APP下载

RAS野生型转移性结直肠癌EGFR抑制剂耐药机制的研究进展

2017-07-01俞悦周爱萍

中国肿瘤临床 2017年11期
关键词:西妥转移性单抗

俞悦 周爱萍

·专家论坛·

RAS野生型转移性结直肠癌EGFR抑制剂耐药机制的研究进展

俞悦 周爱萍

周爱萍,中国医学科学院肿瘤医院内科副主任,主任医师,从事实体瘤的内科诊治工作二十余年,尤其对消化道、泌尿生殖系统肿瘤等的化疗和靶向治疗有深入和系统的研究。兼任中国临床肿瘤学会(CSCO)理事,中国研究型医院学会精准医学与肿瘤MDT专业委员会副主任委员,中华医学会肿瘤学分会结直肠癌学组委员,中国老年肿瘤学分会(CGOS)副干事长、胃肠专业委员会副主任委员;担任《中华肝胆外科杂志》、《中华临床医师杂志》、《中国继续医学教育》、《肝癌电子杂志》、Annals of Oncology期刊编委。

抗表皮生长因子受体(epidermal growth factor receptor,EGFR)抗体的应用是转移性结直肠癌治疗进展中的里程碑。抗EG⁃FR单抗和其他靶向药物的出现使转移性结直肠癌患者的中位总生存期从6个月提高至将近30个月,显著改善转移性结直肠癌患者的生存质量及预后。目前KRAS和NRAS被公认为是抗EGFR治疗原发耐药的结直肠癌患者疗效预测标志物,用于抗EGFR治疗的转移性结直结癌患者筛选。除了RAS,其他分子改变也可能影响抗EGFR的疗效。即使是抗EGFR治疗有效的患者也会在13~18个月间产生获得性耐药。本文将对目前已知的抗EGFR治疗耐药机制进行综述,并展望可能的逆转耐药策略,以期为转移性结直肠癌患者精准分子靶向治疗提供依据和指导。

转移性结直肠癌 表皮生长因子受体 耐药 RAS

表皮生长因子受体(epidermal growth factor re⁃ceptor,EGFR)是HER/ErbB家族的一员,其过表达可见于包括结直肠癌在内的多种恶性肿瘤中。EGFR通过配体偶联、同源二聚化及异源二聚化等方式被激活,从而进一步激活RAS/RAF/MARK/ERK和PI3K/AKT/mTOR等信号转导通路,诱导细胞去分化、快速增殖、凋亡阻滞和新生血管形成[1-2]。西妥昔单抗和帕尼单抗是两种抗EGFR单克隆抗体(MoAbs),两者和化疗药物的联合应用使转移性结直肠癌患者的中位总生存期从6个月提高至将近30个月,显著改善转移性结直肠癌患者的生存质量及预后[3-5]。

RAS是EGFR下游信号分子之一,既往研究已证实RAS基因是抗EGFR治疗原发耐药的阳性分子预测标志物[6-7]。即使是RAS野生型的患者,出现肿瘤客观缓解的不足50%。初始对抗EGFR治疗敏感的患者,同样也会在13~18个月间产生获得性耐药[8]。原发、继发性耐药限制了抗EGFR治疗的应用。本文通过总结目前已知的RAS野生型转移性结直肠癌抗EGFR治疗耐药的分子机制,以期为受益患者的精确筛选及针对性地制定克服耐药策略提供依据。

1 抗EGFR治疗耐药相关基因

1.1 BRAF V600E

RAF是RAS的下游因子,5%~9%结直肠癌患者存在BRAF(V600E)突变,BRAF突变只存在于RAS野生型的患者中[9-11]。非突变型BRAF基因仅在RAS激活后激活,而突变型BRAF基因不受RAS基因控制,处于连续激活状态[12-14]。BRAF在RAS野生型转移性结直肠癌后线治疗中负性疗效预测作用肯定[15-16],但在一线治疗疗效预测方面的作用尚不明确。

