APP下载

降尘10Be浓度对黄土10Be示踪地磁场变化研究的影响

2017-05-10鲜锋,孔祥辉,姜峻

地球环境学报 2017年2期
关键词:磁化率源区降尘

降尘10Be浓度对黄土10Be示踪地磁场变化研究的影响

鲜 锋1,2,孔祥辉1,2, 姜 峻3,赵国庆1,2,武振坤1,2

1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061

2. 陕西省加速器质谱技术及应用重点实验室,西安 710061

3. 中国科学院水利部水土保持研究所,杨凌 712100

运用我国黄土地层中的10Be记录来示踪地磁场漂移事件和重建相对强度变化历史在最近几年取得了显著进展。开展上述研究的关键点之一在于如何对黄土10Be记录中包含的源区降尘10Be浓度等信号的相对贡献进行合理估算。本文参考最新的现代粉尘10Be浓度观测数据,设计了3种改变降尘10Be浓度的情景分别建立了130 ka以来黄土10Be记录的地磁场漂移事件时间序列。综合对比表明,3种情景下的重建结果并无差异,说明源区降尘10Be浓度幅值变化不会对10Be示踪地磁场变化的结果产生显著影响。同时分离的130 ka以来受地磁场变化影响的10Be记录可与PISO-1500等全球典型地磁场强度曲线良好对比,并完整地记录了蒙诺湖(Mono Lake)、拉尚(Laschamp)、挪威海-格陵兰(Norweigian-Greenland sea event)和布莱克(Blake)等主要地磁场漂移事件,揭示了黄土10Be重建的地磁场变化曲线的全球尺度意义并印证了中国黄土在千年尺度的连续性问题。

降尘10Be浓度;地磁场漂移事件;全球尺度;连续性

我国北方风成黄土-古土壤序列是研究亚洲季风气候演化和地磁场变化的良好载体(An et al,1990;Zhu et al,2007;Liu et al,2015)。与冰芯和海洋沉积物类似,黄土-古土壤序列中同样保存有较高浓度的大气成因宇宙成因核素10Be记录(Shen et al,1992;Beer et al,1993;Zhou et al,2007a) 。因10Be半衰期较长(1.39 Ma) (Korschinek et al,2010) ,且在黄土中具有稳定的地球化学特征(顾兆炎等,2000;胡苗等, 2013),因此可用于不同时间尺度地球环境过程示踪特别是重建地球磁场相对强度变化研究(周卫健等,2010;Zhou et al,2014)。这一工作的理论基础在于因地磁场对入射进入大气圈的宇宙射线通量的屏蔽作用,决定了10Be等核素的产率与地磁场强度变化存在显著反相关关系(Masarik and Beer,1999;Frank,2000),根据沉积物10Be浓度的变化特征,建立数理模型提取相应的10Be产率信息,便可利用上述关系来恢复地磁场相对强度变化历史(Christl et al,2010;周卫健等,2010)。与冰芯和海洋沉积物不同,黄土是典型的风成沉积物,因此黄土地层中的10Be既包含有来自粉尘源区的降尘背景10Be信号又包含有在就地大气圈上空新生成、受地磁场强度变化调制并主要通过降水沉降到地表的10Be信号(Shen et al,1992; Gu et al,1996;Zhou et al,2007a)。由于黄土沉积速率或粉尘通量的变化以及季风降水不均一性等因素的影响,导致黄土10Be中包含的地磁场变化信息通常被季风降水和粉尘等气候信号所掩盖(Zhou et al,2007a;Xian et al,2008),因此在利用黄土-古土壤序列10Be记录进行地磁场变化示踪研究时,如何对其包含的源区降尘背景10Be浓度等信号的分布水平进行合理估算至关重要。

