APP下载

软骨细胞在机械力刺激下细胞骨架及细胞形态改变的体外研究

2017-04-21王雪冰宋玉娟邓雪峰宋锦旗

中国医药科学 2017年1期

王雪冰 宋玉娟 邓雪峰 宋锦旗

[摘要]目的探讨周期性的机械应力对大鼠的关节软骨细胞的形态与骨架的刺激作用,为软骨细胞的内力学信号传导机制的临床研究提供参考。方法将体外培养传代至第三代的大鼠软骨细胞置于四点弯曲加力装置周期性机械应力体系中(4000u strain)培养30min,连续3d。对照组静态培养。3d后检测细胞基质合成情况以及微管、微丝、中间纤维的免疫荧光染色,用Western Blot及RT-PCR方法测量cofilin蛋白基因含量。结果加载应力组软骨细胞氨基多聚糖和蛋白多糖的合成与对照组无明显差异(P>0.05);但细胞微管、微丝及中间纤维发生重排,细胞形态和取向趋于一致。实验组cofilin蛋白含量明显高于对照组(P<0.05)。结论周期性机械应力改变软骨细胞的形态和细胞骨架,cofilin蛋白在软骨细胞内力学一生物学信号转导中发挥着重要作用。

[关键词]软骨细胞;细胞骨架;细胞形态

关节软骨处在一个具有压应力、张应力、流体剪切力等机械应力作用的复杂力学环境中,而机械应力在调节关节软骨细胞生物学行为中具有十分重要的作用,能够对软骨细胞新陈代谢进行调控,是保证软骨基质正常状态的必要条件。可调控软骨细胞的新陈代谢,是维持正常软骨基质必不可少的条件。关节软骨组织缺乏血液供应、细胞代谢缓慢、自我修复能力较差,即使较小的软骨损伤也会引起严重的后果。我们的前期动物实验表明,中等强度的炮台运动能促进大鼠软骨缺损的修复重塑,但其作用机制尚不清楚。

本研究拟通过体外实验对大鼠关节软骨加载周期性压应力,观察应力下的软骨细胞形态和细胞骨架的变化,为软骨细胞内力一生物信号转化研究提供基础,为适度应力促进关节软骨缺损修复重塑的机制研究提供依据。

1.资料与方法

1.1一般资料

主要包括大鼠来源及所用试剂的来源。本研究中所用大鼠为7d龄,且身体健康,均由南方医科大学实验动物中心提供。主要试剂:鼠抗人Tubulin B单克隆抗体(北京中杉金桥生物进口分装);Dulbecco改良DMEM/Ham F12混合培养基(HyClone公司);0.01mol/L磷酸缓冲液PBS(博士德公司);碘化丙啶(Salarbio公司);链菌蛋白酶(Gibco公司);胎牛血清(FBS,杭州四季青公司);番红(Salarbio公司);胰蛋白酶(Gibco公司);双乙酸荧光素(Salarbio公司);甲苯胺蓝(Salarbio公司);4%多聚甲醛(Salarbio公司);II型胶原酶(Gibco公司);山羊抗小鼠IgG/FITC標记(北京中杉金桥生物进口分装);I型胶原蛋白裱衬的6孔培养板(Flexercell公司)。

1.2仪器设备

主要包括四点弯曲加力装置(四川大学华西口腔医学院研制);流式细胞仪(Coulter,美国);CO2培养箱(ShelLab,美国);倒置荧光显微镜(Olympus,日本);数码相机(Olympus,日本)。

1.3实验方法

主要包括细胞培养、染色以及检测。

1.3.1软骨细胞的分离培养及应力加载 体外分离大鼠四肢的关节软骨并进行传代培养,细胞培养传至第3代,随机分为对照组(A组)和周期性机械应力组(B组)。A组:在正常条件下培养软骨细胞;B组:软骨细胞置于周期性机械应力体系中(4000u strain)培养30min,连续3d。加载应力组细胞卸载后与对照组细胞同时进行以下检测。

1.3.2番红及甲苯胺蓝染色 软骨细胞生长于柔性的硅胶膜上,选择PBS进行冲洗,并加入0.25%番红以及1%甲苯胺蓝染液,在室温条件下,进行孵育2h。随后利用显微镜进行观察拍照。番红染色可以明确氨基葡聚糖合成情况;甲苯胺蓝染色可以明确蛋白多糖合成情况。

1.3.3免疫荧光检测 当细胞的80%贴合于盖玻片后,在超净的工作台上放置一24孔的培养板,并取出贴有细胞的盖玻片,使用PBS液进行2次清洗,后加入2%的甲醛溶液,进行固定。固定后,使用0.5%的Triton液清洗细胞3次,每次10min。加一抗(sigma公司),在37℃条件下,静置1h。将盖玻片置于24孔板上,使用0.5%Triton液进行3次清洗,每次10min。后加如异硫氰酸荧光素(fluoresceinisothiocyanate,FITC)标记的二抗(sigma公司),37℃条件下,静置1h。将盖玻片置于24孔板,0.5%Triton液进行3次清洗,每次10min。将所有盖玻片放置于24孔板中,使用0.5%Triton液进行3次清洗,每次10min,后将清洗液弃去,加入4,6-二脒基2-苯基吲哚(4,6diamidino2-phenylindole,DAPI)进行染核,在室温条件下,进行5min。后在长方形的载玻片上低落封片剂,盖上盖玻片,并在室温条件下5min封片。用LCSM(LeicaSPS Germany)观察并记录图像。

