中国区域能源、经济与环境耦合的动态演化
2017-03-15逯进常虹汪运波
逯进+常虹+汪运波
摘要 文章全面解析了系统耦合机制,以此为基础构建了能源、经济与环境三系统耦合模型,测算了1995—2014年中国四大区域三大系统间的耦合协调水平,并从时空两个维度对区域三系统交互关系的变化特征以及差异做出了全面讨论。结果表明,①各省区经济和环境综合指数呈持续上升的良好态势,而能源综合指数在小幅波动中保持了较为稳定的发展状态,同时三者关系极为密切,具体表现为三类指数的变动具有显著的相关性。②三系统交互作用的耦合度均保持不断递增的演化趋势,但绝对水平较低,且区域间差异较为明显,整体上呈现由东到西递减态势。③三系统的耦合变化与能源-经济、能源-环境和经济-环境三类二元系统的协调发展具有密切的相关性。
④在探索三系统耦合协调的持续发展路径时,需重点引导三系统打破固有束缚,通过有秩序的相互配合产生单个系统所不具备的发展能力。而从现实状态看,在当前面临经济下行、资源环境不可持续以及区域发展差异扩大等问题的严峻挑战,各省区需结合本区域实际发展状况和比较优势制定发展规划。东部需以雄厚的经济实力为基础强化技术创新,以带动能源高效利用和环境保护;中部和东北需调整能源消费结构并提高能源利用效率;西部则应将重点放在绿色发展和防范环境风险两方面。
关键词 能源;经济;环境;耦合
中图分类号 F224.0 文献标识码 A 文章编号 1002-2104(2017)02-0060-09 doi:10.3969/j.issn.1002-2104.2017.02.010
改革开放以来,中国经济历经三十多年高速增长的同时,能源和环境状况也发生了巨变,粗放发展模式所依赖的“高投入”、“高能耗”、“高污染”造成了持续的能源紧缺与严重的环境退化。一方面,长期高强度的能源投入为粗放型经济的高速增长提供了支撑,但长期以煤炭为主的能源消费结构和低效的能源利用效率引致了自然环境的快速退化;反过来,其又对经济和能源发展形成制约,一些地区甚至陷入“环境贫困陷阱”,由此形成的不良循环模式不断加剧着能源、经济与环境三者之间的矛盾。另一方面,我国地域辽阔,各地区经济基础、发展模式和自然资源分布差异明显,从而使得上述矛盾显现出区域间的显著差异。我国面临日益严重的能源、经济与环境的可持续发展困境。
1 文献综述
随着“可持续发展”理念的逐步成型,其在世界范围内被广泛接受,并在理论与实践当中有机地将能源、经济与环境三大系统(下文简称3E)密不可分地联系在一起,从而成为考量3E关系的标准出发点。目前,有关3E的研究目标非常明确,其中一个主要的研究分支在于揭示三大系统及其各自子系统内部众多要素之间的交互作用程度,进而由此全面评判三大系统之间的综合平衡水平。
既有研究从多视角对3E系统的内在联系及其相互作用的逻辑关系做出了基本陈述与判断。部分研究以时间序列数据为样本,运用协整分析和因果检验,讨论了能源与经济的二元关系。各国学者对二者的相互作用具有较为统一的认识,认为能源消费与经济增长之间具有稳定的长期双向因果关系,且存在明显的区域差异[1-5]。就能源与环境系统而言,有学者研究认为能源生产和消费的增加已成为导致环境质量退变的重要原因[6-9]。关于环境与经济关系的研究则大多从环境库兹涅茨曲线假说入手,但研究结论存在分歧,一方面,支持论者从经济增长、贸易和政策等方面研究EKC形成的内在动因[10-12],并以不同国家的数据为样本得出了基本一致的结论:环境质量随经济发展程度提升先退化后改善;另一方面,一些学者对EKC提出了质疑,他们认为,经济与环境的关系曲线存在多种形态,包括U型、N型、同步型等[13-15]。
