肠道菌群与非酒精性脂肪性肝病关系的研究进展
2017-03-08刘晨晨王凌云
刘晨晨, 李 稳, 王凌云
济宁市第一人民医院消化内科,山东 济宁 272111
肠道菌群与非酒精性脂肪性肝病关系的研究进展
刘晨晨, 李 稳, 王凌云
济宁市第一人民医院消化内科,山东 济宁 272111
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是西方国家及一些亚洲国家中常见的慢性肝脏疾病,目前在世界范围内的发病率逐渐上升。NAFLD包括单纯性脂肪肝、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)、NASH相关性肝硬化及肝癌等一系列疾病。NASH进展为肝硬化、肝癌的风险大,预后差,是世界范围内沉重的医疗负担。NAFLD是由多种因素引起的疾病,除了环境因素及遗传因素外,近年来不断有证据提示,肠道菌群在NAFLD的发生、发展过程中起一定作用,本文就肠道菌群与NAFLD关系的研究进展作一概述。
肠道菌群;非酒精性脂肪性肝病;胰岛素抵抗
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是西方国家及一些亚洲国家中常见的慢性肝病,在西方国家普通人群中的发生率是25%,肥胖患者中30%~100%,2型糖尿病患者中10%~75%[1-2]。NAFLD包括单纯性脂肪肝、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)、NASH相关性肝硬化及肝癌等[3]。目前NAFLD发病机制尚不明确,近年来不断有研究[4]提示,肠道菌群在NAFLD发生、发展过程起重要作用,本文就肠道菌群与NAFLD关系的研究进展作一概述。
1 NAFLD临床特点
85%的NAFLD患者只合并脂肪变性,病情进展缓慢,其中10%~15%将会进展成为NASH,在一部分患者中最终会进展为肝硬化,甚至肝功能衰竭、肝癌等[4]。NAFLD合并糖尿病患者出现肝硬化、死亡等风险较单纯NAFLD患者明显增大[5]。NASH肝脏病理改变以肝脏小叶和门脉的炎症为主,以中性粒细胞、单核细胞、淋巴细胞浸润为特征,伴随不同程度的纤维化、肝细胞死亡、病理性血管增生等。多次打击学说认为,NAFLD进展为NASH经历了多次打击,第一次打击引起胰岛素抵抗(insulin resistance, IR),进而肝脏中脂肪堆积,使得肝细胞更易受多种其他因素的影响,第二次打击导致脂质过氧化、炎症因子产量增加,诱导NAFLD进展为NASH,其他打击包括遗传因素、氧化应激、Kupffer细胞中TLR-4介导的信号通路等[6];近年研究[7-9]认为,肠道菌群紊乱也是一种打击因素,可以影响固有免疫或促进内源性乙醇产生而影响机体。
2 肠道菌群与NAFLD
人类肠腔中寄居着数万亿的微生物,包括细菌、古细菌、病毒、真菌,其中拟杆菌门和厚壁杆菌门是主导的门类[10]。研究[11]显示,肠道菌群紊乱可以加重NAFLD,诱发小肠菌群过度生长,造成肠道黏膜通透性增加。应用qPCR的研究[10]显示,与单纯NAFLD患者相比,NASH患者肠道菌群中拟杆菌群数量减少。应用测序技术[12]显示,与健康个体相比,NASH患者中厚壁杆菌数量减少,而拟杆菌数量增加;研究[13]显示,家族性NAFLD患者中毛螺杆菌、乳杆菌数量增加;研究[14]表明,肠道菌群紊乱可以影响营养物质吸收、患者食欲、宿主基因表达及免疫反应等,进而影响NAFLD。研究[15]显示,与健康对照组相比,NAFLD患者中粪便菌群在门水平的丰度降低,拟杆菌门数量增多20%,而厚壁菌门数量减少24%;NAFLD患者中革兰阴性杆菌数目更多,小肠菌群失调与非肥胖NAFLD有明显的相关性,并能加重NAFLD。研究[16]显示,NAFLD患者的肠道菌群紊乱不依赖于肥胖因素,主要与拟杆菌门、变形杆菌门数目的变化及小肠菌群过度生长有关。