1.3.4 RT-PCR检测cofilin基因表达 以TrizolRNA试剂盒提取细胞总RNA,依据GenBank上登陆cofilin基因序列,以B-actin作为内参照,设计引物序列。cofilin正义引物:TGTGGCTGTCTCTGATGGAG,反义引物:3TGTCTGGCAGGATC 3TGAC:B-acfin正义引物:CAC GTA CGT TGC TAT CCAGGC,反义引物:CTC CqT AAT GTC ACG CAC GAT。PCR条件95℃变性4min:95℃变性45s:53℃复性45s:72℃延伸90s:72℃温育10min:4℃保存24h。扩增结束后取最终产物10 u L,进行1.5%琼脂糖凝胶电泳(含EBO.5ug/mL)。15mA、90V稳压45min,采用kodak电泳凝胶观察系统EDASl20扫描,分析结果。

1.3.5Western印迹检测cofilin蛋白表达 选择实验组与对照组中贴壁生长的软骨细胞悬浮液,并进行蛋白样品提取,以pierce公司生产的BCA蛋白定量检测试剂盒说明为标准稀释样品,进行蛋白浓度的检测,并选择5mg/mL的BSA液体将蛋白质标准品完全溶解,置于-20℃的环境下保存。选择取标准品用PBS 10mL,并将其稀释为100uL,保证液体的最终浓度为0.5mol/mL。进行SDS-PAGE电泳,再完成转膜的过程中加入一抗与二抗,并进行ECL发光。通过扫描仪进行扫描,将图像输入到Image J软件中进行图像的定量分析。

1.4统计学分析

应用SPSS15.0软件进行统计分析。计量数据用(x±s)表示,行配对t检验,P<0.05为差异有统计学意义。

2.结果

2.1软骨细胞的形态学观察

体外分离的大鼠关节软骨细胞培养24h后开始贴壁,72h后能够完全贴壁。并且大部分细胞表现为多边形,而细胞核表现为椭圆形或者圆形,能够清晰的观察到1~2个核仁。进行甲苯胺蓝染色后,形态学观察可见:大部分聚集于细胞内的呈深蓝色的蛋白多糖。而细胞核则被染色为深蓝色或者蓝紫色。进行番红染色后,形态学观察可见:大部分呈深红色的氨基葡聚糖阳性物质聚集于细胞内。加载组和对照组无显著差别,而应力组的关节软骨细胞发生形态改变,并且其取向逐渐趋于相同。见图1A~D。

2.2微丝的形态学观察

实验组软骨细胞微丝为与细胞长轴平行的线状均匀纤维,排列整齐,呈线状拉伸,核深染。对照组软骨细胞微丝形态及分布较散乱,纤维显稀疏,与对照组比较核淡然。见图2A~B。

2.3微管的形态学观察

实验组软骨细胞边缘平整、锐利,细胞微管呈网络状分布于各个细胞内以维持细胞形态,在核周可见明显的斑点状微管聚集区。对照组软骨细胞微管荧光强度明显较弱,边缘模糊,未见明显核周聚集区。见图2C~D。

2.4中间纤维的形态学观察

实验组软骨细胞中间纤维围绕细胞核且从细胞核到细胞膜呈递增的贯穿分布,呈平滑的细丝状,成束成网,在细胞膜周围分布密集,形成亮带,中间纤维扩展的细胞外基质的部分呈现为亮带外周的微弱绿色荧光。对照组软骨细胞中间纤维排列紊乱,荧光强度普遍较弱,呈波浪状围绕细胞核分布,个别细胞中存在中间纤维的斑块状聚集,膜周亮带较弱或无,亮带以外微弱绿色荧光较宽。见图2E~F。

2.5RT-PCR检测cofihn基因表达

RT-PCR检测显示实验组软骨细胞cofilin基因表达为(1 52±0.12),对照组为(0.99±0.01),两组相比差异具有统计学意义(t=31.123,P=0.000)。见图3。

2.6Western蛋白印迹检测cofifin蛋白表达

实验组软骨细胞中cofilin蛋白表达明显高于对照组软骨细胞cofilin蛋白的表达。见图4。

3.讨论

软骨在动物全身关节活动中发挥着重要作用,其含有特殊的软骨基质,因而能够承受一定的机械力而不会发生永久变形。同样,在软骨的生长发育过程中,其形态和功能的维持及损伤后的修复也离不开力学刺激,缺乏力学刺激会导致软骨退行性变。