另有研究展开了对3E系统的综合讨论,但研究时序和方法选择有所不同,主要包括3E系统协调度的测算与评析[16-20],应用动态CGE模型[21]和内生增长模型[22],以及使用计量模型分析和阐述能源、经济与环境的投入产出关系以及相关关系[23-25]等。现有文献中涉及3E系统协调性分析的结论基本一致,大都认为中国3E协调水平仍处于较低等级。此外,魏一鸣、范英等将人口系统纳入研究范围,组成动态开放复杂系统,构建多目标规划和集成模型反映子系统协调发展的制衡关系[26],这一研究具有较为新颖的分析视角。
深入考查现有研究可知,目前仍有以下方面有待深化与完善:一是在两系统关系研究基础上,需要將3E综合于系统耦合分析框架下,从多系统协调和发展视角展开理论与实证分析;二是从时空两个维度测度3E耦合演化规律,并从省域层面展开比较分析;三是加深对耦合边界与层次的确定。解决上述问题对进一步全面认识3E系统的变动规律具有重要的理论与实际意义。
2 系统耦合机制的理论解析
2.1 二元系统耦合
本文的两系统耦合度模型源于廖重斌[27]的研究成果,其主要的计算过程由如下方程构成:
其中,X、Y为两系统各自的综合指数;C 表示协调度,可由两系统的偏离差系数推导得到;T 表示两系统的综合发展水平,可由等产量线推得;D 为耦合度。α、β 为表示两系统重要程度的权重,以能源、环境两系统为例,笔者认为二者同等重要,因此,可设定α=β=1/2。
2.2 三元系统耦合
首先,三系统协调度的离差系数可设定为[28]:
2.3 三元系统耦合的理论解析
假设三系统的耦合跃迁演化路径满足S形周期波动变动机制,且系统发展呈周期性变化,则可将图1中三个发展圈看作三个依次提升的耦合发展层次。这里可以假定,图1中VC和VT为协调水平和发展水平在受自身和外界条件影响下的演化速度。在每一个发展周期内,整个系统经历四个发展阶段:Ⅰ区为协调共生阶段,X、Y、Z三系统之间不存在相互约束和限制,VT和VC随子系统发展而增加。Ⅱ区为协调发展阶段,经济的快速增长将对能源环境显现出胁迫作用,进而资源环境退化开始制约经济发展,系统间矛盾日渐显露但并不突出,VT继续增加而VC下降。Ⅲ区为极限发展阶段,这一时期子系统间形成负反馈关系,能源和环境问题日趋严峻,同时对经济发展产生副作用,导致VT和VC均下降。Ⅳ区为螺旋式上升阶段,依靠资本和技术积累,将有力推动环保、资源开采与利用的技术创新,从而促使能源产业向清洁高效转变;同时源于经验积累而引致的3E政策调整亦出现优化与升级,从而三系统由相互制衡转为相互促进并实现跃迁。
从I至III,3E系统的协调与发展水平经历了逐渐衰退的过程。假设处于III区域的耦合水平为图1中的M,则如果不采取任何干预措施,演化路径将极有可能演变为曲线MQ,这意味着实际耦合水平将偏离最佳演化路径的程度越来越大。而如果进行资金、技术投入或政策干预,演化路径将可能变为曲线MA,则三元耦合关系将向正反馈方向发展,最终实现整个系统向更优质的耦合水平跃迁的态势,M点移至A点,进入下一个演化周期。
3 指标体系与数据说明
3.1 指标体系
分别对能源、经济和环境领域相关概念进行明确界定,综合考虑各方面因素,借鉴已有研究成果[16-20],遵循科学性、动态性、数据可得性和层次性原则[29],本文从总量、结构、效益三个方面考察能源和经济系统,同时将环境系统分解为环境污染程度、环境治理与环境质量三个方面。这一指标体系较为全面的展现3E系统的综合内涵。指标分类见表1。
3.2 数据来源
本文的研究时序为1995—2014,以我国30个省区作为研究对象,西藏、港澳台地区因数据缺失未纳入研究对象。文中数据来源于历年《中国统计年鉴》、各省统计年鉴、《中国能源统计年鉴》、《中国环境统计年鉴》以及WIND数据库等。部分缺失数据统一采用线性拟合法估算而得。
3.3 实证
(1)指标值的标准化处理。3E指标具体数据的量级和量纲差异较大,因此可对数据进行标准化处理。本文采用组间极差值公式进行处理。