BRAF可能在抗EGFR一线治疗中发挥负性疗效标志物的作用。Llovet等[17]的研究显示,在105例接受抗EGFR单抗联合化疗作为一线治疗的KRAS野生型转移性结直肠癌患者中,BRAF基因突变型和西妥昔治疗无效呈显著相关(RR=11,P=0.015)。多因素显示BRAF突变是治疗疗效唯一负性预测因素。既往COIN研究提示在BRAF突变患者一线化疗中加用西妥昔单抗可能有不利影响(单纯化疗组对比联合西妥昔组总生存期分别为10.0个月与7.2个月,HR=1.18,P=0.46)[18]。这些结果未能得到近年一些临床研究的证实。在一项包含8项临床研究共463例BRAF突变转移性结直肠癌患者Meta分析中[19],BRAF突变患者在抗EGFR治疗组和标准治疗/单纯化疗组间的客观缓解率无显著性差异(RR=1.31,P=0.25)。亚组分析显示,一线治疗中两组的无进展生存期(progress free survival,PFS)(P=0.34)和总生存期(overall survival,OS)(P=0.13)无明显不同。另一项Meta分析纳入了8项随机对照临床试验[20],亚组分析显示在抗EGFR一线治疗中,RAS野生型/BRAF野生型和RAS野生型/BRAF突变型转移性结直肠癌无论是在OS(HR 0.87 vs.0.89,P=0.96)还是PFS(HR 0.75 vs.0.83,P=0.45)中均无显著性差异。

综上所述,鉴于BRAF突变在抗EGFR一线治疗疗效预测的研究中未能取得统一结果,因此即使肯定BRAF抗EGFR后线治疗负性疗效预测作用,2017年美国国立综合癌症网络(NCCN)结直肠癌指南依然未将BRAF突变型转移性结直肠癌患者完全排除在抗EGFR治疗之外。指南同时也指出,BRAF突变型转移性结直肠癌患者从抗EGFR治疗中获益可能性极小,推荐治疗前对所有转移性结直肠癌患者行BRAF基因检测指导用药。因此,在临床实践中,BRAF突变型转移性结直肠癌患者在治疗前需要更加谨慎地进行方案选择,尽量避免抗EGFR治疗带来的不利影响。

1.2 PIK3CA

PIK3CA是PI3K的p110-α催化亚单位。PI3K激活进一步启动PI3K/AKT/mTOR通路,促进或调节增殖、生存、凋亡、迁徙、代谢等细胞活动[21]。在结直肠癌中,PIK3CA突变率约为20%,大于80%的PIK3CA突变见于9号外显子(60%~65%)或20号外显子(20%~25%)[22]。

PIK3CA在抗EGFR治疗疗效预测方面的作用目前尚无统一结论。一项包含22项研究2 395例KRAS 2号外显子野生型转移性结直肠患者的Meta分析显示[23],PIK3CA突变和西妥昔治疗客观缓解率低显著相关(OR=0.39)。然而,在Hsu等[24]的研究中,53例接受西妥昔单抗治疗的KRAS野生型转移性结直肠癌患者中PIK3CA突变组和PIK3CA野生组在治疗反应率上无显著性差异(P=0.624)。在另一项包含11项研究864例患者的Meta分析中,研究者发现仅PIK3CA 20外显子突变和西妥昔缓解率低显著相关(OR=0.21;95%CI:0.05~0.93;P=0.04),而9号外显子突变则对客观缓解率无明显影响(OR=0.54;95%CI:0.26~1.12;P=0.10)[25],提示并非所有PIK3CA突变而是仅PIK3CA20外显子突变是抗EGFR治疗疗效的潜在预测因素。

PIK3CA突变率(特别是PIK3CA 20号外显子突变率)低且部分PIK3CA突变伴有KRAS或BRAF突变[26]。因此,明确PIK3CA在抗EGFR治疗中的具体作用仍较为困难。低突变率也提示PIK3CA在EGFR耐药中的作用及影响不如BRAF广泛,使得目前PIK3CA的受关注程度远不如BRAF。

1.3 HER-2

HER-2是人表皮受体因子家族的一员,依靠和同家族的其他配体相关受体形成异源二聚体发挥作用。异源二聚体HER-2、HER-3是细胞内信号转导强有力的激活剂[27]。HER-2异常可激活ERK1/2通路,并通过使之持续活化诱导西妥昔耐药[28]。