为了有效区分黄土10Be记录中包含的不同信号的相对贡献,Zhou et al (2007a)曾指出由于黄土经历了多源混合的搬运和沉积过程,使得来自粉尘源区的降尘10Be组分也经历了相对均匀的混合过程,其10Be浓度似应具有“准均匀分布”的特点。同时Zhou et al(2007a)根据Evans and Heller(2001)建立的130 ka 以来黄土高原不同区域黄土-古土壤样品剩磁矫顽力与磁化率统计分布图,提取了与高矫顽力对应的源区背景磁化率信号,并结合黄土10Be浓度与磁化率曲线高度相似的特点建立回归方程,估算了源区降尘背景10Be浓度的平均水平约为1.36/(108atoms · g-1),以此为基础首次利用黄土10Be示踪最近80 ka 以来全球主要地磁场漂移事件并重建了地磁场相对强度变化曲线,结果可与NAPIS-75(Laj et al,2002)和SINT 800(Guyodo and Valet,1999) 等全球典型地磁场强度变化记录良好对比。随后Xian et al(2008)通过建立冰期极端干冷时段粉尘通量与10Be浓度和磁化率的统计模型,进一步揭示源区降尘10Be浓度和降尘磁化率具有“准恒定分布”的特征。最近几年通过连续采集我国北方现代降尘进行10Be浓度测试分析发现,现代降尘10Be浓度至少在季节尺度上基本不变,一定程度上支持了黄土中降尘10Be浓度组分的“准恒定分布”特征,只是现代观测的平均值1.21/(108atoms · g-1)与早期估算的1.36/(108atoms · g-1)背景浓度存在一定差异(Xian et al,2012)。假如现代降尘能够作为地质历史时期黄土沉积时粉尘输入的参考模型,那么引入新的降尘10Be浓度观测数据并以此逐步改变降尘10Be浓度的幅值,是否会影响10Be示踪地磁场变化结果的可靠性就值得进一步探讨。

针对这一问题,本文尝试利用Zhou et al(2010)报导的洛川黄土剖面130 ka 以来连续的10Be浓度及气候代用指标记录,引入新的现代降尘10Be浓度观测数据(Xian et al,2012)建立不同的情景模型来重新进行黄土10Be信号的逐步分解,提取130 ka以来主要受地磁场变化影响的10Be浓度组分,并分别与过去应用相似分解方法获得的重建序列和全球记录进行对比分析,以期能够明确降尘10Be浓度变化是否对黄土10Be示踪地磁场变化结果的可靠性产生显著影响这一问题,并为未来继续深入开展黄土10Be示踪地磁场变化研究工作提供思路。

1 研究剖面及10Be等代用指标简述

本文选取Zhou et al(2010)报道的洛川剖面(35°45′N,109°25′E)作为检验剖面。如文中所述,该剖面采样总厚度1490 cm,包括全新世黄土(L0)、全新世古土壤(S0)、马兰黄土(L1)和末次间冰期古土壤(S1)等地层。剖面10Be测试分析平均按4 cm间距取样,累计获得10Be浓度数据306个,剖面磁化率测试按1 cm间距取样,获得数据1490个。为建立该剖面可靠年代框架,除在该剖面不同关键层位分别取样进行了AMS14C和光释光测年外,结合粒度年代模型(Porter and An,1995)及磁化率等代用指标与葫芦洞-三宝洞石笋氧同位素曲线(Wang et al,2001,2008)的对比建立了剖面年代标尺,实验测试分析及年代框架建立的细节描述请见文献(Zhou et al,2010)。如文献所示,洛川剖面130 ka 以来的10Be浓度与磁化率曲线的变化非常相似(相关系数r为0.94),暗示了两者经历了相似的受气候因素影响的过程,这也正是能够选择磁化率作为参考指标,建立统计模型逐渐分离黄土10Be中包含的不同信号的理论基础(Zhou et al,2007a;Xian et al,2008)。

2 具体分离参数的选择

与文献(Zhou et al,2007a;Xian et al,2008)类似,为便于讨论和实际计算的需要,本文同样将黄土总的10Be浓度表示为Be(M),源区降尘10Be浓度表示为Be(D),与季风降水相关的10Be浓度表示为Be(P),地磁场变化影响的10Be浓度变化量表示为Be(GM)。与之相类似,将黄土总的磁化率表示为SUS(M),而源区降尘磁化率和成壤磁化率组分分别表示为SUS(D)和SUS(P)。