正向指标:Xij′=Xij-minXijmaxXij-minXij,负向指标:Xij′=maxXij-XijmaxXij-minXij
(2)指标权重的确定。本文采用熵值法确定各项指标的权重值。限于篇幅,权重值不再列出。
(3)综合指数和耦合度的测算。综合指数可测度各子系统发展水平与状况,其计算公式如下:
式中Wi、Wj、Wk分別表示能源、经济与环境指标的权重;Xn、Yn、Zn分别为能源、经济与环境综合指数;Iin、Ijn、Ikn分别表示各指标的标准化数值。以此为基础,即可计算二元和三元系统的耦合度。
(4)耦合发展类型的判断。具体划分类型如表2所示[29]。
4 实证分析
4.1 综合指数
依据(9)式可得三系统的综合指数值,限于篇幅不再列出。观察指数计算结果可知,一方面,从全国整体看,能源综合指数的总体均值在0.47左右波动,表明1995—2014年间我国能源整体发展水平较为稳定;经济综合指数的总体均值从0.1上升至0.33,呈缓慢上升态势;环境综合指数的总体均值从0.3变动至0.61,总体上保持良好态势。
另一方面,综合来看,能源、经济与环境之间存在一定的联系。首先,2000—2008年经济发展综合指数快速上升时期,我国产业结构的重型化发展趋势明显,四大区域能源综合指数均出现过不同程度下降;但2008年后,能源综合指数保持平稳,说明伴随经济开始转型和经济增速的回落,能源的优化配置和高效利用一定程度上得以落实。其次,经济与环境系统二者间总体呈同向
变动趋势,虽然环境综合指数在个别年份出现下降,但从长期趋势看,存在环境质量缓慢改善的趋势,这与我国整体经济发展水平趋稳,增长方式转变以及经济结构稳步调整有关,与此相伴随,无论是积极的推进,还是倒逼机制的作用,污染治理强度逐年提升,均与生态环境改善密切相关。
4.2 系统耦合分析
4.2.1 二元系统耦合
由(1)、(2)、(3)式可得三类二元系统的耦合度值,限于篇幅,计算结果未列出。依据计算结果,并结合图2ac可得如下规律:
(1)近20年来,从全国均值看,能源与经济的耦合水平较低,仅从严重失调转变为轻度失调,且耦合度的提升主要由经济增长带动。从四大区域看,上述特征也较为明显。东部、东北、中部和西部分别从0.17、0.16、0.16、0.15变动至0.46、0.36、0.37、0.34,均未实现由失调向协调发展的跨越,且与经济增长时序变动规律基本一致,耦合度由东至西依次递减,经济发展水平越高,能源与经济耦合水平越高。二者之间的协调发展大致可分为三个阶段:2000年之前,四大区域均在0.15—0.2区间内微幅上升;2001—2008年,东部地区率先实现跃迁,耦合优势逐步突显,与其他区域耦合水平差异呈扩大态势;2008年后耦合度继续稳步上升,区域间差距保持在一定水平不再扩大。
(2)能源与环境的耦合变动较为平稳,二者耦合水平持续递增,总体均值从0.39上升至0.57,增幅较小,仅由轻度失调转变为勉强协调,但整体上呈趋向于耦合优化的态势。从各区域看,耦合度亦持续提升。东部、东北、中部、西部分别从0.45、0.43、0.37、0.34变动至0.6、0.55、0.54、0.55,增幅分别为33%、28%、46%、62%,增幅由西向东逐次降低。具体来看,1995年四大区域均为轻度失调状态,且东部和东北部相对较高;2001年东部率先实现向勉强协调发展的跃迁,同时西部耦合值加速提升并超越中部和东北。目前,除东部外三大区域间耦合差距正逐步缩小,未来可能呈现趋同态势。
(3)从全国均值看,经济与环境耦合水平在2000年之后保持上升的良好态势,1995—2014年耦合度从轻度失调的0.39变动至勉强协调的0.56。分区域看,东部、东北、中部和西部的耦合均值分别从0.45、0.43、0.37、0.33变动至0.6、0.55、0.54、0.54,东部在2005年之后与其他区域间的一直保持较为明显的差距,而西部增速较快,截止2014年,其耦合水平与东北部和中部基本持平。
