APP下载

甘肃竺尼山油松树轮宽度气候响应

2017-05-10宋慧明梅若晨赵伯阳PAYOMRATParamate张欣佳

地球环境学报 2017年2期
关键词:树轮年表季风

宋慧明,刘 禹,,梅若晨,,赵伯阳,,PAYOMRAT Paramate,,张欣佳,

1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061

2. 西安交通大学 人居环境与建筑工程学院 环境科学与技术系,西安 710049

3.中国科学院大学,北京 100049

甘肃竺尼山油松树轮宽度气候响应

宋慧明1,刘 禹1,2,梅若晨1,3,赵伯阳1,3,PAYOMRAT Paramate1,3,张欣佳1,3

1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061

2. 西安交通大学 人居环境与建筑工程学院 环境科学与技术系,西安 710049

3.中国科学院大学,北京 100049

甘肃省中部是东亚夏季风活动边缘带,也是我国北方环境敏感带,降水是制约当地农业社会发展的重要因素,因此对该区域过去降水变化开展研究有重要意义。本文在甘肃中部渭源县竺尼山采集油松树轮样本,建立了STD和RES年表。计算表明,RES年表与上年8月到当年7月的年降水总量相关最高(r = 0.59),二者存在比较一致的变化趋势,因此竺尼山RES年表可以代表当地过去降水的变化信息,它与同处于东亚季风边缘带的兴隆山和吐鲁沟的树轮年表(也被用来重建了当地的年降水变化)显著相关。三个地点树轮宽度变化一致,树木径向生长均受控于降水。

甘肃竺尼山;油松;树轮宽度;气候响应

东亚夏季风是影响我国的重要天气系统,在季风弱的年份,季风往往到达不了季风活动边缘地带(胡豪然和钱维宏,2007;Qian et al,2011),无法带来有效降水随之产生干旱,因此季风活动边缘带是反映季风强弱的敏感地带,同时也是干旱多发地带。甘肃省中部是青藏高原、黄土高原及秦岭三个地貌单元的过渡地带,也是东亚夏季风活动的西部边缘地带,季风降水是该地降水的主要来源,降水的多寡严重制约和影响了当地的工农业生产和人民生活。同时,该地区为典型的黄土地貌,植被稀疏,降水量年内分配极不均匀,且降水变率大,既有长期干旱,又有短时暴雨,故干旱和水土流失严重(张汉雄和上官周平,2005),是生态环境恶化的脆弱地带。随着全球变暖不断加剧,当地气候和环境异常也不断发生,为减少灾害带来的损失及应对极端气候事件,非常有必要了解当地降水的变化规律和机制,但过去60 a的气象观测记录限制了对过去降水变化规律的理解和认识。树木年轮具有定年准确、连续性强、分辨率高和样本分布广泛等特点,过去几年里在黄土高原西部开展了部分树轮降水变化研究(刘禹等,2012;Lu et al,2012;Liu et al,2013a,2013b,2013c),为研究该地区降水变化规律提供了重要的代用资料,有效延伸了气象资料时段。继续在该地区开展树轮降水研究,将有助于更全面深入了解黄土高原西部的降水变化在区域分布的异同,并认识季风在不同时间和空间尺度上对该区降水的影响。

1 树轮资料

1.1 采样点概况

树轮采样点位于甘肃省中部渭源县竺尼山(35.14°N,103.94°E,图1),该地具有典型的黄土地貌特征,海拔较低处为农田及山地草原,黄土土层深厚并裸露,植被稀疏;但是在海拔较高处分布着一些石质山地,基岩外露,土层薄且贫瘠,正是因为这些山地的海拔较高,气温随海拔升高而降低,导致蒸发量减小,在一定高度内降水量也随之增加,使这些山地形成了与周边干旱、贫瘠的黄土地貌截然不同地貌景观,森林、灌丛、高山草甸和山地草原发育良好,植被垂直地带性非常明显(张静,2006)。本研究所采样本为生长于海拔较高处的油松纯林,林间郁闭度较高,林间分布有低矮灌丛,土层较薄,树木生境恶劣。选择采集生长于山体北坡,坡度30°,海拔高度范围在2420 — 2470 m,且位于森林边缘地带的健康油松(Pinus tabulaeformis Carr.),以避免林内树木之间的竞争。共采集油松样本25棵,用生长锥在不同方向每树取2棵芯。

