《混凝土结构基本原理》课程的教学模式改革
2017-03-27赵博程冠华
赵博+程冠华
摘要:“混凝土结构基本原理”课程是土木工程类专业中非常重要的一门专业基础课,本文在分析其课程特点和当前教学现状后,针对所存在的问题,围绕培养应用创新型人才的目标,从优化教学内容、改进教学方法、完善考核方式、加强实践教学等方面着手,进行深入的研究和探讨,为提高该课程的教学质量和实际效果提供参考。
关键词:应用创新型人才;“混凝土结构基本原理”;教学改革;课程建设
中图分类号:G71 文献标识码:A 文章编号:1672-3791(2017)01(a)-0000-00
Abstract: The course of concrete structure principle is an important professional course in the civil engineering major. After analyzing the course characteristics and current teaching situation, this paper surrounds the target of training applied innovative talents, conducts in-depth research and discussion for the existing problems from the aspects of optimize teaching contents, improving teaching methods, examination assessment methods and enhancing practice teaching. It can provide a reference for improving this courses teaching quality and the actual effect.
Key words: Applied and innovative talent; Concrete structure principle; Teaching reform; Course construction
一、教学改革的背景与意义
当前高等教育的结构呈现出多元化和多样性,发展应用型本科教育,培养多样化人才已成为了共同的选择和普遍趋势。为此,我国专门提出了“卓越工程师教育培养计划”。太原理工大学作为一所理工科优势明显的“211工程”重点建设大学,是教育部61所首批入选的“卓越工程师教育培养计划”、国家“大学生创新性实验计划”的实施高校,在培养创新型人才方面承担着重要的责任。针对土木工程专业的本科生教育,在新形势下如何培养素质高、能力强、满足企业所要求的高等技术应用型人才,是土木工程专业课程教学改革所面临的主要任务。
《混凝土结构基本原理》课程是土木工程专业一门重要的必修专业基础课,内容覆盖了土木工程专业下属的建筑工程、岩土工程、结构工程、道路桥梁工程、工程管理等专业方向,在整个人才培养中发挥着承接专业知识启迪实践应用的功能,其教学质量直接影响教育质量。其教学质量对于培养土木工程应用型高技术人才,特别是培养学生的创新能力和工程能力具有非常重要的作用[1,2,3]。但从太原理工大学及全国其他高校的教学现状来看,学生普遍存在着理论脱离实际的倾向,实践动手能力较差,缺乏运用所学知识分析、解决问题的能力。为了破解这一难题,急需根据《混凝土结构基本原理》知识体系的认知规律,结合我校土木工程专业的特点,对其教学改革进行探索与研究。
二、课程的特点与教学现状
《混凝土结构基本原理》课程是土木工程专业的主导课程,以结构力学、理论力学、材料力学、土木工程材料等课程内容为基础,具有理论性、综合性、实验性和实践性强的特点,其基本理论涵盖了材料性能、结构设计方法、构件承载能力计算及裂缝、变形与耐久性的验算,还涉及到了预应力混凝土构件的基本知识。教学内容跨度广、难度大,存在着“七多”,即概念多、公式多、系数多、符号多、构造规定多、教学环节多,且其文字内容叙述多[4,5]。因此学生在学习时往往觉得很难,做题时难以入手。传统的教学方式主要是以教师为主体地位,采用课堂授课的方式,强调理论知识的传授。面临着以下几方面的问题:
(1)教学观念缺陷。由于采用以教师为中心,学生一味地被灌输知识。这种以继承为中心的教育,强调知识的记忆、模仿和重复练习,缺乏先进的教育理念,极大的压抑和束缚了学生的创新意识。
(2)教学资源匮乏。该课程的内容非常丰富,且涉及到很多的规范和工程实践,难度比较大。在师资力量方面,目前大多数教师是博硕士毕业后直接进入高校任教,缺乏一定的工程实践经验和锻炼机会,动手实践能力相对较弱,加之教学方式单一,直接影响到了该课程的授课效果。