4.2.2 3E系统耦合
表3给出了1995—2014年各省区耦合度的计算结果,图2d描绘了3E耦合时序变动的动态演化趋势,可以发现:
(1)从各年度全国均值看,耦合总体呈缓慢上升态势,从0.26上升至0.48,增幅为85%,由中度失调转变为濒临失调,耦合绝对水平较低,截止2014年仍未实现由失调衰退向协调发展的跨越。
(2)从四大区域看,东部、中部、西部、东北的耦合度分别从0.3、0.28、0.25、0.23变动至0.56、0.46、0.46、0.44,增幅分别为87%、64%、84%、91%,各区域耦合水平均保持逐步上升且呈“U”型状态,其中东北增幅最低,而中部和西部一直低于全国平均水平,但增幅较大。此外,除东部外三大区域耦合差距逐年缩小,目前均处于濒临失调状态。东部地区在2014年率先实现由濒临失调向勉强协调的跃迁,领先优势越来越明显。
(3)从省域层面看,各省耦合度均呈上升趋势,省域间耦合水平差异明显。东部的北京、上海、山东、江苏、浙江和广东进入勉强协调发展阶段,但耦合水平较低,其余各省均属于濒临失调衰退区间。东北三省差异较大,辽宁省最高,属于勉强协调发展状态,吉林和黑龙江属于轻度失调衰退类。中部地区各省的差异最小,各省均在处于濒临失调衰退状态。中部和东北部能源型城市经济发展滞后,资源环境压力较大,有待突破发展瓶颈。西部地区耦合态势不容乐观,仅内蒙古为勉强协调,其余省份均属于轻度失调和濒临失调状态。
(4)从起止两个年度看,所有省区3E的耦合协调性水平都有绝对提升,但相对关系并没有发生根本变动,从东至西依次减弱的态势依旧明显。由此可以明确,除个别省份外,三大区域之间的相对差异没有根本性改观。
4.2.3 2E与3E系统耦合关联性分析
由于能源、经济与环境三系统耦合水平的变化趋势与每个二元系统的耦合度密切相关,因此,可以通过比较上述四类耦合值,明确他们之间的关系。图3给出了四大区域三类二系统耦合度和三系统耦合度的时序拟合线及函数。通过观察可以发现:
(1)东部和东北的能源-环境线性擬合的斜率为正但数值较小,整体变化幅度较小,同时2014年耦合值的下降表明二者耦合水平可能呈逐步衰减趋势,进而拉低3E耦合。这一趋势可能主要与两地区能源综合指数递减趋势相关。两地区能源的供求矛盾一直比较突出,能源的可持续利用与发展能力令人堪忧。
(2)东北、中部和西部经济-环境拟合曲线在2002年之后由平稳转为上升趋势,但增幅均落后于东部。原因可能有两个方面,一是东部原本就具有自然环境的优势用以承载高速经济增长;另一方面,考虑到东部在“率先发展战略引导下”进行了经济结构调整和发展方式转型的先试先行,其产业发展的整体水平要明显优于其它三个地区。这两个方面为环境问题的解决提供了基础性保障。而中西部经济发展起步晚基础薄弱,且在生态保护和环境污染治理方面存在明显劣势,因此这一现象当属正常。
(3)东北和中部两地区能源—经济耦合变动趋势具有相似性,1995—2002年历经了一段较长时间的停滞不前,在2002年后开始表现出较为明显的上升趋势。两区域各省区的资源与能源型城市较多,但长期依靠高开采、高能耗、高污染支撑的粗放型发展模式,并未将资源优势转化为经济发展优势,反而加重了环境破坏与众多资源枯竭型城市的衰退,导致区域经济增长动力不足,由此严重阻碍环境与经济以及3E系统的良性协调发展态势。
5 结 论
各省区经济和环境综合指数呈现出持续上升的良好态势,而能源综合指数在小幅波动中保持了较为稳定的发展状态,此外三类指数的变动具有正或负向的相关性。虽然三系统之间具有相对独立性,且三者的发展并不总能保持一致,但提升各自的发展水平却是它们的共同导向,而这一点将有助于保持三者之间的协调共进。
