APP下载

考虑多角度效用的应急案例调整方法

2017-05-18张恺王应明

浙江大学学报(理学版) 2017年3期
关键词:精确度关联度权重

张恺, 王应明

(1.福建船政交通职业学院 信息工程系, 福建 福州 350007; 2.福州大学 决策科学研究所, 福建 福州 350116)

考虑多角度效用的应急案例调整方法

张恺1, 王应明2*

(1.福建船政交通职业学院 信息工程系, 福建 福州 350007; 2.福州大学 决策科学研究所, 福建 福州 350116)

针对提高应急方案调整精确度的问题,提出了一种基于多角度的应急案例调整方法.基于3种相似度计算方法得到案例的综合相似度,通过灰色关联度计算方法得到问题与方案间的案例关联度;并从综合相似度、灰关联度以及案例实施效果三方面确定相似历史案例集及其权重;再运用证据推理对相似历史案例的方案进行集结,得到目标案例的调整方案.最后,通过算例说明方法的可行性和有效性.

突发事件;案例调整;证据推理;混合权重

Journal of Zhejiang University(Science Edition), 2017,44(3):314-321

0 引 言

案例推理(case-basedreasoning,CBR)是人工智能领域一种重要的基于知识求解问题的方法,通过搜索与目标案例相似的历史案例生成目标案例的方案. 近年来,案例推理已广泛应用于诸如液体泄漏[1]、环境紧急预案[2]、地铁项目[3-4]等应急管理中. 然而,已有的基于案例推理的应急方案大多是通过提取与目标案例相似度最大的历史案例,并将其作为目标案例的解决方案. 需要指出的是,目标案例与历史案例往往存在一定的差异,需要进行调整以确定目标案例的解决方案.

案例调整的方法主要有2类:基于统计方法的案例调整和基于机器学习的智能调整. 基于统计方法的案例调整主要是通过参考多个案例的方案生成目标案例. 目前常用的方法有平均数[5]、中间值[6]、加权平均[7]、多元回归分析法[8]等,其中加权平均法使用最广泛. 加权平均法主要根据相似度较高的历史案例对案例调整效用大、相似度较低的历史案例对案例调整效用小的原则,应用线性加权法对历史案例的方案进行集结. 加权平均法起先通过逆距离得到权重,对历史案例的方案进行集结;随着对案例相似度研究的深入,各种相似度计算方法出现,应用相似度代替逆距离的案例调整方法应运而生;QI等[9]发现通过相似度或距离的加权平均得到的方案质量较次,需考虑方案的调整能力,于是提出了基于案例调整能力的案例调整方法;进一步,HU等[10]发现案例调整需要考虑问题与方案之间的关联,提出了由相似度和灰色关联度确定权重进行方案集结. 统计调整方法因其具有领域独立和应用简便的优点,广受青睐. 但其调整精确度不高,且不能对具有不确定甚至缺失信息的方案进行调整. 后来,在案例调整中引入基于机器学习的智能调整,该类方法主要通过归纳学习获取问题与方案之间的关系,并将此关系运用到目标案例从而生成解决方案. 常用的智能方法有神经网络[11]、遗传算法[2]、支持向量机[12]、决策树[13]等. 该类方法虽然能提高调整精度,但需要足够的数据量进行学习,而且需要花费大量时间. 然而,相同类型的突发事件的数量有限,提供的案例数很难超过1 000,所以基于统计方法的案例调整更适合应急案例调整.

综上所述,加权平均的案例调整方法比较适合突发事件,然而,突发事件具有不确定性,存在不确定信息,目前未见对不确定信息的统计调整方法的相关研究. 为此,本文在当前案例调整研究的基础上,从线性和非线性的角度确定相似历史案例,并引入证据推理,对具有不确定信息的应急方案进行集结,不仅可以提高案例调整的精度,而且弥补了已有调整方法无法处理不确定信息的不足.

1 问题描述

下文将依据上述给定的问题属性信息(CP)、方案属性信息(CS)、实施效果属性信息(CR)以及问题属性权重向量(wP),运用可行的应急案例调整方法生成目标案例C0的方案.

2 应急案例调整方法

2.1 计算综合相似度

为提高相似度值的效用,采用欧氏距离、高斯距离[14]以及FAN等[1]提出的相似度计算方法计算综合相似度.