2.1肠道菌群与内毒素血症肠道菌群中革兰阴性菌的LPS是产生内毒素血症的重要部分,LPS和肠源性产物如肽聚糖在门脉血流中含量增加会引起肝脏中内毒素介导因子增加,进而促进单纯性NAFLD向NASH进展。研究[13]显示,肠道菌群构成的改变与NAFLD密切相关,Mouzaki等[10]发现,与健康成人相比,肥胖NASH患者中拟杆菌数量明显减少,而在单纯NAFLD患者中变化差异无统计学意义。Brun等[17]研究认为,肠道通透性增加引起的内毒素血症是引起NAFLD的起始因素,而肠道菌群在其病理过程中起重要作用。
2.2肠道菌群与胆汁酸胆汁酸作为重要信号传导分子,在脂质溶解及吸收过程中起关键作用[18]。胆汁酸可以调节肝细胞中葡萄糖及脂质代谢、炎症反应、激活多种核因子受体而调节自身合成[19]。胆汁酸由胆固醇合成,并在肝脏中加工完善,胆汁酸在肠道由肠内菌群进一步修饰并重吸收。肠道菌群可以通过改变胆汁酸的代谢而影响胆汁酸的产量[20]。胆汁酸对细菌细胞膜有降解作用,进而可以对肠道菌群起一定的抗菌作用,从而改变肠道菌群的构成[21]。
2.3肠道菌群与IRNAFLD患者中IR明显增加,促进肝脏中游离脂肪酸的堆积,进而加重NAFLD[22]。研究[23]提示,肠道菌群与IR具有相关性,革兰阴性菌细胞壁成分中的LPS可通过TLR-4受体依赖途径或非依赖途径激活炎症反应链,引起TNF-α、IL-6、iNO、NF-κB等炎症因子的抑制因子表达增加,进而导致IR。在小鼠中应用益生菌或抗TNF-α抗体等调节肠道菌群可以降低炎症因子水平、改善IR状态并且降低肝脏炎症水平[24]。
2.4肠道菌群与内源性乙醇生理状态下人体可以产生少量内源性乙醇,内源性乙醇在肝脏被乙醇脱氢酶有效降解[25]。研究[16]显示,NASH患者肠道中产乙醇的埃希菌属增加,可以明显升高血清乙醇水平;NASH患者中乙醇代谢酶明显增多[25],Zhu等[12]研究显示,肠源性内源性乙醇和NASH密切相关;另有研究[16]显示,儿童NAFLD患者中变形杆菌和普氏菌属数量增加,内源性乙醇产量增高。NASH患者中产乙醇细菌的增多会升高循环血液中乙醇水平[26],内生乙醇可引起氧化应激并增大肠道通透性,使肝脏中乙醇及其代谢产物增多,进而加重肝脏炎症反应、促进NAFLD疾病进展。
3 高胰岛素血症、TNF-α信号通路与NAFLD
一些有毒性脂质如游离饱和脂肪酸、游离胆固醇、神经酰胺及其他鞘脂类在肝细胞中的异常堆积可以激活细胞应激反应等多种信号通路,最终引起细胞死亡,这种作用被称为脂毒性,脂毒性是NAFLD进展过程中的关键事件;脂毒性可以促进肝脏局部及全身的IR,进而导致高胰岛素血症[27]。高胰岛素血症可引起胰岛素生长因子(IGF-1)表达增加,IGF-1具有重要的促增殖和抗凋亡活性[28]。动物实验[29]结果显示,TLR-4介导了NAFLD进展至NASH的过程,TLR-4受体分子可通过诱发活性氧依赖的X结合蛋白1(XBP-1)而在Kupffer细胞介导NASH中有一定作用。IL-6可以激活信号传导分子STAT-3,具有促进增殖和抗凋亡作用[30],饮食因素和肥胖因素均可以通过促进IL-6和TNF-α表达而促进肝脏炎症和肿瘤的发生、发展。
4 肝脏固有免疫与NAFLD