图1 采样点地图Fig.1 Map of sampling site

1.2 年表的建立

在实验室,样本经过干燥、固定、打磨等程序之后,利用精度为0.001 mm的Lintab进行宽度测量及交叉定年,利用COFECHA程序对交叉定年结果进行质量控制(Holmes,1983),去除太短及与主年表相关过低的样芯,最终采用20棵树的39棵芯建立年表。年表的总长度为134 a(1881— 2014年),平均敏感度为0.30,表明竺尼山树轮年表包含有较多的气候信号。缺轮率为0.29%,主要集中于1997年和2000年。气象资料显示,这两年降水量很低,应该是造成缺轮的主要原因。利用ARSTAN程序(Cook, 1985),采用传统的直线和负指数函数的方法拟合树木的生长趋势,然后将宽度原始序列除去生长趋势,最终得到标准年表(STD),差值年表(RES)和自回归年表(ARS)。年表有效长度根据SSS > 0.85(Wigley et al,1984)来确定,始于1890年(对应于10个树芯)。下面将对STD和RES进行共同分析,以比较两种年表所代表的气候信息的差异。

2 竺尼山树轮年表对气候的响应

2.1 气象资料的选取

本文选取离采样点比较近的临洮气象站(35.37°N,103.87°E;海拔1886.6 m;1951 — 2014年)的温度与降水资料来进行树轮气候响应分析,临洮站的气象资料(图2)显示,该地年平均气温为7.27℃,平均温度最高的月份为7月(18.60℃),冬季(12、1、2月)3个月份平均温度均低于0℃,年降水量为526.36 mm,降水主要集中在7 — 9月,表现为明显的雨热同季的特征。

图2 临洮站多年温度、降水及附近的PDSI(36.25°N,103.75°E)变化Fig.2 Distribution of monthly mean temperature and precipitation of Lintao meteorological station (1951—2014) and monthly PDSI data (36.25°N, 103.75°E)

Palmer干旱指数(PDSI)是美国气象干旱中最常用的指数,反映的是大气水分供给及地表水分需求之间的关系,该参数综合考虑了前期降水、水分供给及土壤水分需求之间的关系,并通过一系列数学计算获得(Palmer,1965)。PDSI是一个标准化值,范围在-10(干)到10(湿)之间。本文采用Dai et al(2004)利用降水和温度资料计算得到的全球陆地PDSI指数,其分辨率为2.5°×2.5°。采用距离采样点最近的PDSI格点(36.25°N,103.75°E)进行相关分析,分析时段为1951 — 2014年。分析发现该地PDSI数值几乎全为负值(图2),原因是研究区位于我国西北干旱区,年降水量少且蒸发量大,土壤水分常年处于匮缺状态,因此全年的PDSI几乎均为负值。

2.2 竺尼山树轮STD年表和RES年表的气候响应

黄土高原地区树木一般于8月份结束生长(杨建伟等,2004),故选取临洮站上年8月到当年10月的气象资料与年表进行相关计算。相关分析结果(图3)显示,竺尼山树轮STD年表和RES年表对不同气候要素的响应关系是相似的,具体表现为:(1)与上年和当年生长季的月降水总量呈正相关关系,与冬季降水几乎不相关,上个生长季的降水对树木的影响更大一些,RES年表与降水的相关明显高于STD年表;(2)与上年7、9、11月以及当年生长季前期5 — 7月平均温度则为负相关关系,STD年表与温度的相关更显著,在这些月份均超过了95%置信度;(3)两种年表均与PDSI呈正相关关系。竺尼山STD和RES年表与温度、降水和PDSI的相关关系表明,这是典型的半干旱地区的树轮对气候的响应模式:在生长季及其前期,年表与降水正相关,与温度负相关(Liang et al,2007;田沁花等,2009;Cook et al,2010;Fang et al,2010)。在生长季前期及初期(2—7月),竺尼山地区降水较少,高温一方面很容易加速土壤水分蒸发,从而导致土壤缺水,另一方面也加快了树木的蒸腾作用,进一步消耗土壤水分,造成土壤干旱。严重的干旱导致水分胁迫,对树木生长造成严重阻碍,使其生长减缓甚至停止生长。

