APP下载

GATA1转录因子调控巨核细胞分化机制的研究进展

2017-06-05汪海涛杨红旗罗龙龙吴晓雄

中国药理学与毒理学杂志 2017年5期
关键词:骨髓白血病纤维化

汪海涛,杨红旗,罗龙龙,吕 明,吴晓雄

(1.中国人民解放军总医院第一附属医院血液科,北京 100048;2.中国人民解放军总医院老年血液科,北京100853;3.军事医学科学院基础医学研究所免疫学研究室,北京 100850)

GATA1转录因子调控巨核细胞分化机制的研究进展

汪海涛1,2,3*,杨红旗2*,罗龙龙3,吕 明3,吴晓雄1

(1.中国人民解放军总医院第一附属医院血液科,北京 100048;2.中国人民解放军总医院老年血液科,北京100853;3.军事医学科学院基础医学研究所免疫学研究室,北京 100850)

GATA1是一种含有2个锌指结构的转录因子,参与红细胞、巨核细胞、肥大细胞和嗜酸性粒细胞的正常生物学功能。研究发现,GATA1转录因子在巨核细胞分化中起重要调控作用,其表达异常可能引起血小板减少症、白血病和骨髓纤维化等血液系统疾病。本文就转录因子GATA1调控巨核细胞分化的机制、GATA1表达异常和血液系统疾病的关系及可能靶向转录因子GATA1药物的研究进展予以综述。

GATA1转录因子;巨核细胞;细胞分化;血小板减少症;白血病

巨核细胞是产生血小板的前体细胞,约占骨髓有核细胞的0.1%。巨核细胞由造血干细胞分化而来,此过程伴随细胞形态学、表面分子、胞质特异性颗粒生成及DNA倍体的变化,这些均需要转录因子精确调控相关基因的表达,比较重要的转录因子有GATA1,Fli-1,NF-E2,Ets-1和FOG-1等[1-4]。GATA1转录因子是巨核细胞分化过程中研究较为深入的转录因子之一。本文就近年来GATA1转录因子调控巨核细胞分化的相关研究予以综述。

1 GATA1转录因子分子结构概述

GATA家族是一族含锌指结构的转录因子,包含GATA1~GATA6等6个成员,它们在人和哺乳动物细胞中广泛表达。根据组织分布部位不同,GATA家族成员的功能也各有差异。GATA1是GATA家族最早被发现的成员,相对分子质量42 000。人的GATA1转录因子由413个氨基酸残基组成,包含2个高度保守的锌指结构域,能与GATA基因的基元(motif)区结合,对造血细胞的发育具有重要作用。虽然GATA1转录因子分子中2个锌指结构相同,均为Cys-X2-Cys,但二者作用却不同:C端锌指结构专司与DNA结合,N端锌指结构能增强C端结合的稳定性,二者具有协同作用[5-6]。GATA1转录因子在红细胞、巨核细胞、肥大细胞、嗜酸性粒细胞和嗜碱性粒细胞中高水平表达,在造血干细胞中表达较低。因此,GATA1转录因子被认为是红系/巨核系分化中起重要调节作用的转录因子[7-11]。但也有文献报道,GATA1转录因子在促进巨核细胞系分化时,其蛋白表达水平并不升高,而通过增加入核促进细胞分化,这可能与GATA1转录因子的磷酸化有关[2]。

2 GATA1转录因子参与调控巨核细胞分化

2.1 GATA1转录因子调控巨核细胞分化的机制

巨核细胞的分化成熟是一个连续的过程,根据细胞的增殖能力、细胞形态及成熟程度,可人为地分为造血干细胞、红系/巨核祖细胞、巨核系祖细胞、原始巨核细胞、幼巨核细胞、颗粒型巨核细胞和产板型巨核细胞等7个阶段[12]。随着巨核细胞逐渐成熟,细胞呈现体积增大、胞浆产生特异性颗粒和DNA倍体增多等特点,GATA1转录因子参与了巨核细胞分化的整个过程,其异常表达将引起上述特征的变化。

