res,2013,73(1):119-127.
[83] Bruchard M,Mignot G,Derangere V,et al.Chemotherapy-triggered cathepsinB release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth[J].Nat Med,2013,19(1):57-64.
[84] Mundy-Bosse B L,Lesinski G B,Jaime-Ramirez A C,et al.Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice[J].Cancer Res,2011,71(15):5101-5110.
[85] Geary S M,Lemke C D,Lubaroff D M,et al.The combination of a low-dose chemotherapeutic agent,5-fluorouracil,and an adenoviral tumor vaccine has a synergistic benefit on survival in a tumor model system[J].PLoS One,2013,8(6):e67904.
[86] Hodge J W,Garnett C T,Farsaci B,et al.Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death[J].Int J Cancer,2013,133(3):624-636.
[87] Schiavoni G,Sistigu A,Valentini M,et al.Cyclophosphamide synergizes with type Ⅰ interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis[J].Cancer Res,2011,71(3):768-778.
[88] Liu J Y,Wu Y,Zhang X S,et al.Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine[J].Cancer Immunol Immunother,2007,56(10):1597-1604.
[89] Kaneno R,Shurin G V,Tourkova I L,et al.Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations[J].J Transl Med,2009,7:58.
[90] Desar I M E,Jacobs J F M,Hulsbergen-van de Kaa C A,et al.Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients[J].Int J Cancer,2011,129(2):507-512.
[91] Hipp M M,Hilf N,Walter S,et al.Sorafenib,but not sunitinib,affects function of dendritic cells and induction of primary immune responses[J].Blood,2008,111(12):5610-5620.
[92] Ko J S,Zea A H,Rini B I,et al.Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients[J].Clin Cancer Res,2009,15(6):2148-2157.
[93] Xin H,Zhang C,Herrmann A,et al.Sunitinib inhibition ofSTAT3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells[J].Cancer Res,2009,69(6):2506-2513.
[94] Dalton J E,Maroof A,Owens B M J,et al.Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice[J].J Clin Invest,2010,120(4):1204-1216.
[95] Thomas-Schoemann A,Batteux F,Mongaret C,et al.Arsenic trioxide exerts antitumor activity through regulatory T cell depletion mediated by oxidative stress in a murine model of colon cancer[J].J Immunol,2012,189(11):5171-5177.
[96] Deaglio S,Canella D,Baj G,et al.Evidence of an immunologic mechanism behind the therapeutical effects of arsenic trioxide(As2O3)on myeloma cells[J].Leuk Res,2001,25(3):227-235.
[97] Baj G,Arnulfo A,Deaglio S,et al.Arsenic trioxide and breast cancer:Analysis of the apoptotic,differentiative and immunomodulatory effects[J].Breast Cancer Res Treat,2002,73(1):61-73.
[98] Ghansah T,Vohra N,Kinney K,et al.Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma[J].Cancer Immunol Immunother,2013,62(6):1083-1091.
[99] Zhao Y,Huo M,Xu Z,et al.Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma[J].Biomaterials,2015,68:54-66.
(2017-03-03 收稿)
*湖北省自然科学基金资助项目(No.2015CFB492)
R979.1
10.3870/j.issn.1672-0741.2017.03.023
孔 苗,女,1993年生,医学硕士,E-mail:459893009@qq.com
△通讯作者,Corresponding author,E-mail:tansongwei@gmail.com