图3 竺尼山STD(a)和RES(b)年表与气象数据的相关关系Fig.3 The correlations between STD (a) and RES (b) and meteorological data

在将不同月份的气象资料进行组合后,发现与STD年表和RES年表相关最高的均是上年8月到当年7月的降水总量,相关系数分别为0.56和0.59,而与5 — 7月平均温度的相关系数分别为-0.44和-0.35,与5 — 7月PDSI相关系数分别为0.33和0.38。表明STD年表低频特征比较明显,因此与温度有着稍高的相关关系(图4a)。而RES年表主要反映的是树木生长的高频信息,与高频信息比较显著的年降水量有着较高的相关关系(图4b),几乎达到可以重建的程度。两个年表与PDSI的相关均不高,可能是因为该地处于多个PDSI格点的边缘地带,且地形及气候条件复杂,2.5°×2.5°的格点间距较大,并不能真实反映研究地点真实的土壤湿度情况。所以认为竺尼山RES年表可以反映当地过去降水的变化信息,这与黄土高原西部多个树轮研究结果一致,例如兴隆山(Liu et al,2013a)、吐鲁沟(Liu et al,2013b)、昌岭-寿鹿山(Liu et al,2013c)的树轮均反映了当地年降水变化信息。

3 甘肃中部过去百年来降水变化分析

通过以上分析,认为竺尼山油松RES年表基本可以反映当地过去降水变化历史,如图5所示,1891年和2011年分别是研究区过去最干旱的年份,另外1916年、1928年、 1940年、1966年、1995年、1997年、2003年及2000年也是干旱比较显著的年份。在研究区附近,兴隆山青海云杉(Picea crassifolia Kom.)和吐鲁沟油松分别被用于重建当地上年7月到当年6月和上年8月到当年7月的年降水总量,虽然树种不同,且三者之间有一定的距离,但三者之间却有十分相似的变化趋势,且呈显著相关,在共同时段1890 — 2008年,竺尼山与兴隆山和吐鲁沟的相关系数分别为0.51和0.52,兴隆山和吐鲁沟的相关系数为0.56。除此之外,三个地点的降水极少年也基本互相对应,表明三地均位于东亚季风降水边缘区,共同记录了季风降水的强度变化。值得注意的是,在降水极少年,三个地点的降水强度表现出一定的差异,说明降水具有地域性特点。

图4 竺尼山STD年表与临洮站5—7月平均温度对比(T57)(a);竺尼山RES年表与临洮站上年8月到当年7月降水总量对比(P87)(b)Fig.4 Comparisons between STD chronology and mean temperature from May to July (T57) (a); comparisons between RES chronology and total precipitation from prior August to current July (P87) (b)

图5 兴隆山(a)、吐鲁沟(b)、竺尼山(c)三个地点的RES年表对比Fig.5 Comparison of the RES chronologies within the Mt. Xinglong (a), Tulugou (b) and Mt. Zhuni (c)

这三条树轮曲线中,发生干旱比较一致的年份有1916年、1923年、1928年、1940年、1966年、1995年、1997年和2000年。其中 1928 — 1929年的干旱是民国时期发生在我国北方的大范围严重干旱事件,多个树轮重建序列都记录了这次干旱(Liang et al,2006;Liu et al,2007),在近代文献中也有记载。1994年秋至1995年春末初夏,我国西北地区东部降水持续偏少,气温偏高,许多地区降水量为有气象记录以来的最小值或次小值(郭铌等,1997)。1997年的大旱被广泛认为是强厄尔尼诺事件所引起(段海霞等,2015)。2000年我国大部地区降水偏少,出现大范围干旱,北方地区尤为严重。该次旱灾主要发生在春夏季,受旱范围广,干旱时间长,旱情重(http://www.weather.com.cn/static/html/ article/20090218/24729.shtml)。由此可见,树轮在对干旱记录方面还是比较准确和可靠的。

为了进一步分析竺尼山树轮所代表的年降水量与黄土高原西部降水的空间分布关系,对竺尼山树轮RES年表和临洮站上年8月到当年7月的年降水量与CRU 3.23 0.5°的格点数据进行了空间相关分析(http://climexp.knmi.nl/),结果如图6所示。虽然RES年表与黄土高原西部的年降水量呈显著相关,上文分析所述的吐鲁沟和兴隆山也在该区域内。虽然其空间代表性弱于临洮站的年降水量,这是因为树轮年表的精度显然不如气象资料,但另一方面,也表明黄土高原西部的降水序列具有一致的变化特征,共同反映了东亚季风边缘带的降水变化历史。