2.1.1 GATA1基因敲除对小鼠巨核细胞的影响

Vyas等[13]采用基因敲除小鼠从整体水平研究了GATA1转录因子对巨核细胞及血小板的影响。他们发现,GATA1缺陷小鼠骨髓巨核细胞体积减小,并出现核分叶偏少、胞浆不足和膜发育不良等形态改变;PCR检测巨核细胞血小板糖蛋白Ⅰb-α(platelet glycoproteinⅠb-α,GPⅠb-α)、GPⅠb-β、血小板因子4和血小板生成素受体等mRNA水平均有不同程度降低。后续研究发现,GATA1缺陷不仅影响了血小板的数量,还导致了血小板功能障碍。正常血小板为圆盘状,而GATA1缺陷小鼠的血小板为均匀的球形,胞质粗面内质网、核糖体过多,不能产生血小板特异性颗粒,也不能被凝血酶或ADP、肾上腺素诱导成为活化血小板[7]。

2.1.2 GATA1基因敲除对巨核细胞表面分子的影响

GPⅡb是造血干细胞向巨核细胞分化的早期标志之一。Uzan等[14]发现GATA1转录因子能结合到小鼠GPⅡb基因-643 bp的启动子上,使小鼠胚胎干细胞定向向巨核细胞分化。这说明GATA参与了干细胞的谱系分化,包括红系/巨核祖细胞的早期分化。GATA1转录因子还通过影响血栓烷A2(thromboxane A2,TXA2)受体的表达影响血小板的聚集功能。人类TXA2受体α受启动子Prm1的调控转录。Gannon等[15]通过电泳迁移率变动分析和染色质免疫共沉淀方法发现,GATA1转录因子能结合到TXA2受体DNA的-7962 bp至-7717 bp,从而激活Prm1并促进TXA2受体α转录,进而影响血小板聚集和血管收缩。

2.1.3 GATA1基因点突变对巨核细胞分化的影响

编码GATA1转录因子的基因定位在X染色体的短臂(Xp11.23)上[16]。在某些情况下,GATA1点突变可能引起GATA1蛋白的结构异常,也会导致巨核细胞分化障碍[17]。Freson等[18]研究发现,GATA1的D218G点突变虽不影响GATA1转录因子与DNA的结合,但却降低GATA1和转录因子FOG-1的结合能力,导致巨核细胞成熟障碍。此类患者血小板完全不成熟,缺乏GPⅠb,GPⅢa,GPⅨ和GPⅤ等几乎所有的糖蛋白,但D218G点突变患者红细胞却不受影响。后续研究又发现,GATA1存在多种形式的突变,对GATA1转录因子功能的影响及点突变患者的临床表现[18-22](表1)。

2.2 GATA1转录因子和miRNA共调控巨核细胞分化

微RNA(microRNA,miRNA)是一类内生的、长度20~24个核苷酸的非编码单链RNA,它可以通过干扰mRNA的稳定性及翻译过程来调控基因的表达。研究发现,miRNA水平的失调可能导致白血病并影响巨核细胞的分化,目前已发现大约200余种miRNA参与了巨核细胞的分化[23-24]。近年研究发现,miRNA和转录因子共同参与了巨核细胞分化调控,且相互影响组成复杂的调控网络[25-28]。Zhai等[25]应用丙二醇甲醚醋酸酯诱导K562细胞向巨核细胞定向分化,发现细胞内miR-146b及转录因子GATA1的水平均升高,而沉默miR-146b可使细胞内GATA1转录因子水平降低,导致K562细胞停止向巨核细胞分化;与之对应,转染miR-146b的类似物能使GATA1转录因子水平升高并促进K562细胞向巨核细胞分化。这说明miR-146b通过影响转录因子GATA1的水平,共调控K562细胞向巨核细胞分化。GATA1基因缺失小鼠G1E细胞系,是研究GATA1功能的细胞模型。Dore等[26]通过转染技术重建G1E细胞GATA1的功能,并用miRNA芯片筛选出11个差异性表达的miRNA,通过染色质免疫共沉淀检测发现,GATA1转录因子结合到miRNA144/451基因-2.8 kb的启动子上,并招募RNA聚合酶Ⅱ增加miRNA144/451的转录。这说明转录因子GATA1调控着miRNA的转录水平。研究还发现,在红细胞分化过程中也存在着转录因子GATA1和众多miRNA的相互调控作用,这说明转录因子和miRNA共同参与造血细胞的分化,组成了复杂的调控网络[29-32]。目前有关转录因子和miRNA共调控巨核细胞分化的研究较少,将来可能成为巨核细胞分化领域研究的热点之一。