肝脏是抵御肠道来源病原菌的第一道屏障,70%的肝脏血流来自肠道静脉回流血液,食物抗原、内毒素(脂多糖、鞭毛蛋白等)、细菌产物等首先由肝脏代谢解毒[31],再进入循环血液。多种肝脏细胞如Kupffer细胞、窦状隙内皮细胞、胆管上皮细胞、肝细胞可以表达固有免疫受体分子,能够识别多种细菌产物病原识别受体;肝脏中富含的固有免疫细胞如巨噬细胞、淋巴细胞、自然杀伤细胞、树突样细胞等可以通过模式识别受体识别携带特定病原菌模式分子的外源性分子。受体分子与细菌产物之间的相互作用引起炎症小体等多种炎症信号通路的激活。在小鼠中,炎症小体缺失会引起拟杆菌数量增加及厚壁杆菌数量减少,同时引起肝脏的脂肪变及炎症反应[32]。与健康对照组相比,NASH患者中厚壁杆菌门中的疣微菌科数量减少[16];与肥胖患者、健康个体相比,NASH患者中埃希菌属数量增加[12,16]。在炎症小体基因敲除的小鼠中观察到肠道菌群病理性改变,门脉血中LPS和细菌DNA含量增加、肝脏中TNF-α表达增强,进而促进肝脏脂肪变和炎症[32]。在小鼠中的研究显示,Kupffer细胞中TLR4在介导单纯NAFLD进展至NASH中起一定作用[29],而TLR-4缺失时可减少NASH发生[33]。以上结果显示,炎症小体功能受损可以引起肠道菌群的改变并增加肝脏中促炎因子,加速NAFLD向NASH进展。Toll样受体(Toll-like receptors, TLRs)在固有免疫过程中起关键作用,是生物体中结构上高度保守的转膜蛋白。TLR-5在肠道黏膜中表达,可被细菌鞭毛蛋白激活;TLR-5敲除的小鼠出现摄食过量、IR、高脂血症、肥胖、肠道菌群紊乱等改变,将这种小鼠中的肠道菌群移植至正常小鼠后,正常小鼠中出现代谢综合征[34]。
5 细胞外囊与NAFLD
细胞外囊(extracellular vesicles, EVs)是细胞间有效的信号分子,可转运多种具有生物活性分子到靶标细胞中,在多种生理及病理过程中起一定作用[35-38]。EVs可以释放多种生物活性分子,EVs包括外夹体、核外颗粒体、凋亡小体三类。研究[39]显示,在NASH患者血液中具有脂毒性的饱和游离脂肪酸进入肝脏后可以产生并释放大量EVs,这些EVs可作用于多种靶细胞而促进NAFLD进展。Ibrahim研究探讨了脂毒性介导的肝细胞源性EVs在NASH疾病中的作用,结果显示,混合谱系激酶3(mixed lineage kinase 3,MLK3)介导了肥胖患者肝源性EVs的释放,EVs中携带趋化因子配体10,是一种潜在肝细胞源性巨噬细胞化学引诱剂,而使用MLK3抑制剂后引起趋化因子配体10数量显著增加[40]。最近的一项研究显示,分化成熟的脂肪酸在受到软脂酸刺激时会引起大量EVs释放,这些EVs可引起巨噬细胞的迁移,而软脂酸可通过激活Caspase-3而引起EVs释放,进而可以作为一种化学趋化剂[41]。脂肪细胞源性的EVs作为一种新的信号分子,连接了脂肪应激与巨噬细胞招募,EVs介导的细胞间信号传导是多种因素引起疾病如NASH的中心环节。
综上所述,人类和动物中的研究均显示,肠道菌群紊乱与NAFLD密切相关,肠道菌群紊乱可能通过引起内毒素血症、诱发IR、增加内源性乙醇产量、影响胆汁酸代谢及机体免疫反应等在NAFLD病理过程中起一定作用,但是否具有因果关系,及具体的机制仍需要进一步阐明;阐明这一机制将为NALFD的防治提供新的思路和靶点。
[1] Bellentani S, Scaglioni F, Marino M, et al. Epidemiology of non-alcoholic fatty liver disease [J]. Dig Dis, 2010, 28(1): 155-161.