各大区域3E系统耦合交互作用中经济系统均表现出主导作用,为此,保持合理的经济增速十分必要。考察期内,2E与3E系统耦合度均保持不断递增的演化趋势,但绝对耦合水平较低,实现协调可持续发展任重道远。
无论是三类综合指数、还是几类系统耦合度,在区域之间和区域内部均表现出明显的差异。东部地区两类耦合优势突出,但内部省际差异比中西部更为明显,而中西部多数地区的3E耦合仍处于失调状态,耦合水平和增幅均远落后于东部。这表明近年来中国的区域发展差异仍旧明显。
在系统耦合演化过程中,3E系统耦合水平的变化趋势与三类二元系统的耦合水平密切相关。这一点表现出新的现实信号是,各省区在探索耦合发展的有效途径时,还需重点关注三系统打破原有束缚组成的综合有机体将如何通过有秩序的相互配合产生单个系统所不具备的功能,实现和谐统一、繁荣共生。长久以来,社会各界大都关注区域间经济发展水平差异,殊不知,能源生产和使用的效率、环境破坏与保护的博弈、以及3E协调共进与否,都已成为区域之间更为广泛而深刻的差异表现。关注于此,将会更为有效地检测与制定区域发展政策。
3E系统耦合演化进程中,系统耦合值的持续上升趋势较为明显,这表明未来3E系统将趋于向更优质的耦合层次跃迁,据此可知,系统耦合的增长趋势与波动规律,耦合值极限的到来以及由极限突破引致的跃迁方式,将为“环境负载”、“增长极限”、“瓶颈突破”等问题的解决提供明确而新颖的审视视角和与政策引导。
依据上述结论,笔者认为,为有效提升我国3E系统耦合水平并缩小地区间的差距,各省区在探索3E良性耦合发展路径时,需结合本区域实际发展状况和比较优势,本着因地制宜与科学规划的思路制定相关政策。具体选择时,东部应以雄厚的经济实力为基础,发挥比较优势,强化技术创新以带动能源高效利用和环境保护;东北和中部地区应调整能源消费结构并提高能源利用效率,将资源优势转化为经济优势,这将有助于两地区切实摆脱高污染、高能耗以及低附加值的粗放式发展模式;而西部地区在追求经济增长的同时必须坚持绿色发展导向,特别是西藏、青海、云南、四川、甘肃等环境与生态脆弱省区,为有效防范环境与生态风险,不应片面强调GDP、投资等生产性指标。此外,考虑到我国地域辽阔,经济增长和能源分布存在严重的空间错位现象,故应利用灵活的市场机制,展开区域间有效的经济协作和资源整合。
参考文献(References)
[1]张明慧,李永峰. 论我国能源与经济增长关系[J]. 工业技术经济, 2004,23(4): 77-80. [ZHANG Minghui, LI Yongfeng. The relation between energy and economic growth in China [J]. Industrial technology & economy, 2004,23(4): 77-80.]
[2]赵湘莲,李岩岩,陆敏. 我国能源消费与经济增长的空间计量分析[J]. 软科学, 2012,26(3):33-38. [ZHAO Xianglian, LI Yanyan, LU Min. Spatial econometric analysis of energy consumption and economic growth in China [J]. Soft science, 2012,26(3):33-38.]
[3]李鹏. 能源消费与我国的经济增长——基于动态面板数据的实证分析[J]. 经济管理, 2013(1): 1-10. [LI Peng. Energy consumption and China economic growth:empirical analysis based on the dynamic data [J]. Economic management journal, 2013(1):1-10.]