3 GATA1转录因子与血液系统疾病的关系

由于GATA1转录因子能影响红细胞、巨核细胞、肥大细胞和嗜碱性粒细胞等多种细胞的分化和功能,GATA-l的突变或表达水平异常,可能引起多种造血系统疾病。

表1 GATA1错义突变引起的红系/巨核造血异常

3.1 GATA1转录因子与血小板减少症

美国学者Nichols等[33]在2000年首次报道了GATA1突变引起的疾病。同一家族中2位表兄弟均表现为外周血红细胞形态异常,血小板减少,骨髓出现体积增大的多核红细胞及小巨核细胞,而家系中女性完全正常。DNA测序发现,GATA1的205位氨基酸由缬氨酸突变为甲硫氨酸(V205M),这也符合GATA1基因是X连锁的遗传规律。由于敲除GATA1基因小鼠均在胚胎期死亡,只能采取基因嵌入技术制造GATA1突变模型来研究其功能。Chang等[20]向小鼠嵌入GATA1(V205M)基因,建立GATA1(V205M)杂合子突变小鼠模型,发现大部分雄性小鼠因严重贫血死于11.5 d胚胎期,小部分GATA1(V205M)突变的小鼠出生,但因GATA1功能低下引起严重贫血和血小板减少,也在出生后不久死亡。值得注意的是,GATA1转录因子过高同样会引起血小板减少。Wei等[34]通过腹腔内注射豚鼠抗小鼠血小板抗体的方法,建立免疫性血小板减少性紫癫的BALB/c小鼠模型,q-PCR检测模型小鼠脾GATA1的mRNA水平,发现模型小鼠脾GATA1 mRNA水平较对照组升高6倍。总之,GATA1转录因子对红细胞和巨核细胞的分化具有至关重要的作用,有关GATA1的突变可能是致死性的。

3.2 GATA1转录因子与白血病

唐氏综合征(Down syndrome,DS)是由21号染色体增多导致的疾病,患者合并急性巨核细胞白血病(acute megakaryocyte leukemia,AMKL)的发病率是正常人的500倍,中位发病年龄是2岁。研究发现,几乎所有的DS相关AMKL患者均存在GATA1突变,而其他类型的白血病则无突变[35-36],说明DS相关AMKL与GATA1突变有关。研究发现,转录因子PU.1表达增多能引起小鼠红白血病(mouse erythroleukemia,MEL),GATA1转录因子能抑制转录因子PU.1的表达。Papetti等[37]通过细胞转染技术使MEL细胞过表达GATA1,结果细胞内PU.1水平降低,且MEL细胞向成熟红细胞分化。GATA1的表达水平异常不仅能导致白血病的发生,还能影响白血病的预后。Shimamoto等[38]通过逆转录PCR检测了110例白血病患者GATA1的mRNA表达水平。发现GATA1表达异常影响急性粒细胞白血病(acute myeloid leukemia,AML)患者的预后,GATA1阳性AML患者完全缓解率只有64%,而GATA1阴性患者为86%,同时GATA1阳性患者预期生存较差。

3.3 GATA1转录因子与骨髓纤维化

Vannucchi等[39]发现,GATA1基因缺陷小鼠除巨核细胞生成障碍,骨髓转化生长因子β1、血小板源性生长因子和血管内皮生长因子等细胞因子水平升高,最终会发展成骨髓纤维化。其另一项研究发现,存在TPO(high)和GATA1(low)基因突变的小鼠在疾病后期均会出现骨髓纤维化,且病理学特点类似。检测TPO(high)小鼠血浆GATA1转录因子水平偏低,而GATA1(low)小鼠血浆血小板生成素水平则正常,给予外源性血小板生成素,GATA1(low)小鼠巨核细胞GATA1蛋白水平恢复正常,且骨髓纤维化逆转,因此推测血小板生成素和GATA1具有上下游关系,二者共同参与了小鼠骨髓纤维化的形成[40]。

