结肠癌细胞耐药的研究现状
2017-05-08苏建伟周喜汉
苏建伟+++周喜汉
【关键词】结肠癌;多药耐药性;转运蛋白;中药逆转剂
中图分类号:R735.3+5文献标识码:ADOI:10.3969/j.issn.10031383.2017.01.024
肿瘤细胞为了自我保护会改变质膜上、细胞质或细胞核内的功能结构及作用机制,降低其对化疗药物的敏感性,从而产生耐药[1]。结肠癌细胞化疗耐药是影响结肠癌患者化疗效果的主要原因,也是化疗失败的重要因素,引起化疗药物耐药的主要原因是结肠癌细胞群为了在人体内长期生存而排斥化疗药物。多药耐药性(MDR)是指癌症细胞对一种药物作用发生耐药反应后,对与其作用和结构类似的其他药物也产生耐药性的现象[2],它是结肠癌细胞耐药性最常见的一种。临床上,针对MDR及其逆转剂的研究是大多数肿瘤专家和学者关注的热点,关于MDR的产生机制不同学者的研究结果不同,目前认为可能有以下几种机制:(1)细胞调控基因的异常表达;(2)转运蛋白的异常;(3)耐药相关酶表达的改变。人们根据结肠癌细胞对化疗药物的多药耐药机制,先后应用多种化学药物作为结肠癌细胞耐药性的逆转剂,如噻吩嗪类化合物、维拉帕米及其衍生物、黄体酮、甲地孕酮等,但是由于这些药物的毒副作用使得它们在临床上并没有得到广泛应用[3]。中药与化学药物相比有价格低、毒副作用小的优点,在我国医学史上有重要地位。近年来越来越多的专家学者将中药作为肿瘤药物耐药性的逆转剂,取得了良好的效果。因此,笔者就结肠癌细胞MDR的机制及其逆转剂的研究现状进行综述。
1结肠癌细胞多药耐药的机制
由于不同患者的病情不同,因此使用化疗药物的种类也不同。不同种类的化疗药物会与靶标相互影响,使结肠癌细胞形成不同的耐药表型。MDR是多种因素共同作用的结果,其产生机制极其复杂,现在国内外大多数的研究主要有以下几个方面:耐药相关酶的异常变化、细胞调控基因的异常表达、转运蛋白的异常等。
1.1耐药相关酶活性及含量的变化
1.1.1谷胱甘肽S转移酶(GST)
GST主要存在于胞液内,是谷胱甘肽(GSH)结合反应的关键酶,它可以催化亲核性的谷胱甘肽与各种亲电子外源化学物质结合反应。细胞内非蛋白肽主要是GST、GSH及活性增强的GSH。一方面,GST会促使化学药物与GSH结合,从而使化疗药物的毒副作用降低。另一方面,随着GSH活性的增强及数量的增加,化疗药物对结肠癌患者细胞的毒性也随之降低,使细胞对DNA损伤的修复能力逐渐增强,从而使结肠癌细胞产生耐药性。
1.1.2DNA拓扑异构酶Ⅱ(TopoⅡ)活性的异常
作为催化DNA拓扑异构体相互转换的酶,TopoⅡ是化疗药物作用的主要靶酶[4]。结肠癌化疗药物主要是TopoⅡ抑制剂,常常会使酶的活性或者功能发生改变,从而增加DNA断裂的可能,使抗癌药物的功能充分发挥。但是一旦TopoⅡ的活性和表达下降,可使通过TopoⅡ发生介导作用的DNA下降断裂,结肠癌细胞耐药性随之产生。
1.1.3葡萄糖神经酰胺合成酶(GCS)的表达异常
结肠癌患者细胞中相应的靶蛋白能够被神经酰胺调节,使信号通路被激活,促进细胞的凋亡。GCS是葡萄糖基转移酶之一,它可以促进神经酰胺与葡萄糖结合,引起神经酰胺在细胞内的含量减少,使细胞的凋亡现象减少。GCS的高表达是结肠癌患者癌细胞产生多药耐药性的重要机制,HCT8/VCR是结肠癌患者的耐药细胞株,通过对大量产生化疗药物耐药性结肠癌患者的回顾性分析发现,GCS在结肠癌患者的耐药细胞耐药株中的表达较高,在GCS的水平有所降低后,结肠癌患者的耐药性也随之变弱。另外有学者研究认为[5],GCS可能与P糖蛋白(Pgp)存在关联,Pgp的表达水平降低可能是由于沉默GCS基因造成。
1.2转运蛋白的异常
目前MDR产生机制研究最为广泛的是ATP家族介导的药物外排泵机。ATP结合转运蛋白通常在细胞跨膜区形成一个通道,ATP的结合区在胞浆内面,Mg2+会影响ATP的水解,使跨膜通道的构象发生改变,从而将带有疏水性的底物泵出细胞外。在化疗过程中,这种ATP能量依赖的方式同样会使抗结肠癌药物泵出,减少细胞内的药物蓄积,降低药物的跨细胞扩散效率,从而减弱肿瘤化疗的疗效。