(1) 欧氏距离的相似度计算公式:

(1)

(2)

(2)高斯距离的相似度计算公式:

(3)

其中,g0jl表示高斯距离;σl表示误差偏离度程度,σl=σ×(max{xjl}-min{xjl}),σ∈[0,1].

(4)

(3) FAN的相似度计算公式:

(5)

(6)

考虑到3种相似度方法同等重要,采用相同的权重通过线性加权法进行集结,得到综合相似度值:

Sim(C0,Cj)=

(7)

2.2 计算案例关联度

计算关联度值是为了得到案例的问题与方案之间的关系. 灰色关联分析法是根据因素之间发展趋势的相似程度,即“灰色关联度”来衡量因素之间关联程度的一种方法. 该方法对样本数量没有要求,也不要求序列数据必须符合正态分布,且不会产生与定性分析相悖的结论,因此,本文采用灰色关联分析法[15].

首先,对问题属性和方案属性进行标准化,处理计算公式为

(8)

(9)

其中,ρ∈(0,1)为分辨系数,ρ越小,关联系数间差异越大,区分能力越强. 通常情况下,ρ=0.5.

(10)

(11)

2.3 计算历史案例中方案实施效果的效用值

为了更好地辅助将来做出合理的应急决策,对突发事件的应急方案进行评估.依据实际情况,实施效果评价的属性值rjs通常可分为数值型和文本型2种[16]. 例如,评价属性“应急救援总体效果”一般为语言变量,评价属性“伤亡人数降低率”和“财产损失降低率”一般为数值型. 下面给出历史案例中方案实施效果的效用值计算过程.

首先,对实施效果的评价属性rjs进行规范化处理. 若属性值rjs为数值型,则rjs规范化公式为

(12)若属性值rjs为语言变量,设语言变量集是有序的,记为T={T1(很好),T2(好),T3(一般),T4(差),T5(很差)},相应地,集合T的下标为{1,2,3,4,5},其中p表示语言变量Tp的下标,则rjs规范化公式为

(13)

(14)

2.4 确定相似历史案例集及案例权重

(15)

进一步,决策者根据相似度、关联度和实施效果的情况设置相似案例集的案例数q,0

在此基础上,计算历史案例的权重wj:

2.5 调整应急案例

证据推理(evidence reasoning, ER)能很好地处理无知和缺失问题,基于此,本文采用WANG等[17]提出的区间解析证据推理方法进行应急案例的集结.

然后,根据设置的方案属性评价等级,将历史案例的方案属性转换为置信度评价等级形式.

(17)

(18)

(19)

(20)

(21)

(22)

(23)

其中,In-1,n+In,n+1+In+1,n+2=1,In-1,n,In,n+1,In+1,n+2=0或1.

若yjf为缺失值,将其表示为{(H,1)},其中H表示无知评价等级.

在此基础上,将方案属性的置信度形式转换为基本概率分布函数(BPA),转换公式为

(24)

(25)

(26)

最后,通过证据推理的解析算法[17],将历史案例的方案属性进行集结,并用期望效用形式表示,集结模型为

(27-1)

(27-2)

(27-3)

(27-5)

(27-6)

(27-7)

(27-8)

(27-9)

(27-10)

(28)

3 算例分析

表1 历史案例信息

表2 案例相似度、灰色关联度及其实施效果信息

(续表2)

然后,依据式(15)计算排名,并设置相似度案例数目q=10,得到排名前10的案例集为(C2,C15,C16,C17,C19,C20,C21,C26,C27,C28).

进一步,设置α=0.7,λ=0.2,γ=0.1,依据式(16)计算10个相似案例集的权重w=(0.106 0,0.102 1,0.103 8,0.097 4,0.108 2,0.095 9,0.096 1,0.097 7,0.100 3,0.092 5).

最后,依据式(17)~(28),利用证据推理对相似历史案例集的方案进行集结,得到的结果为[68.026 1, 73.810 1]. 考虑实际情况,对集结的结果取整,得到方案的结果为[69,74].

4 性能分析

(29)

4.1 不同集结权重的分析

在计算10个相似案例集的案例权重前需要定义α,λ,γ的值. 为了简化其最优化过程,选取5个不同的(α,λ,γ)值:(0.8,0.1,0.1),(0.7,0.2,0.1),(0.6,0.2,0.2),(0.6,0.1,0.3)和(0.5,0.2,0.3), 通过本文方法计算调整结果,得到的精确度如图1所示. 若将C29作为目标案例,取相同的(α,λ,γ)值,得到的精确度如图2所示. 由图1和2可知,当(α,λ,γ)的值为(0.7,0.2,0.1)时,案例的调整精确度最高.