图6 临潭气象站上年8月到当年7月年降水量(a)和竺尼山树轮RES年表(b)与CRU 3.23 0.5°的格点数据的相关关系(1951 — 2014)Fig.6 Spatial correlations of observed precipitation of Lintan meteorological station andRES chronology of Mt. Zhuni with CRU 3.23 grid data from prior August to current July (1951—2004)

4 结论

利用甘肃渭源县竺尼山油松树轮样本,建立了STD和RES年表。相关计算显示,两个年表与上年8月到当年7月的年降水总量和5 — 7月的平均温度均显著相关,是半干旱地区的树轮对气候的典型响应模式,组合之后,RES年表与年降水总量最高,r = 0.59,竺尼山RES年表可以反映当地过去降水的变化信息。竺尼山、兴隆山和吐鲁沟三个RES年表均反映了降水变化,且呈显著相关,可以认为是东亚季风降水的限制作用使得这三个年表具有对气候响应的一致性和变化的同步性。

段海霞, 李耀辉, 刘芸芸. 2015. 我国北方1986年和1997年干旱事件环流异常对比分析[J]. 干旱区研究, 32(5): 966 – 976. [Duan H X, Li Y H, Liu Y Y. 2015. Comparative analysis on atmospheric circulation anomalies of heavy drought event in northern China in 1986 and 1997 [J]. Arid Zone Research, 32(5): 966 – 976.]

郭 铌,李栋梁,蔡晓军,等. 1997. 1995年中国西北东部特大干旱的气候诊断与卫星监测 [J].干旱区地理, 20(3): 69 – 74. [Guo N, Li D L, Cai X J, et al. 1997. Climatic diagnosis and satellite monitoring of a severe drought over eastern northwest China in 1995 [J]. Arid Land Geography, 20(3): 69 – 74.]

胡豪然, 钱维宏. 2007. 东亚夏季风北边缘的确认 [J]. 自然科学进展, 17(1): 57 – 65. [ Hu H R, Qian W H. 2007. The confi rmation of the northern margin of the East Asian summer monsoon [J]. Progress in Natural Science, 17(1): 57 – 65.]

刘 禹, 解 利, 李 强, 等. 2012. 公元1820年以来甘肃东大山地区树轮宽度对3—9月平均最低温度的响应分析 [J]. 地球环境学报, 3(3): 900 – 907. [Liu Y, Xie L, Li Q, et al. 2012. Growth-climate response analysis between tree-ring width and March—September mean minimum temperature in Dongda Mountain, Gansu, China since 1820 AD [J]. Journal of Earth Environment, 3(3): 900 – 907.]

田沁花, 刘 禹, 蔡秋芳, 等. 2009. 油松树轮记录的过去134年伏牛山5—7月平均最高温度 [J]. 地理学报, 64(7): 879 – 887. [Tian Q H, Liu Y, Cai Q F, et al. 2009. The maximum temperature of May—July inferred from tree-ring in Funiu Mountain since 1874 AD [J]. Acta Geographica Sinica, 64(7): 879 – 887.]

杨建伟, 梁宗锁, 韩蕊莲, 等. 2004. 土壤干旱对油松生长及水份利用的影响 [J]. 西北农林科技大学学报(自然科学版) , 32: 89 – 96. [Yang J W, Liang Z S, Han R L, et al. 2004. Growth and waster consumption characteristics of Chinese pine under soil drought stress [J]. Journal of Northwest Science-technology of University of Agriculture and Forest, 32: 89 – 96.]

张汉雄, 上官周平. 2005. 陇中黄土高原丘陵区生态环境退化与恢复重建调控机理 [J]. 山地学报, 23(4): 413 – 419. [Zhang H X, Shangguan Z P. 2005. The mechanism of a recovering and rebuilding of ecological environment degeneration on the ecological system in Longzhong loess hilly region [J]. Journal of Mountain Science, 23(4): 413 – 419.]

张 静. 2006. 甘肃黄土高原及周边地区石质山地旅游资源与开发研究[D]. 兰州: 兰州大学. [Zhang J. 2006. Study on rocky mountains area tourism resource and its tourism development in Gansu Loess Plateau and surrounding areas [D]. Lanzhou: Lanzhou University.]