[4]ASAFUADJAYE J. The relationship between energy cconsumption, energy prices and economic growth: time series evidence from Asian developing countries [J]. Energy economics, 2000,22: 615-625.
[5]HONDROYIANNIS G, LOLOS S, PAPAPETROU E. Energy consumption and economic growth: assessing the evidence from Greece [J]. Energy economics, 2002,24: 319-336.
[6]国涓. 我国能源消费与环境污染关系的分析[J]. 商业经济, 2008(11): 8-9. [GUO Juan. Analysis on the relationship between energy consumption and environmental pollution in China [J]. Business economy, 2008(11):8-9.]
[7]李从欣,李国柱. 能源消费与环境污染关系的实证研究[J]. 煤炭經济研究, 2009(1): 37-38. [LI Congxin, LI Guozhu. An empirical study on the relationship between energy consumption and environmental pollution [J]. Coal economic research, 2009(1): 37-38.]
[8]王姗姗,徐吉辉,邱长溶. 能源消费与环境污染的边限协整分析[J]. 中国人口·资源与环境, 2010,20(4): 69-73. [WANG Shanshan, XU Jihui, QIU Changrong. Bounds testing for energy consumption and environmental pollution [J]. China population, resources and environment, 2010,20(4): 69-73.]
[9]李国璋,江金荣,周彩云. 全要素能源效率与环境污染关系研究[J]. 中国人口·资源与环境, 2010, 20(4): 50-56. [LI Guozhang, JIANG Jinrong, ZHOU Caiyun. Relation between total factor energy efficiency and environmental pollution [J]. China population, resources and environment, 2010, 20(4): 50-56.]
[10]LOPEZ R. The environment as a factor of production: the effects of economic growth and trade liberalization [J]. Journal of environmental economics, 1994, 27:163-184.
[11]GRAINGER A. The forest transition: an alternative approach [J]. Area, 1998(3):242-251.
[12]MUHAMMAD S, NACEUR K, GAZI S. Environmental Kuznets curve in an open economy: a bounds testing and causality analysis for Tunisia [J]. Renewable & sustainable energy reviews, 2014, 34:325-336.
[13]ANDREONI J, LEVINSON A. The simple analytics of the environmental Kuznets curve [J ]. Journal of public economics, 2001, 80:269-282.
[14]MAGNANI E. The environmental Kuznets curve: development path or policy result [J].Environmental model & software, 2001, 16:157-165.
[15]BELLO A K, ABIMBOLA O M. Dose the level of economic growth influence environmental quality in Nigeria: a test of environmental Kuznets curve hypothesis [J]. Pakistan journal of social sciences, 2010,7: 325-329.
[16]赵芳. 中国能源-经济-环境(3E)协调发展状态的实证研究[J]. 经济学家, 2009,12(12): 35-41. [ZHAO Fang. Empirical study on the coordinated development of Chinas energyeconomyenvironment(3E) [J]. Economist, 2009,12(12): 35-41.]
[17]王燕军,宗跃光,孙燕红. 陕西省能源、环境与经济关系的实证研究[J]. 河南科学, 2010,28(7): 880-884. [WANG Yanjun, ZONG Yueguang, SUN Yanhong. An empirical study on the relationship among energy, environment and economy in Shanxi province [J]. Henan science, 2010,28(7): 880-884.]
[18]周荣敏,张燕. 能源-经济-环境系统综合发展水平实证研究[J]. 商业经济研究, 2011(22): 130-131. [ZHOU Rongmin, ZHANG Yan. An empirical study on the comprehensive development of energy,economy and environment system [J]. Journal of commercial economics, 2011(22): 130-131.]
[19]曾鸣,王亚娟. 基于主成分分析法的我国能源、经济、环境系统耦合协调度研究[J].
华北电力大学学报(社会科学版),2013(3):1-6. [ZENG Ming, WANG Yajuan. Study on coupling coordination degree of Chinas energy, economy and environment systems:based on PCA method [J]. Journal of North China Electric Power University(social sciences),2013(3):1-6.]