图1 C30在不同(α,λ,γ)时的精确度Fig.1 The accuracy of C30 with the different (α,λ,γ)

图2 C29在不同(α,λ,γ)时的精确度Fig.2 The accuracy of C29 with the different (α,λ,γ)

4.2 调整精确度分析

经典案例的调整方法有:基于逆距离加权平均法 (inverse distance weighted mean,IDWM)[18]和基于相似度倒数法(reciprocal of similarity, RS)[19]. 近来,HU等[10]提出了一种基于灰色关联分析的案例调整方法(grey relational analysis, GRA).为了说明本文方法的有效性,将其与GRA等方法进行了比较,得到4种方法在10个案例上的精确度,如表3所示,并对4种方法的调整精确度进行了排名,见图3.

表3 4种方法在10个案例上的调整精确度

由表3知,本方法在案例(C21,C23,C24,C26,C27,C28,C30)上的调整精确度高于IDWM和RS,只有在案例C22上比IDWM低0.003 5,在案例C25上比IDWM低0.016 4,比RS低0.007 4,在案例C29上比RS低0.010 2. 本方法在案例(C21,C24,C25,C26,C29,C30)上的调整精确度高于GRA,在案例C22上比GRA低0.013 5,在案例C23上比GRA低0.003 6,在案例C27上比GRA低0.004 8,在案例C28上比GRA低0.003 8. 本文方法在平均案例调整精确度上较IDWM、RS和GRA分别提高了0.4%,1.0%和1.7%.在最大案例调整精确度上较IDWM和RS分别提高了0.6%和0.8%. 在最小案例调整精确度上较IDWM降低了0.4%,较RS提高了0.3%.

图3 4种方法在10个案例上的调整精确度排名Fig.3 Ranking of adjusting accuracy of ten casesusing four methods

由图3可知,本方法在案例(C21,C24,C26,C30)上的精确度排名第1,虽然GRA方法亦有4个案例的精确度排名第1,但其他案例的排名多为第4,而本文方法在案例(C23,C27,C28,C29)上的排名为第2. IDWM和RS方法的排名几乎都为第2~4名.

综上所述,本文提出的考虑多角度效用的应急案例调整方法能够调高预测方法的精确度.

5 结 论

案例调整是案例推理的重要步骤,目前尚缺乏系统研究,特别是在突发事件情形下,研究更显得不足. 本文提出了考虑多角度效用的应急案例调整方法,在确定案例权重时,从综合相似度、灰色关联度和实施效果3个角度生成一个集结的权重值;对历史案例采用证据推理进行集结,解决了突发事件方案中存在不确定甚至数据缺失的问题. 最后,用算例说明了方法的可行性和有效性.

[1] FAN Z, LI Y, WANG X, et al. Hybrid similarity measure for case retrieval in CBR and its application to emergency response towards gas explosion[J]. Expert Systems with Applications,2014,41(5):2526-2534.

[2] LIAO Z, MAO X, HANNAM P M, et al. Adaptation methodology of CBR for environmental emergency preparedness system based on an improved genetic algorithm[J]. Expert Systems With Applications,2012,39(8):7029-7040.

[3] FAN Z, LI Y, ZHANG Y, et al. Generating project risk response strategies based on CBR: A case study[J]. Expert Systems with Applications,2015,42(6):2870-2883.

[4] ZHANG B, LI X, WANG S, et al. A novel case adaptation method based on an improved integrated genetic algorithm for power grid wind disaster emergencies[J]. Expert Systems with Applications,2015,42(21):7812-7824.

[5] SHEPPERD M, SCHOFIELD C. Estimating software project effort using analogies[J]. IEEE Transactions on Software Engineering,1997, 23(11):736-743.

[6] ANGELIS L, STAMELOS I. A simulation tool for efficient analogy based cost estimation[J]. Empirical Software Engineering,2000,5(1):35-68.

[7] KWONG C K, SMITH G F, LAU W S, et al. Application of case based reasoning injection molding[J]. Journal of Materials Processing Technology,1997,63(1):463-467.