Cook E R. 1985. A time-series analysis approach to tree-ring standardization [D]. Tucson: University of Arizona.

Cook E R, Anchukaitis K J, Buckley B M, et al. 2010. Asian monsoon failure and megadrought during the last Millennium [J]. Science, 328: 486 – 489.

Dai A G, Trenberth A K, Qian T. 2004. A global dataset of Palmar Drought Severity Index for 1870 — 2002: relationship with soil moisture and effects of surface warming [J]. Journal of Hydrometeorology, 5: 1117 – 1130.

Fang K Y, Gou X H, Chen F H, et al. 2010. Tree-ring based drought reconstruction for the Guiqing Mountain (China): linkages to the Indian and Pacific Oceans [J]. International Journal of Climatology, 30(8): 1137 – 1145.

Holmes R L. 1983. Computer-assisted quality control in tree-ring dating and measurement [J]. Tree-Ring Bulletin, 43: 69 – 78.

Liang E Y, Liu X H, Yuan Y J, et al. 2006. The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China [J]. Climatic Change, 79: 403 – 432.

Liang E Y, Shao X M, Liu X H, et al. 2007. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia [J]. Chinese Science Bulletin, 52: 2715 – 2721.

Liu Y, Lei Y, Sun B, et al. 2013b. Annual precipitation in Liancheng, China, since 1777AD derived from tree rings of Chinese pine (Pinus tabulaeformis Carr.) [J]. International Journal of Biometeorology, 57: 927 – 934.

Liu Y, Lei Y, Sun B, et al. 2013c. Annual precipitation variability inferred from tree-ring width chronologies in the Changling-Shoulu region, China, during AD 1853—2007 [J]. Dendrochronologia, 31: 290 – 296.

Liu Y, Sun B, Song H M, et al. 2013a. Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since AD 1679 [J]. Quaternary International, 283: 46 – 54.

Liu Y, Sun J Y, Yang Y K, et al. 2007. Tree-ring-derived precipitation records from Inner Mongolia, China, since AD 1627 [J]. Tree-ring Research, 63(1): 3 – 14.

Lu R J, Jia F F, Shang Y, et al. 2012. Response of Pinus tabulaeformis tree rings to climatic metrics in Hasi Mountain [J]. Journal of Earth Environment, 3(6): 1149 – 1155.

Palmer W C. 1965. Meteorological drought [M]. Washington D C: U. S. Department of Commerce, Weather Bureau: 1 – 65.

Qian W H, Shan X L, Chen D L, et al. 2011. Droughts near the northern fringe of the East Asian summer monsoon in China during 1470—2003 [J]. Climatic Change, 110(1/2): 373 – 383. Wigley T M L, Briffa K R, Jones P D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology [J]. Journal of Climate and Applied Meteorology, 23: 201 – 213.

The climatic response of Pinus tabulaeformis Carr. in Mt. Zhuni, Gansu

SONG Huiming1, LIU Yu1,2, MEI Ruochen1,3, ZHAO Boyang1,3, PAYOMRAT Paramate1,3, ZHANG Xinjia1,3
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
2. Department of Environment Science and Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. University of Chinese Academy of Sciences, Beijing 100049, China