HER-2基因扩增可能是转移性结直肠癌西妥昔治疗耐药的原因之一。Barry等[29]发现,在25例帕尼单抗治疗的KRAS野生型转移性结直肠癌中,HER-2扩增和帕尼单抗治疗抵抗呈显著相关(P=0.009)。4例HER-2基因扩增患者中3例帕尼单抗治疗后疾病进展,1例疾病稳定。提示HER-2扩增可能是西妥昔原发耐药的驱动因素。在另一项研究中,研究者发现18例西妥昔耐药患者中1例治疗前HER-2阴性的肿瘤组织在西妥昔治疗后出现HER-2扩增[30],提示HER-2也可能在西妥昔继发耐药中发挥作用。HER-2扩增表明EGFR/HER-2的双靶点阻断或许可以逆转RAS野生型转移性结直肠癌西妥昔耐药。Sartore-Bianchin等[31]设计的Ⅱ期临床研究(HERA⁃CLES研究)探索了在KRAS 2号外显子野生型、HER-2基因扩增、既往标准治疗(包括抗EGFR治疗)耐药的患者中曲妥珠联合拉帕替尼治疗的疗效。结果显示27例HER-2阳性患者中8例取得客观缓解,达到设定的主要终点(缓解率6/27)。2016年美国肿瘤临床学会(ASCO)年会报道的临床研究进一步证实了HER-2扩增作为抗EGFR治疗负性疗效预测标志物的作用。尽管HER-2扩增和未扩增的转移性患者一线接受不含抗EGFR治疗的PFS无显著性差异,但在第二、三线抗EGFR治疗中,相较于未扩增患者,HER-2扩增患者的PFS显著缩短(P<0.001)。

基于上述研究,HER-2扩增被看作可能是转移性结直肠癌患者抗EGFR治疗疗效预测的负性标志物,甚至有望成为独立于RAS和BRAF V600E突变的另一个转移性结直肠癌独特的亚型。HER-2也是目前抗EGFR耐药基因改变中唯一有上市药物可用的靶点。HER-2扩增患者可考虑接受联合HER-2而非单独抗EGFR的治疗。

1.4 MET

MET为肝细胞生长因子(hepatocyte growth fac⁃tor,HGF)的酪氨酸激酶受体,其过表达可见于包括结直肠癌在内的多种恶性肿瘤[32]。MET可通过基因扩增、激活突变或自分泌刺激等方式被连续激活,活化的MET可进一步激活包括RAS/RAF/MAPK/ERK,PI3K/AKT/mTOR,SRC和STAT3的多条信号通路,诱发细胞侵袭性和凋亡抑制[33]。

MET在西妥昔单抗继发耐药中的作用已被肯定。细胞研究方面,Song等[34]发现,在西妥昔耐药的KRAS、BRAF、PIK3CA野生型转移性结直肠癌Caco-2细胞中,西妥昔诱导的MET磷酸化在用药24 h后增强、在用药48 h后达到顶峰。MET抑制剂(PHA-665752)和MET siRNA处理后的细胞可恢复对西妥昔单抗的敏感性。Bardelli等[35]于抗EGFR治疗耐药前后分别取3例转移性结直肠癌患者的肿瘤组织,结果显示3例患者耐药后的肿瘤组织中MET基因显著扩增,其中2例患者治疗前肿瘤组织未见扩增,1例患者治疗前组织仅见少量的MET扩增细胞,提示抗EG⁃FR治疗对含MET基因扩增的肿瘤细胞来说是分选压力,MET基因扩增是转移性结直肠癌患者抗EGFR治疗继发耐药的原因之一。原发耐药方面,Bardelli等[35]的研究中,仅有1%(2/196)患者的肿瘤组织中存在MET基因治疗前扩增,因而无足够的数据明确MET和抗EGFR原发耐药的关系。同样,在Cappuzzo等[36]研究中,仅有2.6%(2/81)患者存在MET基因治疗前扩增,提示MET基因可能只在抗EGFR原发耐药中起边缘作用。