有关GATA1缺陷能否引起人骨髓纤维化,Vannucchi等[41]以12例骨髓纤维化患者和8例正常人为对象,分别从骨髓提取了CD34+干细胞和CD61+巨核细胞,发现2组患者CD34+干细胞GATA1转录因子水平无明显差异,而骨髓纤维化患者CD61+细胞的GATA1转录因子水平明显低于正常人。进一步骨髓活检免疫组化发现,特发性骨髓纤维化患者45%的巨核细胞GATA1转录因子呈阴性,而正常人只有2%阴性。说明GATA1转录因子在人体也参与骨髓纤维化病理生理过程。

4 GATA1转录因子相关的药物研究

目前仍无针对GATA1转录因子靶点的药物,但文献报道祖国传统医学中皂苷、黄酮和白芦藜醇等可能通过影响GATA1转录因子相关的分子通路来治疗疾病[42-46]。Wen等[42]用人参二醇皂苷分别诱导巨核细胞白血病细胞系Meg-01和CHRF-288,发现它们的GATA1在mRNA和蛋白水平均有升高,且向成熟巨核细胞分化。Sun等[43]等发现,三七总皂苷诱导Meg-01和CHRF-288细胞系向成熟巨核细胞分化可能和促分裂原活化的蛋白激酶信号通路有关,且GATA1转录因子是此过程中的关键分子。另有研究发现,黄芩黄酮可能通过GATA1转录因子起到抗白血病作用[44-45]。Yang等[44]发现,黄芩黄酮对慢性粒细胞白血病(chronic myeloid leukemia,CML)K562细胞系具有双重作用,一方面能诱导K562细胞系向红系分化,另一方面能将K562细胞的细胞周期阻滞在G0/G1期,抑制其增殖,并对耐伊马替尼的CML同样具有治疗作用,为耐伊马替尼的CML患者带来了希望。赵燕娜等[46]发现,白芦藜醇也能通过上调GATA1表达诱导K562细胞分化,并抑制其增殖。总之,GATA1转录因子促进巨核细胞分化的机制仍不明确,所以尚无靶向GATA1转录因子的药物,还需进一步探索。

5 结语

转录因子GATA1是造血细胞分化的重要调控因子,对维持巨核系、红系和嗜酸性粒细胞的正常生物学功能有不可或缺的作用。GATA1基因突变或异常表达可能会引起血液系统疾病,如血小板减少症、白血病和骨髓纤维化等。在过去的15年,有关GATA1转录因子和造血系统疾病的关系已有深入研究,但GATA1转录因子调控有关巨核细胞分化的关键基因尚不明确,GATA1转录因子及其辅助因子与miRNA相互作用的模式还不清楚,针对GATA1转录因子靶点的药物研究也相对较少。进一步研究解决这些问题,有可能会开创一个新领域。

[1]Zang C,Luyten A,Chen J,Liu XS,Shivdasani RA. NF-E2,FLI1 And RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes[J].Sci Rep,2016,6:30255.

[2]Wang HT,Yang B,Hu B,Chi XH,Luo LL,Yang HQ,et al.The effect of amifostine on differ⁃entiation of the human megakaryoblastic Dami cell line[J].Cancer Med,2016,5(8):2012-2021.

[3]Pimkin M,Kossenkov AV,Mishra T,Morrissey CS,Wu W,Keller CA,et al.Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis[J].Genome Res,2014,24(12):1932-1944.

[4]Chen L,Kostadima M,Martens JH,Canu G,Garcia SP,Turro E,et al.Transcriptional diversity during lineage commitmentofhuman blood progenitors[J].Science,2014,345(6204):1251033.

[5]Pevny L,Simon MC,Robertson E,Klein WH,Tsai SF,D′Agati V,et al.Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factorGATA-1[J].Nature,1991,349(6306):257-260.