1.2.1肿瘤细胞耐药
主要原因是Pgp的过度表达而引起MDR,它是一种典型的多药耐药机制[5]。Pgp定位在细胞膜上,是一种能量依赖性“药物泵”,可以与结肠癌细胞内的药物结合,并将其泵出细胞外,化疗药物的外排能力随着Pgp的高表达而增强,使细胞对应增加,降低了对结肠癌细胞的毒性,使结肠癌细胞产生耐药。
1.2.2多药耐药相关蛋白(MRP)
MRP蛋白最早在1992年被发现,它的结构与Pgp十分相似,同时也是对ATP有依赖性的一种药物运输泵[6]。MRP造成多药耐药性主要原因在于结肠癌患者服用的化疗药物会在体内与GSH及GST结合,ATP进行水解会产生能量,MRP运用这些能量将进行结合过的药物逆浓度梯度泵出细胞内。
1.2.3乳腺癌耐药蛋白(BCRP)
BCRP最早出现于Doyle 1998年发表的文献中,它是转运蛋白家族中的成员之一,与多药耐药性的产生紧密相关[7]。不过与家族其他成员结构不同的是,BCRP的功能域由一个结构域组成,在这个结构域中存在1个ATP结合区和6个跨膜区。而且只有BCRP形成两个及以上的聚体时才会进行药物转运,BCRP的药物转运方式与MRP类似,都是ATP进行水解产生能量,这些能量将进行结合过的药物逆浓度梯度泵出细胞内。近年来的试验证明[8~9],BCRP中的表达质粒对结肠癌患者耐药细胞羟基喜树碱具有一定的逆转效果,表明了BCRP对结肠癌多药耐药性起到了一定作用。
1.3细胞凋亡调控基因表达异常
结肠癌化疗药物产生效果的机制是干扰细胞克隆增生受到药物的影响发生异常,诱导细胞凋亡,从而达到抑制甚至杀灭癌症细胞的目的。在细胞凋亡过程中,細胞凋亡调控基因表达异常会引起化疗药物效能减低,MDR随之产生,其中Bcl2蛋白家族尤其突出。Bcl2蛋白家族与肿瘤细胞耐药联系密切,其又被称为“长寿基因”,常位于内质网膜、线粒体膜及核膜上[10]。Bcl2蛋白的产物可以抑制结肠癌化疗药物引起的细胞凋亡,使细胞可以稳定生存,促进基因的代谢。Bcl2蛋白的过度表达可诱导多种肿瘤细胞凋亡,产生耐药。
2结肠癌细胞多药耐药的逆转剂研究进展
2.1维拉帕米及其异构体
以往学者研究发现[11~12],化疗的同时使用维拉帕米可以有效抑制结肠癌患者的多药耐药性,而且使用药量较多的患者,其多药耐药逆转效果明显大于使用药量少的患者。但是使用维拉帕米过多会给患者带来毒副作用,造成其他方面伤害,使药物的实际应用受到限制。因此根据患者的实际情况可适当加大维拉帕米的服用剂量,一般来说每6小时110~230 mg是最佳的选择。Toffoli[13]指出维拉帕米异体结构阿替洛尔(norVer)和右旋维拉帕米(RVer)与维拉帕米有相同作用,可以有效逆转结肠癌患者的多药耐药性,且其毒副作用更小。
2.2依他尼酸(EA)
EA最早作为利尿药应用于临床,但是随着学者的深入研究发现,EA对于谷胱甘肽S转移酶引起的多药耐药性有逆转作用,对01活性有显著的抑制作用,能够使01介导的药物消失程序发生断裂,逆转细胞对化疗药物的耐药性。
2.3反义寡核苷酸
结肠癌患者的细胞耐药性与其细胞凋亡过程紧密相关,若要对抗因细胞凋亡导致的多药耐药性就要调节凋亡过程,反义寡核苷酸对抗凋亡基因9BN85表达有明显的抑制作用。通过反义寡核苷酸的抑制使9BN85蛋白的形成受到阻碍,使细胞凋亡,逆转结肠癌患者细胞对化疗药物的耐药性。
2.4其他逆转剂
药物在结肠癌患者多药耐药细胞中的蓄积量可以被蛋白激酶(PKC)所改变,在过去的多次研究中[14],研究人员均发现PKC的活性在某些多药耐药的结肠癌细胞中增加,因此大胆推测对PKC的活性进行抑制能够逆转细胞的多药耐药性。另一种逆转剂环孢霉素A衍生物西罗莫司逆转多药耐药的机制尚未明确,但就目前的研究来看,它能够在癌症患者的体内外使MDR1基因的表达得到逆转,从而使MDR克隆形成受到阻碍。还有一种得到大多数学者肯定的说法是作为高度亲脂类药物,环孢霉素类药物会就P170的结合位点与抗癌药产生激烈的“争夺”[15],从而导致抗癌药的排出率大大降低,抗癌药浓度在患者细胞中的浓度也提高,发生逆转作用。