MET基因在抗EGFR治疗原发耐药患者中扩增率低,其改变是否是抗EGFR继发耐药的原因也需要耐药前后基因结果的对比来证实,这些因素限制了对MET的进一步探索。信号通路间复杂的交互作用导致MET抑制剂和抗EGFR单抗的联合阻断在Ⅱ期临床研究中并未取得阳性结果[37]。因此,尽管MET基因在抗EGFR治疗继发耐药的作用肯定,制订相关逆转耐药治疗措施以应用于临床,仍需进一步的探索。

1.5 甲基化

近年研究提示甲基化水平可能是潜在的抗EG⁃FR疗效预测标志物。Ouchi等[38]对97例接受抗EG⁃FR治疗的KRAS野生型转移性结直肠癌患者进行全基因组甲基化检测,并根据检测结果将患者分为高甲基化和低甲基化组。临床数据显示低甲基化组的缓解率(35.7%vs.6.3%,P=0.03)、疾病控制率(75%vs.31.3%,P=0.005)、PFS(HR=0.27;95%CI:0.13~0.57,P<0.001)、OS(HR=00.19;95%CI:0.06~0.54,P<0.001)等各项指标均优于高甲基化组。高甲基化的患者抗EGFR治疗疗效较差。

2 逆转耐药的策略

抗EGFR治疗的原发、继发性耐药机制极大地限制了EGFR抑制剂的应用。耐药肿瘤细胞的早发现是克服EGFR耐药的关键之一。传统的组织活检不能反映肿瘤的异质性,部分标本的不易获得使得通过活检方式获得早期耐药信息的可能极为有限。作为非侵入性的检测方法,血液活检已初步被证实是监测肿瘤复发和药物耐药性的有效手段[39-40]。血液标本中的循环DNA能有效检测抗EGFR治疗继发性耐药突变,这种抗EGFR治疗的分子学进展可比传统的影像学进展提前数周出现,能为制定个体化的逆转耐药策略进一步争取时间[41]。耐药突变早期发现后可对突变激活通路进行多靶点阻断。临床前研究显示,MEK联合PIK3CA,EGFR联合HER-2等不同靶点阻断剂的组合可抑制西妥昔耐药肿瘤细胞或移植瘤的增殖[42-44]。2016年欧洲临床肿瘤协会(ESMO)年会的报道表明,在RAS野生型、BRAF V600E突变型转移性结直肠癌患者中应用BRAF、MEK、EGFR多靶点抑制剂(dabrafenib,D;trametinib,T;panitumumb,P),结果显示三靶点阻断剂无论是有效率(DTP vs.DP vs.TP:18%vs.10%vs.0)还是中位 PFS(DTP vs.DP vs.TP:未达到vs.3.4个月vs.2.8个月)均长于任意两药联合。但是,细胞内外的信号转导通路是一个复杂的关系网络,一个或多个信号通路的阻断可能引起其他信号通路的激活,多靶点阻断可能仅作为暂时的、过渡的治疗策略。此外,多靶点治疗还受经济条件等社会学因素限制。因此,尽管取得了一定成果,多靶点治疗作为逆转耐药的主要手段在临床中推广仍较为困难。

免疫治疗为逆转抗EGFR治疗耐药提供了另一种思路。Tran等[45]从转移性结直肠癌患者肿瘤浸润淋巴细胞中分离出以KRAS突变体G12D为靶点的多克隆CD8阳性T细胞,经体外扩大培养回输体内后,使患者获得了临床上的完全缓解。该研究证实了肿瘤浸润淋巴细胞免疫疗法的有效性,使以往对西妥昔治疗原发性耐药,无药可治的KRAS突变患者有药可医。另外,临床前和临床证据表明免疫系统能促进单克隆抗体在体内的治疗效果[46],这也使得研究者更加期待正在进行中的免疫调节剂和检查点抑制剂联合西妥昔单抗一线治疗KRAS野生型转移性结直肠癌患者的临床试验的最终结果。