[2] Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights [J]. Science, 2011, 332(6037): 1519-1152.
[3] Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven disease [J]. Trends Endocrinol Metab, 2013, 24(11): 537-545.
[4] Younossi ZM, Stepanova M, Negro F, et al. Nonalcoholic fatty liver disease in lean individuals in the United States [J]. Medicine (Baltimore), 2012, 91(6): 319-327.
[5] Stepanova M, Rafiq N, Younossi ZM. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study [J]. Gut, 2010, 59(10): 1410-1415.
[6] Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) [J]. Metabolism, 2016, 65(8): 1038-1048.
[7] Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH) [J]. Int J Mol Sci, 2013, 14(10): 20704-20728.
[8] Pisonero-Vaquero S, Martínez-Ferreras á, García-Mediavilla MV, et al. Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease [J]. Mol Nutr Food Res, 2015, 59(5): 879-893.
[9] Usami M, Miyoshi M, Yamashita H. Gut microbiota and host metabolism in liver cirrhosis [J]. World J Gastroenterol, 2015, 21(41): 11597-11608.
[10] Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease [J]. Hepatology, 2013, 58(1): 120-127.
[11] Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease [J]. Hepatology, 2009, 49(6): 1877-1887.
[12] Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH [J]. Hepatology, 2013, 57(2): 601-609.
[13] Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease [J]. Clin Gastroenterol Hepatol, 2013, 11(7): 868-875.
[14] Chassaing B, Etienne-Mesmin L, Gewirtz AT. Microbiota-liver axis in hepatic disease [J]. Hepatology, 2014, 59(1): 328-339.
[15] Wang B, Jiang X, Cao M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease [J]. Sci Rep, 2016, 6: 32002.
[16] Michail S, Lin M, Frey MR, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease [J]. FEMS Microbiol Ecol, 2015, 91(2): 1-9.
[17] Brun P, Castagliuolo I, Di Leo V, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis [J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(2): G518-G525.
[18] Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids [J]. J Lipid Res, 2015, 56(6): 1085-1099.
[19] Fuchs C, Claudel T, Trauner M, et al. Bile acid-mediated control of liver triglycerides [J]. Semin Liver Dis, 2013, 33(4): 330-342.
[20] Tanaka H, Doesburg K, Iwasaki T, et al. Screening of lactic acid bacteria for bile salt hydrolase activity [J]. J Dairy Sci, 1999, 82(12): 2530-2535.
[21] Begley M, Gahan CG, Hill C. The interaction between bacteria and bile [J]. FEMS Microbiol Rev, 2005, 29(4): 625-651.
[22] Yang KC, Hung HF, Lu CW, et al. Association of non-alcoholic fatty liver disease with metabolic syndrome independently of central obesity and insulin resistance [J]. Sci Rep, 2016, 6: 27034.
[23] Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance [J]. Nutrients, 2013, 5(3): 829-851.
[24] Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease [J]. Hepatology, 2003, 37(2): 343-350.
[25] Baker SS, Baker RD, Liu W, et al. Role of alcohol metabolism in non-alcoholic steatohepatitis [J]. PLoS One, 2010, 5(3): e9570.
[26] Gkolfakis P, Dimitriadis G, Triantafyllou K. Gut microbiota and non-alcoholic fatty liver disease [J]. Hepatobiliary Pancreat Dis Int, 2015, 14(6): 572-581.
[27] Byrne CD. Ectopic fat, insulin resistance and non-alcoholic fatty liver disease [J]. Proc Nutr Soc, 2013, 72(2): 412-419.