[6]ShivdasaniRA.Molecularand transcriptional regulation ofmegakaryocyte differentiation[J].Stem Cells,2001,19(5):397-407.

[7]Matsumura I,Kanakura Y.Molecular control of megakaryopoiesis and thrombopoiesis[J].Int J Hematol,2002,75(5):473-483.

[8]García P,Berlanga O,Vegiopoulos A,Vyas P,Frampton J.c-Myb and GATA-1 alternate domi⁃nant roles during megakaryocyte differentiation[J].J Thromb Haemost,2011,9(8):1572-1581.

[9]Nei Y,Obata-Ninomiya K,Tsutsui H,Ishiwata K,Miyasaka M,Matsumoto K,et al.GATA-1 Regu⁃lates the generation and function of basophils[J].Proc Natl Acad Sci USA,2013,110(46):18620-18625.

[10] Wolff L,Humeniuk R.Concise review:erythroidversusmyeloid lineage commitment:regulating the master regulators[J].Stem Cells,2013,31(7):1237-1244.

[11]Du C,Xu Y,Yang K,Chen S,Wang X,Wang S,et al.Estrogen promotes megakaryocyte polyploidi⁃zation via estrogen receptor beta-mediated transcription of GATA1[J].Leukemia,2017,31(4):945-956.

[12]Kaushansky K,Lichtman M A,Beutler E,Kipps T J,Prchal J T,Seligsohn U,et al.Williams Hematology[M].8th ed.New York:McGraw-Hill Education,2010:1721-1722.

[13] VyasP,AultK,JacksonCW,OrkinSH,Shivdasani RA.Consequences of GATA-1 deficiency in megakaryocytes and platelets[J].Blood,1999,93(9):2867-2875.

[14]Uzan G,Prandini MH,Berthier R.Regulation of gene transcription during the differentiation of megakaryocytes[J].Thromb Haemost,1995,74(1):210-212.

[15] Gannon AM,Kinsella BT.Regulation of the human thromboxane A2 receptor gene by Sp1,Egr1,NF-E2,GATA-1,and Ets-1 in megakaryocytes[J].J Lipid Res,2008,49(12):2590-2604.

[16]Kumar R,Kahr WH.Congenital thrombocytopenia:clinical manifestations,laboratory abnormalities,and molecular defects of a heterogeneous group of conditions[J].Hematol Oncol Clin North Am,2013,27(3):465-494.

[17]Daly ME.Transcription factordefects causing platelet disorders[J].Blood Rev,2017,31(1):1-10.

[18]Freson K,Devriendt K,Matthijs G,Van Hoof A,De Vos R,Thys C,et al.Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation[J].Blood,2001,98(1):85-92.

[19]Mehaffey MG,Newton AL,Gandhi MJ,Crossley M,Drachman JG.X-linked thrombocytopenia caused by a novel mutation of GATA-1[J].Blood,2001,98(9):2681-2688.

[20]Chang AN,Cantor AB,Fujiwara Y,Lodish MB,Droho S,Crispino JD,et al.GATA-Factor depen⁃dence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis[J].Proc Natl Acad Sci USA,2002,99(14):9237-9242.

[21]Freson K, Matthijs G, Thys C, Mariën P,Hoylaerts MF,Vermylen J,et al.Different substitu⁃tions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are asso⁃ciated with variable skewed X inactivation[J].Hum Mol Genet,2002,11(2):147-152.

[22]Balduini CL,Pecci A,Loffredo G,Izzo P,Noris P,Grosso M,et al.Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis[J].Thromb Haemost,2004,91(1):129-140.

[23]Edelstein LC,McKenzie SE,Shaw C,Holinstat MA,Kunapuli SP,Bray PF.MicroRNAs in platelet pro⁃duction and activation[J].J Thromb Haemost,2013,11(Suppl 1):340-350.

[24]Starczynowski DT,Kuchenbauer F,Argiropoulos B,Sung S,Morin R,Muranyi A,et al.Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype[J].Nat Med,2010,16(1):49-58.

[25]Zhai PF,Wang F,Su R,Lin HS,Jiang CL,Yang GH,et al.The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α(PDGFRA)in erythropoiesis and mega⁃karyocytopoiesis[J].J Biol Chem,2014,289(33):22600-22613.