3 结语

抗EGFR治疗显著改善转移性结直肠癌患者预后,是目前转移性结直肠癌的一线标准治疗策略。原发和继发性耐药极大地限制了抗EGFR治疗的应用。在精准医疗和转化医学背景下,全面了解抗EG⁃FR治疗耐药的原发、继发机制不仅能帮助临床更准确地筛选出从抗EGFR治疗中获益的目标人群,还为不同分子特征的患者制定个体化的逆转耐药策略提供依据,使抗EGFR治疗疗效最大化。多靶点抑制的靶向治疗是目前逆转耐药临时、有效的治疗策略之一。未来,血液检测有望在耐药细胞的早期检测中发挥主导作用,免疫治疗有望在靶向治疗之外开辟逆转耐药的新领域。

[1] Hynes NE,Lane HA.ERBB receptors and cancer:the complexity of targeted inhibitors[J].Nat Rev Cancer,2005,5(5):341-354.

[2] Yarden Y,Sliwkowski MX.Untangling the ErbB signalling network[J].Nat Rev Mol Cell Biol,2001,2(2):127-137.

[3] Bokemeyer C,Bondarenko I,Makhson A,et al.Fluorouracil,leucovorin,and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer[J].J Clin Oncol,2009,27(5):663-671.[4] Douillard JY,Siena S,Cassidy J,et al.Randomized,phase III trial of panitumumab with infusional fluorouracil,leucovorin,and oxaliplatin(FOLFOX4)versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer:the PRIME study[J].J Clin Oncol,2010,28(31):4697-4705.

[5] Van Cutsem E,Peeters M,Siena S,et al.Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer[J].J Clin Oncol,2007,25(13):1658-1664.

[6] Misale S,Di Nicolantonio F,Sartore-Bianchi A,et al.Resistance to anti-EGFR therapy in colorectal cancer:from heterogeneity to convergent evolution[J].Cancer discov,2014,4(11):1269-1280.

[7]Douillard JY,Oliner KS,Siena S,et al.Panitumumab-FOLFOX4 treatment andRASmutationsincolorectal cancer[J].NEngl J Med,2013,369(11):1023-1034.

[8] Amado RG,Wolf M,Peeters M,et al.Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer[J].J Clin Oncol,2008,26(10):1626-1634.

[9] Tol J,Dijkstra JR,Klomp M,et al.Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximabr[J].Eur J Cancer,2010,46(11):1997-2009.

[10]Tol J,Nagtegaal ID,Punt CJ.BRAF mutation in metastatic colorectal cancer[J].N Engl J Med,2009,361(1):98-99.

[11]Davies H,Bignell GR,Cox C,et al.Mutations of the BRAF gene in human cancer[J].Nature,2002,417(6892):949-954.

[12]Ikenoue T,Hikiba Y,Kanai F,et al.Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors[J].Cancer Res,2003,63(23):8132-8137.

[13]Wan PT,Garnett MJ,Roe SM,et al.Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF[J].Cell,2004,116(6):855-867.

[14]Chen D,Huang JF,Liu K,et al.BRAFV600E mutation and its association with clinicopathological features of colorectal cancer:a systematic review and meta-analysis[J].PLoS One,2014,9(3):e90607.

[15]Roock WD,Claes B,Bernasconi D,et al.Effects of KRAS,BRAF,NRAS,and PIK3CA,mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer:a retrospective consortium analysis[J].Lancet Oncol,2010,11(11):753-762.

[16]Seymour MT,Brown SR,Middleton G,et al.Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type,fluorouracil-resistant advanced colorectal cancer(PICCOLO):A prospectively stratified randomised trial[J].Lancet Oncol,2013,14(8):749.

[17]Llovet P,Sastre J,Ortega JS,et al.Prognostic value of BRAF,PI3K,PTEN,EGFR copy number,amphiregulin and epiregulin status in patients with KRAS codon 12 wild-type metastatic colorectal cancer receiving first-line chemotherapy with anti-EGFR therapy[J].Mol Diagn Ther,2015,19(6):397-408.

[18]Maughan TS,Adams RA,Smith CG,et al.Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer:results of the randomised phase 3 MRC COIN trial[J].Lancet,2011,377(9783):2103.