Background, aim, and scope The central Gansu province is the margin of the East Asian Summer Monsoon (EASM), and the environmentally sensitive region as well. The EASM related summer precipitation is an important factor for the local economical development. As such, it is very important to recognize the precipitation variations in the past. In this paper, Chinese pine from Gansu province was used to investigate the precipitation variations in the past century and to clutch some clues concerning the strength variations of the EASM in the study area as well. Materials and methods Chinese pine cores were collected on Mt. Zhuni which is located in the central Gansu province. In the laboratory, the standard dendrochronological processeswere employed, and the ring-widths of each core were measured with a precision of 0.001 mm. After crossdating, the COFECHA program was used to control the quality of cross-dating. STD and RES chronologies were developed using ARSTAN program. Pearson correlation analyses were used to identify the relationship between tree-ring chronology and climate factors. The precipitation and temperature from Lintao meteorological station were employed to do ring-width climatic response analysis. By using the KNMI Climate Explorer dataset (http:// www.knmi.nl), we also explored the spatial representiveness of our precipitation-related chronology within the large-scale of the EASM margin areas. Results The results showed that both RES and STD chronologies were positively correlated with precipitation and negatively with temperature. This was the typical tree-growthclimate response pattern in the arid and semi-arid region. This was a quite similar fi nding to the previous treering studies on the Chinese Loess Plateau. We found that STD was highly correlated with the temperature and RES with precipitation. The highest correlation was given to RES chronology with the total precipitation from prior August and current July, with r = 0.59. That is to say that the RES chronology could represent the annual precipitation variations in the Mt. Zhuni. Meanwhile, no high correlations were found between chronologies (both STD and RES) and local PDSI dataset. This is because that the study region is located in the margin of the PDSI grid with complicated topography and climate conditions, the 2.5°×2.5° PDSI grid is too big to represent the true conditions of all areas in one grid. We also observed that RES chronology of Mt. Zhuni was signifi cantly correlated with those of Mt. Xinglong and Tulugou which were located in the EASM margin too, with r = 0.51 and 0.52 separately. Discussion The study region is located on the western Loess Plateau. The precipitation is mainly concentrated during July to September caused by EASM. Strong EASM leads to more precipitation, and vice versa. In our study, the RES chronology of Mt. Zhuni could be regarded as the precipitation proxy indicating the strength variations of the EASM. We found that 1891 and 2011 were the visible bizarre driest years in the study region during the entire series. The year 1916, 1928, 1940, 1966, 1995, 1997, 2003 and 2000 were also very dry with low precipitation. Except these local exhibitions, there existed high correlations among tree-ring series of Mt. Zhuni, Xinglong and Tulugou, and they all displayed synchronous variation patterns imputing the EASM infl uences. The drought in 1916, 1923, 1928, 1940, 1966, 1995, 1997, and 2000 were recorded synchronously by three tree-ring series. The droughts occurred during1928 — 1929 was virtually the most severe drought in northern China and many tree-ring series in the northern-central China recorded this drought event. Some studies even showed that strong El Niño was one of the main reasons of drought in northern-central China, such as 1997. From this point of view, tree-ring data is a quite authentic and reasonable proxy to record drought events. The spatial correlation analysis indicated that our RES chronology could represent the precipitation variation over the EASM margin. The tree-ring series of EASM margin could be aspired to use for the EASM variation study in the past. Conclusions RES chronology of Mt. Zhuni could represent local annual precipitation variations. It was similar to other two tree-ring series on the western Loess Plateau, China. The variation pattern is quite synchronous among them, which may be caused by the EASM. Recommendations and perspectives The tree-ring studies in the semiarid and arid region of China are very important for the understanding of EASM. More studies are needed to give a deep insight to the EASM.

Mt. Zhuni, Gansu; Pinus tabulaeformis Carr.; ring width; climatic response

LIU Yu, E-mail: liuyu@loess.llqg.ac.cn

2016-11-15;录用日期:2017-01-23

Received Date: 2016-11-15; Accepted Date: 2017-01-23

黄土与第四纪地质国家重点实验室开放基金;国家自然科学基金项目(41401060);中国科学院重点部署项目(KZZD-EW-04-01);中国科学院青年创新促进会

Foundation Item: Project of State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences; National Natural Science Foundation of China (41401060); Key Research Program of Chinese Academy of Sciences (KZZD-EW-04-01); Youth Innovation Promotion Association of Chinese Academy of Sciences

刘 禹,E-mail: liuyu@loess.llqg.ac.cn

宋慧明, 刘 禹 , 梅若晨, 等. 2017. 甘肃竺尼山油松树轮宽度气候响应[J]. 地球环境学报, 8(2): 119 – 126.

: Song H M, Liu Y, Mei R C, et al. 2017. The climatic response of Pinus tabulaeformis Carr. in Mt. Zhuni, Gansu [J]. Journal of Earth Environment, 8(2): 119 – 126.

猜你喜欢

树轮年表季风
年表
树轮研究方法与进展
天山南北坡树轮稳定碳同位素对气候的响应差异
王锡良年表
石鲁年表
绿水青山图——海洋季风的赞歌
户撒刀
树木年轮对生态环境变化的响应及应用研究
万马奔腾
阿尔泰山中部树轮宽度年表特征及其气候响应分析