在分离黄土10Be中的不同信号时,首先需要确定与降尘10Be浓度变化相关的源区降尘磁化率SUS(D)的分布水平。Zhou et al(2007a)曾根据Evans and Heller(2001)统计的黄土-古土壤剩磁矫顽力与磁化率的分布图确定了SUS(D)= 25/(10-8m3· kg-1),这与王晓勇(2006) 对现代塔克拉马干沙漠沿纬度断面(37° — 42° N)样品磁化率测试的平均值=24.1/(10-8m3· kg-1)非常接近,因此取SUS(D)= 25/(10-8m3· kg-1)代表源区降尘磁化率的背景值具有合理性。 在实际分离黄土10Be不同组分的计算中分别假设了以下三种情景,如表1所示。

表1 3种改变降尘10Be浓度幅值的情景参数选择方案Tab.1 Three models for gradually changing the amplitude of dust10Be concentrations

3 各情景的计算结果与对比

3.1 情景1

情景1中的分离计算与Zhou et al(2007a) 的计算过程类似,不同之处在于将时间跨度扩展至末次间冰期时段(130 ka)。本文仍采用该研究中确定的尘降磁化率SUS(D)= 25 /(10-8m3· kg-1)和源区尘降10Be浓度Be(D)= 136 /(106atoms ·g-1)的数值,逐步进行了磁化率的分解(图1a)、分离黄土10Be浓度的不同信号分解(图1b)和建立降水10Be浓度与成壤磁化率的回归关系(图1c),并将仅扣除降尘信号的10Be浓度(Be(P)+ Be(GM))与回归计算的纯降水10Be浓度(Be(P))进行了对比(图1d)。最后将两者相减,便可得到黄土10Be浓度中主要受地磁场变化影响的10Be变化信号,如Zhou et al(2007a)指出的那样,这部分10Be信号可作为示踪130 ka 以来全球地磁场漂移事件及重建相对地磁场强度变化的代用指标。

3.2 情景2

情景2中涉及的分离计算与情景1类似,不同之处在于是以最新实测的现代粉尘10Be浓度(Xian et al,2012)作为参考指标,分别取降尘磁化率SUS(D)= 25/(10-8m3· kg-1),源区降尘10Be浓度Be(D)= 121/(106atoms ·g-1)的数值,逐步进行黄土磁化率和10Be浓度的分解、建立降水10Be浓度与成壤磁化率的回归关系等计算,最后同样得到受地磁场变化影响的10Be浓度变化的时间序列。需指出的是,因在情景2的计算中改变了降尘10Be浓度水平但保持降尘磁化率SUS(D)数值不变,因此获得的降水10Be浓度与成壤磁化率的回归方程与图1c所示的情景1中的表达式相比,其回归方程变化为:y = 1.2431x + 15.218(r = 0.94,n = 306,P < 0.0001)。

图1 130 ka 以来洛川剖面磁化率、10Be浓度的逐步分解及综合对比Fig.1 The separation calculations of10Be concentration and magnetic susceptibility signals from Luochuan loess section over the last 130 ka

3.3 情景3

与情景1和情景2的计算相比,在假设源区降尘磁化率和降尘10Be浓度具有均匀分布特征的前提下,设计了情景3作为一种最理想的极端状态:此时假定源区尘降磁化率SUS(D)和降尘10Be浓度Be(D)分别取极端的恒定值0。在实际分离计算过程中意味着降水10Be浓度Be(P)与成壤磁化率SUS(P)的回归关系将被总的10Be浓度Be(M)与总的磁化率SUS(M)的回归分析所替代,因此这一理想极端状态下所建立的统计分析模型与Zhou et al(2010,2014) 应用“平均值概念”(Zhou et al,2007b)建立分离思路是一致的,本质上就是将黄土总的磁化率SUS(M)作为降水和降尘因素的代用指标,建立10Be浓度与磁化率的回归关系消除气候因素对黄土10Be浓度变化的影响,从而得到主要受地磁场强度变化影响的10Be信号。最后可将在上述3种不同情景下的计算结果进行对比,来探讨降尘10Be浓度幅值的变化是否会对10Be示踪地磁场变化结果产生显著影响这一问题。