(3)教学考核落后。由于考试方式主要采用闭卷形式,考核内容大多围绕课本知识,套用各种公式。而学生多以“应试”为学习目的,只是在短时间内集中强化式记忆,死记硬背来应付考试。显然,这种类型的考核方式达不到培养学生创新能力和工程意识的教学目的。
因此,在明确该课程的特点和规律后,为了适应新时期对土木工程卓越人才的培养目标要求,旨在提高学生综合素质为目的,迫切需要改革和完善该课程教学体系,根据知识的结构体系和认知规律,既注重基本概念和基本理论的讲授,又努力提高学生综合运用知识与理论的能力,提高学生创新意识和实践动手能力。
三、教学改革的方法与手段
从教学内容、教学方法、考核方式这几个基本方面着手,对该课程的教学模式进行教学研究和改革探讨,以期建立科学合理的教学模式,贯穿“授之以渔”的思想,提高其教学质量和教学水平。具体描述如下:
(一)教学内容改革
(1)理论部分:在教学过程中强化知识体系的完整、系统和科学性,教学内容以混凝土结构中的基本构件(轴心受力构件、受弯构件、受扭构件、偏心受力构件和预应力混凝土构件)的截面设计为主线,每部分都划分成“原理、设计、验证”三部分,让学生系统掌握它們的受力破坏机理、计算基本假定、计算模型、计算公式以及构造设计要求。通过这样的讲解模式使学生思路清晰,搭建起易于掌握的可塑性知识框架,构建了应用知识进行技术创新能力。
(2)试验部分:改变传统教学中陈旧的演示试验模式,即教师对已浇筑好的构件进行加载,通过破坏现象来分析其原因。采用让学生直接动手参与,记录现象并进行思考,培养他们研究性学习的能力。如梁的抗弯试验,对于方案的设计、构件的浇注、以及从加载到破坏的过程,学生来参与,最后验证试验结果和现象是否与预期相同。以激发和培养学生的动手能力和科学创造性思维方法,进一步认识和加深对课本知识的理解、综合分析与解决问题的能力。
(二)教学方法改革
传统的教学方法是老师给学生摆明现象、提出问题,然后老师来回答疑问。结合多年的教学实践后,发现学生更愿意接受互动参与式的教学方式。因此,教师应从学生对知识的认知程度上入手,全面调动其参与性,联系相关的知识点,力争达到实现融会贯通。具体如下:
(1)将工程案例穿插到教学过程中,如课程设计、毕业设计和工程现场录像,都是很好的素材。把解决工程问题作为学习的动力,激发起学生的学习兴趣和创新意识,明白所学理论知识与实践的相互关系,在什么场合使用以及如何使用。此外,在教学时教师应先提出学习的目标和任务,分析和总结知识内容的特点,设置疑问、对重点和难点问题进行讨论,提高学生理论联系实际和應用知识解决实际问题的能力。避免学生在学习时漫无目的,耗费大量时间却效果不佳。
(2)该部分教学内容多且与现行规范、规程等联系比较强,应在分析该阶段学生的学习特点和各种教学方法的特点等后,确定有哪些适于多媒体教学和传统的板书。引入大量的图片、动画、工程现场录像等到课堂中来,如清楚直观地展示梁、柱、楼盖等构件的钢筋形式、位置、数量、搭接方式,甚至还可以采用视频跟踪,让学生了解并熟悉一栋建筑的整个施工过程。这样学生会在学习时产生亲切感和亲临感,有利于掌握基本概念,提高整体教学效果。此外,随着工程建设的需求和发展其内容和知识还在不断地更新。教师要及时将学科的发展动态和自己的科研成果来不断填充教学内容,使所授课的知识紧跟学科发展前沿,开阔学生的视野。
(3)考核方式改革。采用多元化的考核方式来评价学生的学习效果,减少其仅靠考试前快速突击就可取得好成绩的弊端,以更加真实合理的方式地来评价学生的学业水平。如综合考量到平时作业、布置任务的完成情况、课程设计和笔试环节,真正激励学生平时的认真学习热情和积极性。
四、结论
通过作者自身的教学钻研与经验探讨体会,深刻认识到《混凝土结构基本原理》是一门理论与实际密切相联的学科,各知识点环环相扣,且涉及专业学科面的范围非常广。教师应从本课程的认知规律和学生的求知特点来寻找突破口,以先进的教育理念和培养土木工程应用型人才为方针,采取多样化的教学方法和手段来紧贴实践,缩小从理论到实践的距离,找到学生易于接受的最佳方式,将基本技能、工程实践能力和创新意识真正的融入到教学工作中去,达到既提升学生知识水平的同时,又拓展了其综合能力。
参考文献
[1] 东南大学等. 混凝土结构上册, 混凝土结构设计原理[M]. 中国建筑工业出版社, 2008.
[2] 中华人民共和国住房和城乡建设部组织. 混凝土结构设计规范[M]. 中国建筑工业出版社, 2014.
[3] 刘素梅, 徐礼华. 混凝土结构基本原理课程双语教学实践与总结[J]. 高等建筑教育, 2015, 24(3):112-116.
[4] 宋岩. 基于卓越工程师计划的“混凝土结构设计原理”课程教学改革[J]. 兰州教育学院学报, 2013, 29(12):83-84.
[5] 顾文虎. 基于“卓越工程师教育培养计划”下混凝土结构设计原理课程改革探索[J]. 赤峰学院学报:自然科学版, 2013(21):55-56.