[8] JI S, PARK M, LEE H, et al. Case adaptation method of case-based reasoning for construction cost estimation in Korea[J]. Journal of Construction Engineering and Management,2012,138(1):43-52.

[9] QI J, HU J, PENG Y, et al. Incorporating adaptability-related knowledge into support vector machine for case-based design adaptation[J]. Engineering Applications of Artificial Intelligence,2015,37:170-180.

[10] HU J, QI J, PENG Y, et al. New CBR adaptation method combining with problem-solution relational analysis for mechanical design[J]. Computers in Industry,2015,66:41-51.

[11] BUTDEE S. Adaptive aluminum extrusion die design using case-based reasoning and artificial neural networks[J].Advanced Materials Research,2012,383:6747-6754.

[12] QI J, HU J, PENG Y, et al. A new adaptation method based on adaptability underk-nearest neighbors for case adaptation in case-Based design[J]. Expert Systems with Applications,2012,39(7):6485-6502.

[13] XIE X, LIN L, ZHONG S, et al. Handling missing values and unmatched features in a CBR system for hydro-generator design[J]. Computer-Aided Design,2013,45(6):963-976.

[14] LI H, SUN J. Gaussian case-based reasoning for business failure prediction with empirical data in China[J]. Information Sciences,2009,179(1):89-108.

[15] 邓聚龙.灰色控制系统[J].华中工学院学报,1982,10(3):9-18. DENG J L. Grey control system[J]. The Journal of Huazhong University of Science and Technology,1982,10(3):9-18.

[16] 李永海,樊治平,李铭洋.解决广义不确定型决策问题的案例决策方法[J].系统工程学报,2014,29(1):21-29. LI Y H, FAN Z P, LI M Y. Case-based decision analysis method for general uncertain decision making problem[J]. Journal of Systems Engineering,2014,29(1):21-29.

[17] WANG Y M, YANG J B, XU D L, et al. The evidential reasoning approach for multiple attribute decision analysis using interval belief degree[J]. European Journal of Operational Research,2006,175(1):35-66.

[18] LI S, HO H. Predicting financial activity with evolutionary fuzzy case-Based reasoning[J]. Expert Systems with Applications,2009,36(1):411-422.

[19] YU W, LIU Y. Hybridization of CBR and numeric soft computing techniques for mining of scarce construction databases[J]. Automation in Construction,2006,15(1):33-46.

Emergency alternative adaptation method with considering multi-angle utility.

ZHANG Kai1, WANG Yingming2

(1.DepartmentofInformationEngineering,FujianChuanzhengCommunicationsCollege,Fuzhou350007,China; 2.DecisionSciencesInstitute,FuzhouUniversity,Fuzhou350116,China)

To improve the pertinence of the emergency plan, a method for plan adaptation based on those of similar emergency cases from multiple views is proposed. The comprehensive similarity between the current case and a candidate is calculated by three similarity computation methods while the case correlation degree is evaluated by the grey correlation method. Then, the similar case set and the associated weights are determined according to the comprehensive similarity, grey correlation degree and the case implementation effect of each candidate. Finally, the evidence reasoning is adopted to integrate the emergency plans of these similar cases to get the adaptive plan. A case is given to illustrate the feasibility and validity of the proposed method.

emergency; case adaptation; evidence reasoning; hybrid weight

2016-10-16

国家杰出青年科学基金资助(70925004);福建省交通运输厅科技发展项目(201319).

张恺(1979-),ORCID:http://orcid.org/0000-0001-8755-3326,男, 硕士,副教授, 主要从事智能决策技术、案例推理研究.

*通信作者,ORCID:http://orcid.org/0000-0002-5229-0914,E-mail:msymwang@hotmail.com.

10.3785/j.issn.1008-9497.2017.03.012

TP 181

A

1008-9497(2017)03-314-08

猜你喜欢

精确度关联度权重
基于熵值法与灰色关联度分析法的羽毛球技战术综合评价分析
基于熵权法改进的TOPSIS法和灰色关联度分析的压榨脱水过程优化研究
权重望寡:如何化解低地位领导的补偿性辱虐管理行为?*
权重常思“浮名轻”
“硬核”定位系统入驻兖矿集团,精确度以厘米计算
中国制造业产业关联度分析
中国制造业产业关联度分析
为党督政勤履职 代民行权重担当
权重涨个股跌 持有白马蓝筹
放缩法在递推数列中的再探究