[26]Dore LC,Amigo JD,Dos Santos CO,Zhang Z,Gai X,Tobias JW,et al.A GATA-1-regulated microRNA locus essential for erythropoiesis[J].Proc Natl Acad Sci USA,2008,105(9):3333-3338.

[27]Lindsay CR,Edelstein LC.MicroRNAs in platelet physiology and function[J].Semin Thromb Hemost,2016,42(3):215-222.

[28]Trécul A,Morceau F,Gaigneaux A,Schnekenburger M,Dicato M,Diederich M.Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks[J].Biochem Pharmacol,2014,92(2):299-311.

[29]Wang F,Zhu Y,Guo L,Dong L,Liu H,Yin H,et al. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis[J].Nucleic Acids Res,2014,42(1):442-457.

[30]Kouhkan F,Hafizi M,Mobarra N,Mossahebi-Mohammadi M,Mohammadi S,Behmanesh M,et al.miRNAs:A new method for erythroid differen⁃tiation of hematopoietic stem cells without the pres⁃ence of growth factors[J].Appl Biochem Biotechnol,2014,172(4):2055-2069.

[31]Zhu Y,Wang D,Wang F,Li T,Dong L,Liu H,et al. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis[J].Nucleic Acids Res,2013,41(7):4129-4143.

[32]Li Y,Bai H,Zhang Z,Li W,Dong L,Wei X,et al. The up-regulation of miR-199b-5p in erythroid differen⁃tiation is associated with GATA-1 and NF-E2[J].Mol Cells,2014,37(3):213-219.

[33]Nichols KE,Crispino JD,Poncz M,White JG,Orkin SH,Maris JM,et al.Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1[J].Nat Genet,2000,24(3):266-270.

[34]Wei H,Ding X,Ren J,Liu K,Tan P,Li D,et al. A murine model for human immune thrombocytopenic purpura and comparative analysis of multiple gene⁃expression in bone marrow and spleen[J].J Genet Genomics,2008,35(11):665-671.

[35]Hitzler JK,Cheung J,Li Y,Scherer SW,Zipursky A. GATA1 Mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome[J].Blood,2003,101(11):4301-4304.

[36]Groet J,McElwaine S,Spinelli M,Rinaldi A,Burtscher I,Mulligan C,et al.Acquired mutations in GATA1 in neonates with Down′s syndrome with transient myeloid disorder[J].Lancet,2003,361(9369):1617-1620.

[37]Papetti M,Skoultchi AI.Reprogramming leukemia cells to terminal differentiation and growth arrest by RNA interference of PU.1[J].Mol Cancer Res,2007,5(10):1053-1062.

[38]Shimamoto T, Ohyashiki K, Ohyashiki JH,Kawakubo K,Fujimura T,Iwama H,et al.The expression pattern of erythrocyte/megakaryocyterelated transcription factors GATA-1 and the stem cell leukemia gene correlates with hematopoietic differ⁃entiation and is associated with outcome of acutemyeloid leukemia[J].Blood,1995,86(8):3173-3180.

[39] Vannucchi AM,Bianchi L,Cellai C,Paoletti F,Rana RA,Lorenzini R,et al.Development of myelofibrosis in mice genetically impaired for GATA-1 expression〔GATA-1(low)mice〕[J].Blood,2002,100(4):1123-1132.

[40]Vannucchi AM,Bianchi L,Paoletti F,Pancrazzi A,Torre E,Nishikawa M,et al.A pathobiologic pathway linking thrombopoietin,GATA-1,and TGF-beta1 in the development of myelofibrosis[J].Blood,2005,105(9):3493-3501.

[41] Vannucchi AM,Pancrazzi A,Guglielmelli P,Di Lollo S,Bogani C,Baroni G,et al.Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis[J].Am J Pathol,2005,167(3):849-858.

[42]Wen WW,Sun X,Zhuang HF,Lin XJ,Zheng ZY,Gao RL,et al.Effects of panaxadiol saponins compo⁃nent as a new Chinese patent medicine on prolifer⁃ation,differentiation and corresponding gene expression profile of megakaryocytes[J].Chin J Integr Med,2016,22(1):28-35.