[19]Pietrantonio F,Petrelli F,Coinu A,et al.Predictive role of BRAF mu-tations in patients with advanced colorectal cancer receiving cetuximab and panitumumab:a meta-analysis[J].Eur J Cancer,2015,51(5):587-594.

[20]Rowland A,Dias MM,Wiese MD,et al.Meta-analysis of braf mutation as a predictive biomarker of benefit from anti-egfr monoclonal antibody therapy for ras wild-type metastatic colorectal cancer[J].Br J Cancer,2015,112(12):1888-1894.

[21]Samuels Y,Wang Z,Bardelli A,et al.High frequency of mutations of the PIK3CA gene in human cancers[J].Science,2004,304(5670):554.

[22]Day FL,Jorissen RN,Lipton L,et al.PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer[J].Clin Cancer Res,2013,19(12):3285-3296.

[23]Therkildsen C,Bergmann TK,Henrichsen-Schnack T,et al.The predictive value of KRAS,NRAS,BRAF,PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer:A systematic review and meta-analysis.[J].Acta Oncol,2014,53(7):852-864.

[24]Hsu HC,Tan KT,Lu YJ,et al.Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients[J].Oncotarget,2016,7(16):22257-22270

[25]Huang L,Liu Z,Deng D,et al.Anti-epidermal growth factor receptor monoclonal antibody-based therapy for metastatic colorectal cancer:a meta-analysis of the effect of PIK3CA mutations in KRAS wildtype patients[[J].Arch Med Sci,2014,10(1):1-9.

[26]Ashktorab H,Rosty C,Young JP,et al.PIK3CA activating mutation in colorectal carcinoma:associations with molecular features and survival[J].PLoS One,2013,8(6):e65479.

[27]Holbro T,Beerli RR,Maurer F,et al.The ErbB2/ErbB3 heterodimer functions as an oncogenic unit:ErbB2 requires ErbB3 to drive breast tumor cell proliferation[J].Proc Natl Acad Sci U S A,2003,100(15):8933-8938.

[28]Yonesaka K,Zejnullahu K,Okamoto I,et al.Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab[J].Sci Transl Med,2011,3(99):99ra86.

[29]Barry GS,Cheang MC,Chang HL,et al.Genomic markers of panitumumab resistance including ERBB2/HER2 in a phase II study of KRAS wild-type(wt)metastatic colorectal cancer(mCRC)[J].Oncotarget,2016,7(14):18953-18964.

[30]Takegawa N,Yonesaka K,Sakai K,et al.HER-2 genomic amplification in circulating tumor DNA from patients with cetuximab-resistant colorectal cancer[J].Oncotarget,2016,7(3):3453-3460.

[31]Sartore-Bianchi A,Trusolino L,Martino C,et al.Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory,KRAS codon 12/13 wild-type,HER2-positive metastatic colorectal cancer(HERACLES):a proof-of-concept,multicentre,open-label,phase 2 trial[J].Lancet Oncol,2016,17(6):738-746.

[32]Cecchi F,Rabe DC,Bottaro DP.Targeting the HGF/Met signalling pathway in cancer[J].Eur J Cancer,2010,46(7):1260-1270.

[33]Comoglio PM,Giordano S,Trusolino L.Drug development of MET inhibitors:targeting oncogene addiction and expedience[J].Nat Rev Drug Discov,2008,7(6):504-516.

[34]Song N,Liu S,Zhang J,et al.Cetuximab-Induced MET activation acts as a novel resistance mechanism in colon cancer cells[J].Int J Mol Sci,2014,15(4):5838-5851.

[35]Bardelli A,Corso S,Bertotti A,et al.Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer[J].Cancer Discov,2013,3(6):658-673.

[36]Cappuzzo F,Varella-Garcia M,Finocchiaro G,et al.Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients[J].Br J Cancer,2008,99(1):83-89.

[37]Eng C,Bessudo A,Hart LL,et al.A randomized,placebo‐controlled,phase 1/2 study of tivantinib(ARQ 197)in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild‐type KRAS who have received first‐line systemic therapy[J].Int J Cancer,2016,139(1):177-186.