4 结果与讨论

图2所示了基于三种不同情景分离计算得到的130 ka 以来主要受地磁场强度变化影响的10Be浓度变化序列。通过对比发现三条曲线无论在变化趋势以及峰谷之间的绝对幅度值几乎完全一致,而计算的三条曲线之间的相关系数r可达0.99,说明即便改变了降尘10Be浓度变化的幅值,但在假设降尘10Be浓度具有均匀分布的前提下,利用不同情景模型最后分离得到的主要受地磁场强度变化影响的10Be浓度变化量Be(GM)并无明显差异,三条曲线客观反映了最近130 ka以来主要由地磁场强度变化调制的10Be浓度变化量,这一信号可用于示踪全球性地磁场漂移事件发生以及重建同时段地磁场相对强度变化历史。

图2 不同情景下分离的130 ka 以来受地磁场变化影响的10Be浓度序列及对比Fig.2 The comparison of geomagnetic modulated10Be signals from loess using different models over the last 130 ka

进一步分析图2a,图2b和图2c的10Be浓度变化记录不难发现,130 ka 以来存在6次(数字1—6表示)显著超过平均水平的10Be浓度异常变化。基于已建立的剖面年代框架,这些10Be浓度异常变化可与国际上已经报导的诸多地磁场漂移事件的发生良好地对应。其中事件1可对应于12 ka发生的哥德堡事件(Gothenburg Flip) (Morner and Lanser,1974),事件2和3可分别对应于32 ka发生的蒙诺湖事件(Mono Lake)( Nowaczyk and Knies,2000;Benson et al,2003)和42 ka发生的拉尚事件(Laschamp) (Guillou et al,2004),事件5和6对应于挪威海-格陵兰事件(Norweigian Greenland sea event) (Nowaczyk et al,1994) 和布莱克事件(Blake) (Smith and Foster,1969) 。除上述已有报导的漂移事件之外,分离的黄土10Be记录揭示在60 ka 左右同样存在10Be浓度的异常高峰,这一异常在McHargue et al(2000)分析的北大西洋海洋沉积物10Be浓度记录中也有清晰记录,尽管这一变化并不像上述提及的几个漂移事件那样得到确切命名,但也应视为一次比较显著的地磁场漂移变化。中国黄土能够完整地记录130 ka 以来几乎所有的全球性地磁场漂移事件的事实进一步证实了前人指出的黄土在千年尺度沉积连续的论点(Zhu et al,2007;Liu et al,2015)。

为了检验上述分离的受地磁场变化影响的10Be记录的全球尺度意义,选取情景2的分离结果(图3a)为代表,分别与Yamazaki and Kanamatsu(2007)建立的北太平洋钻孔岩芯地磁场相对强度记录(图3b)和Channell et al(2009) 最新综合的全球性地磁场强度曲线(图3c)进行了综合对比。可以清楚地看到,除因不同研究所采用年代标尺的不同所引起的部分错位外,基于不同情景分离的最近130 ka10Be浓度变化记录的地磁场变化曲线无论在趋势、还是细节上与上述对比的地磁场相对强度记录都具有高度相似的变化特征。以最近130 ka时段研究程度相对较高的拉尚(Laschamp)和布莱克(Blake)地磁场漂移事件为例(阴影所示),此时因地磁场漂移事件发生时常伴随着地磁场强度的明显减弱,从而对入射进入大气圈的宇宙射线通量的屏蔽作用显著减弱,使得大气中10Be的产率会异常增加并在黄土等沉积物中的10Be浓度记录中有清晰的反映,进一步印证了10Be产率与地磁场强度变化之间存在显著反相关关系(Masarik and Beer,1999; Frank,2000)。需指出的是,由于Channell et al(2009) 在综合全球海洋沉积物的剩磁记录时对单个钻孔资料进行了平滑等预处理,侧重于获得较长尺度全球平均的地磁场强度变化记录,因此从黄土10Be记录提取的最近130 ka的地磁场变化曲线在某些细节上与其存在差异,而与北太平洋的钻孔资料结果能够更好地对比。上述综合对比表明,利用黄土10Be指标重建的最近130 ka的地磁场漂移事件变化序列具有全球尺度的意义。