[43]Sun X,Gao RL,Lin XJ,Xu WH,Chen XH.Panax notoginsengsaponins induced up-regulation,phos⁃phorylation and binding activity of MEK,ERK,AKT,PI-3K protein kinases and GATA transcrip⁃tion factors in hematopoietic cells[J].Chin J Integr Med,2013,19(2):112-118.

[44]Yang H,Hui H,Wang Q,Li H,Zhao K,Zhou Y,et al.Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells[J].Oncotarget,2014,5(18):8188-8201.

[45]Li H,Hui H,Xu J,Yang H,Zhang X,Liu X,et al. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells[J].Arch Toxicol,2016,90(6):1507-1522.

[46]Zhao YN,Gao RL,Wang LP,Yu XL,Yin LM.Effect of resveratrol on proliferation and differentiation in K562 cells[J].Chin Pharmacol Bull(中国药理学通报),2014,30(6):853-856.

Mechanism of GATA1 transcription factor in regulation of megakaryocytes differentiation:recent advances

WANG Hai-tao1,2,3*,YANG Hong-qi2*,LUO Long-long3,LYU Ming3,WU Xiao-xiong1

(1.Department of Hematology,First Affiliated Hospital of Chinese PLA General Hospital,Beijing 100048,China;2.Department of Geriatric Hematology,Chinese PLA General Hospital, Beijing 100853,China;3.Institute of Basic Medical Sciences,Academy of Military Medical Sciences,Beijing 100850,China)

GATA1 is a transcription factor containing two zinc finger structures and is expressed in red blood cells,megakaryocytes,mast cells,and eosinophils,and it is important to the normal biological func⁃tion.It was found that GATA1 transcription factor plays an important role in megakaryocyte differentia⁃tion,and abnormal expressions may cause blood diseases,such as thrombocytopenia,leukemia and idiopathic myelofibrosis.This article aimed to review research progress in the mechanism of GATA1 regu⁃lating megakaryocytes differentiation,the relationship between GATA1 abnormal expression and blood system diseases,and possible drugs targeting GATA1 transcription factor.

GATA1 transcription factor;megakaryocytes;cell differentiation;thrombocytopenia;leukemia

The project supported by National Natural Science Foundation of China(81273597);Innovation and Nursery Foundation of Chinese PLA General Hospital(15KMM28);and Military Health Care Foundation(13BJ247)

WU Xiao-xiong,E-mail:xiongwuxiao@sohu.com,Tel:(010)66848181;LYU Ming,E-mail: lm62033@163.com,Tel:(010)66931325

R966

:A

:1000-3002-(2017)05-0439-06

10.3867/j.issn.1000-3002.2017.05.009

2016-10-27 接受日期:2017-03-16)

(本文编辑:乔 虹)

国家自然科学基金(81273597);解放军总医院科技创新苗圃基金(15KMM28);全军保健基金(13BJ247)

汪海涛,男,硕士,主要从事血液病的基础与临床研究,E-mail:ws_ht@126.com;杨红旗,女,学士,主要从事血液病的护理研究,E-mail:549131561@qq.com

吴晓雄,E-mail:xiongwuxiao@sohu.com,Tel:(010)66848181;吕 明,E-mail:lm62033@163.com,Tel:(0 10)66931325

*共同第一作者。

*Co-first author.

猜你喜欢

骨髓白血病纤维化
白血病“造访”,人体会有哪些信号?
线粒体自噬在纤维化疾病中作用的研究进展
肝纤维化无创诊断研究进展
氧化槐定碱体内体外通过AKT/mTOR通路调控自噬抑制HBV诱发肝纤维化
骨髓18F-FDG摄取模式在初诊弥漫大B细胞淋巴瘤诊断骨髓浸润的价值
骨髓中缺氧诱导因子1α和血小板衍生生长因子B在骨髓增生异常综合征的表达
走进儿童白血病的世界
芪红水煎液抗大鼠免疫肝纤维化的作用机制
赞美骨髓
裸露