2.5中药逆转剂
化疗药物耐药性问题一直是困扰医生和学者的重大难题,而且这种耐药性常常表现为对多种药物的耐药性,这也增大了治疗的难度。临床中发现,多数结肠癌患者因出现耐药性,不得不停用某种药或者与其类似的其他化疗药物,而当结肠癌患者服用其他无毒副作用的化疗药物或者中医药进行调理后,对患者再次使用同种化疗药物,大多数人并没有之前的耐药现象,化疗也得到了令人满意的效果。通过分析发现,零毒化疗方法和中医药使用可能使结肠癌患者细胞的耐药性得到消除。中药与西药相比有价格低、毒性小、高效等优点优势,其作为癌症化疗药物耐药性逆转剂的研究也渐渐成为各个医院的主要课题,中药逆转剂研究进展在近年来取得了重要突破。通过对大量中西医结合治疗结肠癌患者的临床资料分析,我们发现中医医院通常是用小剂量药物进行化疗,在疗效和患者生存状况与西医并没有显著差别。因而学者对研究的方向进行了改变,着重对中国传统医药在结肠癌的治疗进行深入的研究。经过若干年的不懈坚持,他们发现了一系列可以用来逆转或降低结肠癌化疗阻力的中药,其中有些药物在结肠癌患者靶向化疗的过程中,取得了良好的临床疗效。
2.5.1苦参碱(Ma)
Ma是一种从我国传统中药广豆根和苦参中提取的生物碱[16]。mRNA表达水平对药物耐药性的产生有重要影响,而在苦参碱的作用下其表达水平降低,促使细胞膜上合成逐渐减少,从而减少抗结肠癌药物外排。有研究显示[17],结肠癌患者K562/Vin细胞对长春新碱的耐受性可以被苦参碱逆转。另一方面,苦参碱在抑制K562/Vin和K562细胞生长、抑制端粒酶逆转录酶表达以及诱导耐药细胞凋亡方面也有显著作用。前期研究表明其具有抗结肠癌作用,能够使hTERT表达水平降低,抑制端粒酶活性与结肠癌细胞SW1116的增殖,诱导细胞凋亡,也有研究表明[18]苦参碱有逆转多种肿瘤(如膀胱癌、胃癌、乳腺癌等)化疗耐药的作用。
2.5.2复方藤梨根制剂(FFTLG)
一些学者的研究发现[19],由虎杖根、藤梨根、白术、党参、水杨梅根等组成的复方藤梨根制剂可以减少阿霉素(ADR)的外排,增加细胞内ADR的积聚量,从而实现对化疗的增敏作用,对K562/ADR及K562/VCR等耐药细胞有逆转作用。
2.5.3川芎嗪(TMP)
TMP是从中药川芎提取的一种生物碱,对治疗心脑血管疾病有重要意义,是心脑血管疾病患者的常用药[20]。TMP还可以阻碍钙通道活性,因此也被用于治疗结肠癌患者的耐药性,其能够逆转结肠癌细胞抗药性的原因在于TMP导致MRP的阳性表达率降低,使结肠癌患者细胞内的抗癌药物浓度增加,从而达到逆转细胞耐药性的作用。
2.5.4贝母
贝母是一种草本植物,具有药用价值的主要是其鳞茎。研究显示,浙贝母中富含生物碱,尤其是贝母甲素和贝母乙素,对肿瘤细胞的耐药性有逆转作用[21]。以往实验中,对抗癌药物产生耐药性的患者给予少量对细胞没有显著毒副作用的浙贝母提取药物,患者产生耐药性细胞的活性出现了明显的逆转,表明贝母作为耐药逆转剂有显著效果。浙贝母中的生物碱与其他逆转剂相比较对依赖阿霉素的敏感细胞杀伤影响作用小,对多药耐药性细胞的敏感性有显著作用,从而使肿瘤患者对化疗药物的耐药性得到逆转。
3总结与展望
随着广大医务工作者和专家们的不懈努力,结肠癌细胞的耐药性研究取得了重大进展,越来越多的多药耐药逆转剂不断被发现,为结肠癌患者的恢复奠定了重要基础。但是大多数的结肠癌逆转剂存在副作用,给患者的身体带来其他伤害,因此還不能被应用于临床上。上述可知多种中药也有逆转MDR的作用,且由于中药毒性低,有一定的临床研究价值。目前,寻找高效、低毒、价廉的肿瘤逆转剂仍是肿瘤专家和医药学者的艰巨任务,也是攻克肿瘤的有效途径。随着分子生物学和相关学科的飞速发展,基因克隆策略和技术的不断更新,利用有效的基因克隆技术,发现新的结肠癌多药耐药相关基因已成为可能。
参考文献
[1]宋敏,潘琼,张莉,等.JNK信号转导通路与结肠癌多药耐药关系的研究进展[J].中国实用医刊,2014,41(9):108109.