5 结语

为明确降尘10Be浓度变化是否会对运用黄土10Be重建的地磁场漂移事件记录产生显著影响这一问题,本文参考新的现代粉尘10Be浓度观测数据,设计了3种改变降尘10Be浓度幅值的情景分别重建了130 ka以来黄土10Be记录的地磁场漂移事件时间序列。分离计算表明3种情景下的重建结果并无显著差异,说明源区降尘10Be浓度变化不会对10Be示踪的地磁场变化记录产生显著影响,同时分离的130 ka 以来受地磁场变化影响的10Be记录可与全球典型地磁场强度变化曲线良好地对比,并完整地记录了蒙诺湖(Mono Lake)、拉尚(Laschamp)、挪威海-格陵兰(Norweigian Greenland sea event)和布莱克(Blake)等主要地磁场漂移事件,揭示了黄土10Be示踪地磁场变化记录的全球尺度意义并证实了黄土至少在千年尺度的连续性问题。

同时也应注意到,目前本文工作只是在设计了3种最理想情景、并且选取了黄土高原中东部最典型的剖面为检验对象获得的初步结果。如果考虑不同时段黄土粉尘物源可能发生变化等问题,目前指出的降尘10Be浓度的“准恒定分布”特征可能还需要从源区到沉降区系统采集表土或现代降尘样品,进行测试对比研究。此外由于10Be沉降过程与降水关系密切,因此降水空间变化可能会对10Be环境示踪的可靠性产生潜在影响。因此若将10Be示踪扩展至降水偏少的黄土高原西部以及主要受西风环流影响的干旱区,尤其是当磁化率作为降水示踪指标已存争议时,还需进一步研究如何选取更为明确的代用指标,以构建10Be示踪地磁场变化的模型。

图3 130 ka 以来黄土10Be记录的地磁场变化曲线与全球记录的综合对比Fig.3 The 130 ka geomagnetic excursion record from Chinese loess10Be and its comparison with that of the marine sediments

致谢:感谢周卫健院士和强小科正高级工程师对本工作的指导。部分工作得到了美国亚利桑那大学Warren Beck 博士、奥地利维也纳大学Alfred Priller 博士和Walter Kutschera 教授的帮助,在此一并表示感谢。

顾兆炎, Lal D, 郭正堂, 等. 2000. 黄土高原黄土和红粘土10Be地球化学特征[J]. 第四纪研究, 20(5): 409 – 422. [Gu Z Y, Lal D, Guo Z T, et al. 2000. Geochemistry of cosmogenic10Be in loess-paleosol sequences and red clay in the Loess Plateau [J]. Quaternary Sciences, 20(5): 409 – 422.]

胡 苗, 鲜 锋, 武振坤, 等. 2013. 宇宙成因核素10Be的地球化学行为及其在黄土示踪研究中的应用[J]. 地球环境学报, 4(1): 1197 – 1207. [Hu M, Xian F, Wu Z K, et al. 2013. Studies on the geochemistry behaviors of cosmogenic nuclide10Be and its applications in loess tracing [J]. Journal of Earth Environment, 4(1): 1197 – 1207.]

王晓勇. 2006. 中国典型气候带表土中的磁性矿物及其环境意义[D]. 北京:中国科学院研究生院. [Wang X Y. 2006. Studies on the characteristics of magnetic minerals in surface soil and their environmental signifi cance in the Chinese typical climatic belt [D]. Beijing: University of Chinese Academy of Sciences.]

周卫健, 孔祥辉, 鲜 锋, 等. 2010. 中国黄土10Be重建古地磁场变化史的初步研究[J]. 地球环境学报, 1(1): 20 – 27. [Zhou W J, Kong X H, Xian F, et al. 2010. Preliminary study on the reconstruction of the paleogeomagnetic intensities by10Be in Chinese loess [J]. Journal of Earth Environment, 1(1): 20 – 27.]