软骨细胞在机械力的传导和转化方面起着举足轻重的作用。细胞形态是细胞功能的体现形式,是细增殖分化与凋亡等诸多胞内事件的参与者,同时,细胞形态与细胞所处的力学环境密不可分,是细胞内部力平衡的最直观外在表现,因此,对软骨细胞的形态研究,是研究机械应力影响软骨修复机制的基础。

本实验中在周期性机械应力刺激下,大鼠关节软骨细胞附壁生长良好,能够合成有软骨细胞生物学特点的粘多糖和氨基葡聚糖,并促进软骨细胞的规则排列,说明在软骨细胞的生长过程中,周期性的机械应力具有较为积极的刺激作用。临床研究证实,外力施加载荷的频率、时间与大小等均是影响软骨细胞新陈代谢和生长的刺激因素。本实验中的细胞特殊染色技术只能定性分析粘多糖及氨基葡聚糖的含量,而无法从蛋白表达的基因水平辨别蛋白合成过程中的微小差别。仍然需要更加深刻的定量分析研究,对基因和蛋白层面进行探讨,进一步阐述周期性机械应力对软骨细胞的刺激作用。

细胞骨架是维持细胞形态的重要部分,同时在维系软骨细胞功能方面也具有十分显著的作用。细胞骨架包括微丝、中间絲与微管是胞骨架的组成部分,联合各种具有不同作用的调控蛋白共同构成细胞内部蛋白纤维网络体系。细胞骨架明显的为力学信号发生转导提供了十分理想化和有效化的途径。在细胞受到外界力学的刺激后,会导致细胞骨架发生重新排列,导致使细胞内应力随之发生相应的重新分布。细胞骨架的改变不仅会造成细胞形态的变化,同时也会导致细胞力学特征及生物学特征发生变化。

微丝是真核细胞中含量最丰富的一种蛋白复合体,是细胞骨架的主要成分之一,是由肌动蛋白分子螺旋状聚合成的纤丝,又称肌动蛋白丝,F-actin是细胞骨架微丝蛋白的主要成分,与细胞黏附、吞噬、运动、分裂等密切相关。细胞伸出的丝状伪足参与细胞间的通讯并使细胞具有趋化性,产生细胞形态的变化,而成束的微丝对丝状伪足起支持作用。压应力作用于软骨细胞后,微丝会出现不同方向的变化,增加细胞顶-底纵向的微丝张力,但横向微丝张力未发生变化。外界刺激到达阈值后,会破坏Actin微丝和Vimentin中间纤维聚集以及解聚的动态平衡,导致微丝发生生物学降解。应力信号通过细胞骨架网络结构传递至细胞内激活相应的信号转导通路,反馈调控,使其与组蛋白、DNA相互作用来调节复制和转录过程,细胞骨架发生重组,使细胞维持一定的机械强度适应机械力。

本研究中免疫荧光染色显示应力组较对照组微丝致密且分布均匀,荧光强度增强,取向趋于一致。实验组细胞微管呈网络状分布于各个细胞内以维持细胞形态,在核周可见明显的斑点状微管聚集区。而加载周期性机械应力后的软骨细胞中间纤维围绕细胞核且从细胞核到细胞膜呈递增的贯穿分布,呈平滑的细丝状,成束成网,在细胞膜周围分布密集,形成亮带。这些现象均表明周期性应力可促进软骨细胞的骨架重排,提高其力学适应性,而细胞骨架在软骨细胞的力学一生物学信号转导中发挥着重要作用。

Cofilin蛋白是广泛存在于真核细胞胞质内的一种可解聚的蛋白,研究表明其在细胞骨架动态改建过程中发挥着重要作用。本研究发现,在周期性的应力作用下,软骨细胞内的cofilin通路的相关基因以及蛋白的表达均发生明显的变化,这表明cofilin通路在软骨细胞力学一生物学信号的转导过程中具有十分重要的参与作用。同时进一步的研究应力传导中软骨细胞cofilin信号通路生物学相关的调控机制,有希望为明确关节软骨的修复重塑中机械应力的作用机制提供可靠的证据。

目前有关关节软骨细胞力一化一生物传导的作用机制未十分明确,但临床多项研究指出细胞骨架具有十分重要的作用。在体外施加不同程度的机械应力能够导致关节软骨细胞骨架重新排列,从而影响细胞增殖以及细胞外基质合成。体外施加机械应力进行培养时,关节软骨细胞会呈现出平行排列且有顺序性,同时微丝重排沿细胞的长轴进行,这能够表明关节软骨细胞能够在周期性应力条件下进行优化排列,充分证明关节软骨细胞能够适应一定力学参数刺激下的微环境,并形成与之相适应的功能及结构特征。关节软骨细胞是一种对力学较为敏感的细胞,能够对机械应力做出敏感的反应,但是其信号通路的相关性研究仍然需要更深刻的探究。