[2]丁旭贝,陈爱军.大肠癌多药耐药机制的研究进展[J].西部医学,2010,22(9):17261728.
[3]赵小琴,符立梧.肿瘤干细胞耐药机制研究进展[J].中国药理学通报,2012,28(12):16371642.
[4]袁斐,白钢钢,苗筠杰,等.中药逆转肿瘤细胞多药耐药的研究进展[J].中草药,2014,45(6):857863.
[5]Lespine A,Ménez C,Bourguinat C,et al.Pglycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics:Prospects for reversing transportdependent anthelmintic resistance[J].International Journal for Parasitology Drugs & Drug Resistance,2012(2):5875.
[6]牛建花,刘萍,李静,等. MRP超家族成员在结肠癌耐药及耐药逆转过程中的作用[J].山东医药,2012,52(13):6062.
[7]田彦璋,赵浩亮,贺杰峰,等.GCS基因与MDR1基因在肝癌细胞多药耐药中的相关性研究[J].中国药物与临床,2012,12(11):13971399.
[8]张芳,徐春蕾,邱郑.中药逆转肿瘤细胞多药耐药研究进展[J].中国实验方剂学杂志,2013,19(24):342348.
[9]Kim HJ,Lee KY,Kim YW,et al.Pglycoprotein confers acquired resistance to 17DMAG in lung cancers with an ALK rearrangement[J].Bmc Cancer,2015,15:553.
[10]宋敏,韩雪,任秀花,等.GCS通过影响bcl2的表达介导结肠癌细胞的多药耐药[J].世界华人消化杂志,201624,(11):17081713.
[11]巫翟,夏忠胜.结肠癌多药耐药机制的研究进展[J].新医学,2015,46(1):16.
[12]李金鹏,刘昊,于皆平,等.结肠癌阿霉素不敏感与上皮细胞间质细胞样转化的关系[J].世界华人消化杂志,2014,22(20):29002904.
[13]Binkhathlan Z,Lavasanifar A.Pglycoprotein Inhibition as a Therapeutic Approach for Overcoming Multidrug Resistance in Cancer:Current Status and Future Perspectives[J].Current Cancer Drug Targets,2013,13(3):326346.
[14]郭旭輝,张娜,李林森.苦参碱对肿瘤细胞多药耐药性的逆转作用研究[J].时珍国医国药,2012,23(10):25002501.
[15]刘立伟,邓磊,邓晓臣,等.肿瘤细胞多药耐药机制的研究进展[J].河北化工,2012,35(6):1517.
[16]肖海娟,许建华,孙珏,等.中医药逆转肿瘤多药耐药机制研究进展[J].中国中医药信息杂志,2012,19(6):108110.
[17]张久聪,王彪猛,常宗宏,等.ABC细胞膜转运蛋白及其介导的细胞多药耐药研究进展[J].生物技术通讯,2014,25(6):862866.
[18]赵隽,韩宇.microRNA与肿瘤细胞耐药的研究进展[J].中国医学创新,2012,9(29):155157.
[19]王宇亮,周向东.肿瘤细胞内药物浓度与铂类药物耐药的研究进展[J].肿瘤防治研究,2013,40(9):894898.
[20]张芳,徐春蕾,邱郑.中药逆转肿瘤细胞多药耐药研究进展[J].中国实验方剂学杂志,2013,19(24):342348.
[21]徐叶峰,刘云霞,沈敏鹤,等.中医药逆转肿瘤多药耐药的策略及研究进展[J].中国中西医结合杂志,2015(7):891896.
(收稿日期:2016-09-01修回日期:2016-10-09)
(编辑:潘明志)