An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China [J]. Quaternary International, 7/8: 91 – 95.

Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese loess[J]. Geophysical Research Letters, 20(1): 57 – 60.

Benson L, Liddicoat J, Smoot J, et al. 2003. Age of the Mono Lake excursion and associated tephra [J]. Quaternary Science Reviews, 22(2 / 3 / 4): 135 – 140.

Channell J E T, Xuan C, Hodell D A. 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500) [J]. Earth and Planetary Science Letters, 283: 14 – 23.

Christl M, Lippold J, Steinhilber F, et al. 2010. Reconstruction of global10Be production over the past 250 ka from highly accumulating Atlantic drift sediments [J]. Quaternary Science Reviews, 29(19 / 20): 2663 – 2672.

Evans M E, Heller F. 2001. Magnetism of loess/palaeosol sequences: recent developments [J]. Earth-Science Reviews, 54(1 / 2 / 3): 129 – 144.

Frank M. 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200,000 years[J]. Philosophical Transactions of The Royal Society A-Mathematical Physical And Engineering Sciences, 358 (1768): 1089 – 1107.

Gu Z Y, Lal D, Liu T S, et al. 1996. Five million year10Be record in Chinese loess and red-clay: climate and weathering relationships [J]. Earth and Planetary Science Letters, 144(1 / 2): 273 – 287.

Guillou H, Singer B S, Laj C, et al. 2004. On the age of the Laschamp geomagnetic excursion [J]. Earth and Planetary Science Letters, 227(3/ 4): 331 – 343.

Guyodo Y, Valet J P. 1999. Global changes in intensity of the Earth’s magnetic fi eld during the past 800 kyr [J]. Nature, 399(6733): 249 – 252.

Korschinek G, Bergmaier A, Faestermann T, et al. 2010. A new value for the half-life of10Be by heavy-ion elastic recoil detection and liquid scintillation counting [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268: 187 – 191.

Laj C, Kissel C, Mazaud A, et al. 2002. Geomagnetic field intensity, North Atlantic deep water circulation and atmospheric Δ14C during the last 50 kyr [J]. Earth and Planetary Science Letters, 200(1 / 2): 177 – 190.

Liu Q S, Jin C S, Hu P X, et al. 2015. Magnetostratigraphy of Chinese loess-paleosol sequences [J]. Earth-Science Reviews, 150: 139 – 167.

Masarik J, Beer J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere [J]. Journal of Geophysical Research, 104(D10): 12099 – 12112.

McHargue L R, Donahue D, Damon P E, et al. 2000. Geomagnetic modulation of the late Pleistocene cosmicray flux as determined by10Be from Blake Outer Ridge marine sediments [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1 / 2 / 3 / 4): 555 – 561.

Morner N A, Lanser J P. 1974. Gothenburg magnetic fl ip [J]. Nature, 251: 408 – 409.

Nowaczyk N R, Frederichs T W, Eisenhauer A, et al. 1994. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean-evidence for 4 geomagnetic polarity events within the last 170 ka of the Brunhes Chron [J]. Geophysical Journal International, 117(2): 453 – 471.

Nowaczyk N R, Knies J. 2000. Magnetostratigraphic results from the eastern Arctic Ocean: AMS14C ages and relative palaeointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions [J]. Geophysical Journal International, 140(1): 185 – 197.

Porter S C, An Z S. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation [J]. Nature, 375(6529): 305 – 308.

Shen C D, Beer J, Liu T S, et al. 1992.10Be in Chinese loess [J]. Earth and Planetary Science Letters, 109 (1/2): 169 – 177. Smith J D, Foster J H. 1969. Geomagnetic reversal in the Brunhes normal polarity epoch [J]. Science, 163: 565 – 567.

Wang Y J, Cheng H, Edwards R L, et al. 2001. A highresolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294(5550): 2345 – 2348.