[20]劉承良,段德忠,余瑞林,等. 武汉城市圈社会经济与资源环境系统耦合作用的时空结构[J]. 中国人口·资源与环境, 2014,24(5): 145-152. [LIU Chengliang, DUAN Dezhong, YU Ruilin, et al. Spatialtemporal structure of coupling of the economyresourcesenvironment system in Wuhan metropolitan area [J]. China population, resources and environment, 2014,24(5): 145-152.]
[21]郭正权,郑宇花,张兴平. 基于CGE模型的我国能源-环境-经济系统分析[J]. 系统工程学报, 2014,29(5): 581-591. [GUO Zhengquan, ZHENG Yuhua, ZHANG Xingping. Analysis of the energyenvironmenteconomy system in China based on dynamic CGE model [J]. Journal of systems engineering, 2014,29(5): 581-591.]
[22]郑丽琳,朱启贵. 能源环境约束下垂直技术进步、产业结构变迁与经济可持续增长[J]. 财经研究, 2013(7): 49-60. [ZHENG Lilin, ZHU Qigui. Vertical technological progress, industrial structure change and sustainable economic growth under energy and environment constraints [J]. Journal of finance and economics, 2013(7): 49-60.]
[23]薛静静,沈镭,彭保发,等. 区域能源消费与经济和环境绩效——基于14个能源输入和输出大省的实证研究[J]. 地理学报, 2014,69(10): 1414-1424. [XUE Jingjing,SHEN Lei, PENG Baofa, et al. The economic and environmental performance of regional energy consumption: an empirical study on 14 major energy output and input provinces in China [J]. Acta geographica sinica, 2014,69(10): 1414-1424.]
[24]张阿玲,李继峰. 构建中国的能源-经济-环境系统评价模型[J]. 清华大学学报(自然科学版), 2007,47(9): 1537-1540. [ZHANG Aling, LI Jifeng. Chinese integrated energyeconomyenvironment assessment model [J]. Journal of Tsinghua University(science and technology), 2007,47(9): 1537-1540.]
[25]張子龙,薛冰,陈兴鹏,等. 基于哈肯模型的中国能源-经济-环境系统演化机制[J]. 生态经济(中文版), 2015,31(1):14-17. [ZHANG Zilong, XUE Bing, CHEN Xingpeng, et al. Evolutionary mechanism analysis of energyeconomyenvironment system in China: based on Haken model[J]. Ecological economy(Chinese version), 2015,31(1): 14-17.]
[26]魏一鸣,曾嵘,范英,等. 北京市人口、资源、环境与经济协调发展的多目标集成模型[J]. 系统工程理论与实践, 2002,22(2): 74-83 [WEI Yiming, ZENG Rong, FAN Ying, et al. A multiobjective goal programming model for Beijings coordination development of population, resources, environment and economy[J]. System engineeringtheory and practice, 2002,22(2): 74-83.]
[27]廖重斌. 环境与经济协调发展的定量评判及其分类体系——以珠江三角洲城市群为例[J]. 热带地理,1999,19(2):76-82. [LIAO Chongbin. Quantitative judgement and classification system for coordinated development of environment and economy: a case study of the city group in the Pearl River Delta [J]. Tropical geography, 1999,19(2): 76-82.]
[28]汤玲,李建平,余乐安,等. 基于距离协调度模型的系统协调发展定量评价方法[J]. 系统工程理论与实践, 2010,30(4):594-602. [TANG ling, Li Jianping, YU Lean, et al. Quantitative evolution methodology for system coordination development based on distance coordination degree model [J]. Systems engineeringtheory and practice, 2010,30(4): 594-602.]
[29]逯进,周惠民. 中国省域人力资本与经济增长耦合关系的实证分析[J]. 数量经济技术经济研究, 2013(9): 3-19. [LU Jin, ZHOU Huimin. Empirical analysis of coupling relationship between human capital and economic growth in Chinese provinces [J]. The journal of quantitative & technical economics, 2013(9): 3-19.]