[28] Ikeda Y, Kajiyama K, Yamashita Y, et al. Differential expression of insulin-like growth factor 1 in human primary liver cancer [J]. Fukuoka lgaku Zasshi, 2013, 104(10): 334-338.
[29] Ye D, Li FY, Lam KS, et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein in mice [J]. Gut, 2012, 61(7): 1058-1067.
[30] Mansour M. The roles of perioxisome proliferator-activated receptors in the metabolic syndrome [J]. Prog Mol Biol Transl Sci, 2014, 121: 217-266.
[31] Henao-Mejia J, Elinav E, Thaiss CA, et al. The intestinal microbiota in chronic liver disease [J]. Adv Immunol, 2013, 117: 73-97.
[32] Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity [J]. Nature, 2012, 482(7384): 179-185.
[33] Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice [J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(3): G433-G441.
[34] Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis [J]. J Hepatol, 2007, 47(4): 571-579.
[35] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles [J]. Annu Rev Cell Dev Biol, 2014, 30: 255-289.
[36] Lemoinne S, Thabut D, Housset C, et al. The emerging roles of microvesicles in liver diseases [J]. Nat Rev Gastroenterol Hepatol, 2014, 11(6): 350-361.
[37] Théry C. Cancer: diagnosis by extracellular vesicles [J]. Nature, 2015, 523(7559): 161-162.
[39] Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease [J]. Hepatology, 2007, 46(4): 1081-1090.
[40] Fahey S, Dempsey E, Long A. The role of chemokines in acute and chronic hepatitis C infection [J]. Cell Mol Immunol, 2014, 11(1): 25-40.
[41] Eguchi A, Mulya A, Lazic M, et al. Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration [J]. PLoS One, 2015, 10(4): e0123110.
(责任编辑:王全楚)
广告征订
本刊是由郑州大学主管、主办,面向国内外公开征稿和发行的消化专业学术期刊,月刊,科技论文统计源期刊(中国科技核心期刊)。本刊刊登的主要内容包括:消化道疾病的基础与临床研究、内镜、肿瘤、介入诊断和治疗、影像、检验、诊治指南、新药应用、消化病预防、消化病理和生理、消化外科等。
为了加强本刊与医学科研、医药和医疗器械行业的合作,共同宣传推广新药、新器械和新技术,促进互惠双赢,现诚邀广告合作方。
如有意向,请拨打编辑部电话:0371-66912916,或邮件联系:wcbx@chinajournal.net.cn。
《胃肠病学和肝病学杂志》编辑部
Relationshipbetweengutmicrobiotaandnon-alcoholicfattyliverdisease
LIU Chenchen, LI Wen, WANG Lingyun
Department of Gastroenterology, Ji’ning First People’s Hospital, Ji’ning 272111, China
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease in Western countries and some Asian countries, and currently the incidence of NAFLD continues to increase worldwide. NAFLD encompasses a pathologic spectrum of disease, from relatively benign accumulation of lipid (steatosis) to progressive non-alcoholic steatohepatitis (NASH) associated with inflammation, fibrosis, necrosis and hepatocellular carcinoma. Without an effective available treatment, the prognosis of NASH is poor due to the high risk of progressive liver diseases such as cirrhosis and carcinoma, making it a great burden in health worldwide. NAFLD is a multifactorial disease, apart from environmental and genetical factors, recent studies suggest that gut microbiota might be implicated in the pathogenesis of NAFLD. Here, the relationship between gut microbiota and NAFLD was reviewed.
Gut microbiota; Non-alcoholic fatty liver disease; Insulin resistance
R575.5
A
1006-5709(2017)10-1103-04
2017-04-25
10.3969/j.issn.1006-5709.2017.10.008
刘晨晨,硕士研究生,研究方向:胃肠道微生态。E-mail:njliucc@163.com
李稳,博士研究生,研究方向:慢性肝病的基础与临床。E-mail:jnlwen@163.com