Wang Y J, Cheng H, Edwards R L, et al. 2008. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J]. Nature, 451(7182): 1090 – 1093.

Xian F, An Z S, Wu Z K, et al. 2008. A simple model for reconstructing geomagnetic field intensity with10Be production rate and its application in loess studies [J]. Science in China Series D-Earth Sciences, 51(6): 855 – 861. Xian F, Zhou W J, Kong X H, et al. 2012. Preliminary measurement study on10Be concentration of modern falling dust in Northern China [J]. Radiocarbon, 54(1): 37 – 43.

Yamazaki T, Kanamatsu T. 2007. A relative paleointensity record of the geomagnetic field since 1.6 Ma from the North Pacifi c [J]. Earth Planets Space, 59: 785 – 794.

Zhou W J, Beck J W, Kong X H, et al. 2014. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J]. Geology, 42(6): 467 – 470.

Zhou W J, Chen M B, Xian F, et al. 2007b. The mean value concept in mono-linear regression of multi-variables and its application to trace studies in geo-sciences [J]. Science in China Series D-Earth Sciences, 50(12): 1828 – 1834.

Zhou W J, Priller A, Beck J W, et al. 2007a. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of10Be [J]. Radiocarbon, 49(1): 139 – 160.

Zhou W J, Xian F, Beck W J, et al. 2010. Reconstruction of 130-kyr relative geomagnetic intensities from10Be in two Chinese loess sections [J]. Radiocarbon, 52(1): 129 – 147. Zhu R X, Zhang R, Deng C L, et al. 2007. Are Chinese loess deposits essentially continuous? [J]. Geophysical Research Letters, 34, L17306. DOI: 10.1029/2007GL030591.

Infl uence of variation in dust10Be concentration amplitude on the reliability of geomagnetic tracing study from Chinese loess

XIAN Feng1,2, KONG Xianghui1,2, JIANG Jun3, ZHAO Guoqing1,2, WU Zhenkun1,2
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
2. Shaanxi Key Laboratory of Acceleratory Mass Spectrometry Technology and Application, Xi’an 710061, China
3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China