[38]Ouchi K,Takahashi S,Yamada Y,et al.DNA methylation status as a biomarker of anti-epidermal growth factor receptor treatment for metastatic colorectal cancer[J].Cancer Sci,2015,106(12):1722-1729.

[39]Bettegowda C,Sausen M,Leary RJ,et al.Detection of circulating tumor DNA in early-and late-stage human malignancies[J].Sci Transl Med,2014,6(224):224ra24.

[40]Murtaza M,Dawson SJ,Tsui DW,et al.Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J].Nature,2013,497(7447):108-112.

[41]Diaz LA Jr,Williams RT,Wu J,et al.The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J].Nature,2012,486(7404):537-540.

[42]Bertotti A,Migliardi G,Galimi F,et al.A molecularly annotated platform of patient-derived xenografts("xenopatients")identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer[J].Cancer Discov,2011,1(6):508-523.

[43]Wee S,Jagani Z,Xiang KX,et al.PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers[J].Cancer Res,2009,69(10):4286-4293.

[44]Troiani T,Napolitano S,Vitagliano D,et al.Primary and acquired resistance of colorectal cancer cells to anti-EGFR antibodies converge on MEK/ERK pathway activation and can be overcome by combined MEK/EGFR inhibition[J].Clin Cancer Res,2014,20(14):3775-3786.

[45]Tran E,Robbins PF,Lu YC,et al.T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer[J].N Engl J Med,2016,375(23):2255-2262.

[46]Perez EA,Thompson EA,Ballman KV,et al.Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial[J].J Clin Oncol,2015,33(7):701-708.

(2017-02-01收稿)

(2017-06-09修回)

Advances in research on mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in RAS wild-type metastatic colorectal cancer

Yue YU,Aiping ZHOU

Aiping ZHOU;E-mail:zhouap1825@126.com
Department of Medical Oncology,Cancer Hospital of Chinese Academy of Medical Sciences,Beijing,Beijing 100021,China

The development of anti-epidermal growth factor receptor monoclonal antibodies(anti-EGFR McAbs)marked a significant milestone in metastatic colorectal cancer(mCRC)treatment.The addition of anti-EGFR McAb can greatly improve quality of life of mCRC patients and mCRC prognosis and markedly increases the overall survival rate from 6 months to nearly 30 months.KRAS and NRAS mutations contribute to the primary resistance to anti-EGFR therapy and can serve as well-established predictive markers for patient selection.Apart from the RAS family,other molecular alteration in EGFR signaling pathway may also compromise the efficacy of anti-EGFR treatment.In addition,patients who responded to anti-EGFR treatment eventually develop acquired drug resistance within 13 and 18 months.In this review,the mechanisms underlying the primary and secondary resistance to anti-EGFR therapy are summarized,and a possible strategy to circumvent drug resistance is proposed.We hope this review can provide compelling evidence,deeper insights,and reasonable guidance to facilitate the precise molecular targeted therapy of mCRC.

metastatic colorectal cancer,epidermal growth factor receptor,drug resistance,RAS

10.3969/j.issn.1000-8179.2017.11.089

北京协和医学院中国医学科学院肿瘤医院肿瘤内科(北京市100021)

周爱萍 zhouap1825@126.com

俞悦 专业方向为肿瘤内科临床与基础研究。

E-mail:yuyueyykk123@163.com

猜你喜欢

西妥转移性单抗
FOLFOXIRI联合贝伐单抗±阿替利珠单抗治疗转移性结直肠癌
医院静配中心曲妥珠单抗剩余液信息化管理与成效
SPECT/CT显像用于诊断转移性骨肿瘤的临床价值
EPHA2抗体对结直肠癌西妥昔单抗耐药的逆转作用
ADC直方图分析在颈部淋巴结转移性鳞癌鉴别诊断中的价值
司库奇尤单抗注射液
晚期乳癌五大迷思与预防
西妥昔单抗在转移性结直肠癌一线治疗后的后续应用研究进展
PD1单抗市场竞争加剧 君实生物、信达生物抢得先机?
西妥昔单抗在非小细胞肺癌中的应用进展