Background, aim, and scope Studies on geomagnetic excursion tracing and relative paleo-intensity reconstruction using Chinese loess10Be proxy have greatly progressed in recent years. In these studies, one of the key points lies in how to reliably estimate the relative contribution from the dust source10Be concentration as well as other10Be concentration fractions contained in loess. To evaluate the possible infl uence of variation in dust10Be concentration amplitude on the reliability of related geomagnetic tracing study, 3 kinds of separation models are designed by gradually changing the dust10Be concentration amplitude as well the dustsource magnetic susceptibility amount, to respectively reconstruct the geomagnetic excursion events series using the Chinese loess10Be record since the 130 ka. Materials and methods The10Be concentration and other climatic proxies such as the magnetic susceptibility are measured from a 1490 cm core of the Luochuan section (35°45′N, 109°25′E) in central Chinese Loess Plateau, which was described in Zhou et al (2010). To present the 3 different separation models, the observation studies on the modern falling dust10Be in Northern China by Xian et al (2012) is also cited to gradually change the dust10Be concentration for calculations. The basic step for the test calculation is to fi rstly separate the dust effects on the10Be and magnetic susceptibility in loess, by subtracting a constant value from the total measured10Be and magnetic susceptibility respectively. Then a linear regression between the dust free10Be concentration and pedogenic susceptibility is developed to separate the Monsoon rainfall effects on loess10Be records, and to derive the residual10Be signals which is dominantly modulated by geomagnetic field intensity. As for the separation model 1 and model 2, the same amount of dust source magnetic susceptibility (SUS(D)) is assumed, and the dust10Be concentration (Be(D)) is the variable to be allowed to change with time. While this feature is totally different in model 3, which the amplitude of SUS(D) and Be(D) are allowed to simultaneously change. All of the aforementioned calculations are based on a “Quasi-constant” distribution assumption of dust source10Be and magnetic susceptibility records. Results The derived geomagnetic excursion events series from the 3 different models show high similarity both in trend and details, with the correlation coefficient r is about 0.99. In addition, the final derived 130 ka geomagnetic excursion sequence using loess10Be is well comparable with that of the globally stacked PISO-1500 relative paleo-intensity curve and the normalized relative paleo-intensity record from Pacifi c sediments, which clearly reveals almost all the well dated geomagnetic excursion events known as the Mono Lake, Laschamp, Norweigian Greenland sea, and the Blake events over the last 130 ka. In addition, the derived 130 ka geomagnetic excursion sequence also records the 2 abnormal changes in10Be concentration at 12 ka and 60 ka, which can be correlate to the Gothenburg fl ip and the 60 ka peak derived from the10Be measurements on sediments in North Atlantic respectively. The loess10Be record clearly shows that the 60 ka peak is well comparable with the Norweigian Greenland sea event, although it is not globally named as a typical excursion change in the last Glacial-Interglacial cycle. Discussion The well comparison of the loess10Be resulting geomagnetic excursion events series with that of the paleo-intensity records from marine sediments also confi rms the signifi cance of global criterion of the geomagnetic tracing studies using Chinese loess10Be records. Considering the short-lived feature (<104 years) of geomagnetic excursion changes, our present study further strongly supports the idea of the continuity of Chinese loess deposition on the millennial scale at least. Conclusions The 130 ka geomagnetic excursion events records from loess10Be using 3 different models are roughly the same, which suggests that the reliability of geomagnetic tracing studies from Chinese loess10Be is roughly independent on the variation in the amplitude of dust10Be concentration. If the10Be resulting record of geomagnetic excursion events in loess is robust, it will provide key time markers to loess chronology and synthesize the terrestrial and marine climatic records. Recommendations and perspectives The present work is the preliminary test based on the most ideal situations of the “Quasi-constant” distribution assumption of dust source10Be and magnetic susceptibility records in Chinese loess. If the possible alternations of loess dust source with different time are considered, this “Quasi-constant” distribution assumption may need to be clarifi ed by the investigations on surface soil along a transect section from the source region to the Loess Plateau. On the other hand, the atmospheric10Be deposition has been proved to be closely associated with local rainfall amount, therefore the rainfall changes are very likely to show potential influence on the reliability of environmental tracing using10Be. Especially, when the10Be tracing studies are extended to the arid region in western China, where the magnetic susceptibility is not a robust precipitation tracer, future study should be fi rstly focused onhow to select the alternative sensitive proxy, to establish the robust separation model for geomagnetic field changes tracing using loess10Be records.

dust10Be concentration; geomagnetic excursion event; global; continuity

XIAN Feng, E-mail: xianf@ieecas.cn

2015-12-08;录用日期:2016-11-14

Received Date: 2015-12-08; Accepted Date: 2016-11-14

国家自然科学基金项目(41203019);中国科学院重点部署项目(KZZD-EW-04-06)

Foundation Item: National Natural Science Foundation of China (41203019); Key Research Program of Chinese Academy of Sciences (KZZD-EW-04-06)

鲜 锋,E-mail: xianf@ieecas.cn

鲜 锋, 孔祥辉, 姜 峻, 等. 2017. 降尘10Be浓度对黄土10Be示踪地磁场变化研究的影响[J]. 地球环境学报, 8(2): 103 – 112.

: Xian F, Kong X H, Jiang J, et al. 2017. Infl uence of variation in dust10Be concentration amplitude on the reliability of geomagnetic tracing study from Chinese loess [J]. Journal of Earth Environment, 8(2): 103 – 112.

猜你喜欢

磁化率源区降尘
受焦化影响的下风向城区臭氧污染特征及潜在源区分析
冬小麦蒸散源区代表性分析
连云港市大气降尘时空分布特征
济南市降尘通量时空分布特征研究
兴安落叶松林通量观测足迹与源区分布
渭河源区径流量变化特征及趋势分析
南京市大气降尘固碳微生物群落多样性研究
基于超拉普拉斯分布的磁化率重建算法
岩(矿)石标本磁化率测定方法试验及认识
盖州市大气降尘特征分析