脱硫石膏对土壤磷流失的阻控效应及机制试验
2017-03-04陈小华钱晓雍李小平胡双庆
陈小华,钱晓雍,李小平,张 辉,胡双庆,贺 坤,李 静
脱硫石膏对土壤磷流失的阻控效应及机制试验
陈小华1,钱晓雍1,李小平2,张 辉1,胡双庆1,贺 坤2,李 静3
(1. 上海市环境科学研究院,上海 200233;2. 华东师范大学河口海岸学国家重点实验室,上海 200062; 3. 东华大学环境科学与工程学院,上海 201620)
研究脱硫石膏(flue-gas desulfurization gypsum,FGDG)对土壤磷流失的阻控效果,既有利于开拓FGDG资源化利用新途径,又有助于丰富农业面源磷流失控制工程技术。借助土柱淋溶试验和人工边坡降雨侵蚀模拟试验,针对上海某火电厂的FGDG,系统研究不同质量配比(0、1%、2.5%和5%)的FGDG对农田土壤的固磷效果及机理。结果表明:1)FGDG的Ca2+将溶解态P转化成难溶态P,并将土壤无机磷中的Ca2-P、Al-P转化成Ca8-P和Ca10-P,有效控制溶解态磷(total dissolved phosphorus,TDP)直接流失,与对照组相比,施加FGDG对淋洗土柱TDP流失的阻控率达到92.8%~94.8%,而添加FGDG的各处理间无显著差异(>0.05);2)添加FGDG后,土壤的渗透性能和抗侵蚀能力极显著提高(<0.05),1%~5%的FGDG可使土柱渗透性能提升近10倍,添加FGDG的各处理组间无显著差异(>0.05),1%FGDG对坡面径流量的最大削减率为37.5%,对土壤侵蚀(泥沙流失)的最大削减率为59.5%,有利于控制泥沙结合态磷的流失;3)各FGDG处理对土柱中总磷(total phosphorus,TP)流失的阻控率为23.6%~79.5%,且随着配比增加而上升,与对照组相比,1%FGDG对人工边坡土壤TP流失的阻控率为61.5%。土壤流失的TDP量占流失TP的比例只有0.6%~6.1%,反映出改善土壤渗透性能、削减地表径流冲刷是FGDG控制P流失的主要机制,而Ca与P之间的沉淀反应属于从属机制。
土壤;磷;径流;脱硫石膏;土壤渗透性能;磷流失;阻控
0 引 言
中国地表水体的富营养化问题日益严重,而磷是引起水体富营养化的最重要因子之一[1-2]。随着点源污染得到有效控制,磷从土壤向水体和沉积物迁移是水体富营养化的重要过程[3-4]。农业生产施加的磷绝大部分积累于土壤中,通过地表径流、土壤侵蚀、淋溶等途径逐渐向水体迁移[5-6],因此控制土壤中的磷流失一直是农业面源污染治理和富营养化控制的重要措施,农业生态学家和湖泊学家在不断探索新的土壤控磷方法[7-10]。
工业生产中脱硫产生的固体废弃物-脱硫石膏(flue gas desulfurization gypsum,FGDG),其主要成分为CaSO4·2H2O,并富含大量微量和常量营养元素。随着烟气脱硫石膏产品品质的提高,生态安全性达到农用要求且不增加土壤重金属含量[11],被逐渐使用到农业领域。美国2012年1年就产生2300万t的FGDG,且还在逐年上升[12],每年大约有47%得到有效利用,其中5%~10%的FGDG被应用于农业土壤改良[13-14],农用途径主要是盐碱土改良和作为肥料施用。目前,中国每年排放近亿吨FGDG,越来越多FGDG作为土壤改良剂使用,近年在新疆[15]、上海[16-17]等地开展了FGDG改良盐碱土的试验研究及工程示范,有些研究重点关注FGDG对土壤养分及农作物生长的影响[18-20]。
随着农业面源引起的水体富营养化问题日益突出,FGDG作为农业面源的控磷方法开始受到广泛关注,在畜禽粪便的P流失控制[21-22]、吸附土壤中过量磷肥[23-24]、土壤侵蚀控制[25]等方面做了尝试性研究。现有的相关研究重点关注FGDG的固P效果,而在固P机理方面缺乏系统研究。因此,本研究选用上海某火电厂的FGDG,借助土柱淋洗试验和斜坡降雨侵蚀模拟试验,从物理和化学角度探讨不同质量配比FGDG 固磷的效果及机理,以期丰富中国农业面源磷流失控制的理论及工程技术,为富营养化控制做出贡献。
1 材料与方法
1.1 供试材料
供试土壤取自上海市崇明东滩(121°57¢20″E,31°31¢25″N),属砂质粉土(粒径≥0.075 mm的颗粒含量超过总质量的50%,且粒径≤0.005 mm的颗粒含量低于总质量的10%),容重1.2 g/cm3,有机质质量分数为2.1%,偏弱碱性(pH值=8.5),全磷(total phosphorus,TP)质量分数为605 mg/kg。脱硫石膏来自上海某燃煤电厂,呈浅棕色粉末状,粒径0.04 mm左右,pH值7.98,主要成分CaSO4·2H2O占总质量的94%,CaCO3占3.4%,CaSO3·1/2H2O占0.75%,其他成分占1.85%,TP质量分数为9.5 mg/kg(远低于土壤TP含量)。试验前,土壤样品充分风干、磨碎,并过孔径2 mm标准筛。石膏粉末样品在85 ℃下烘干30 min,去除游离水,便于与土壤充分混匀。
1.2 试验装置与方法
本研究涉及2种试验装置:土柱淋洗装置和人工边坡径流试验装置。土柱淋洗装置采用壁厚2 mm、内径34 mm的有机玻璃管制作,高度45 cm,管下端离管底3 cm高处焊接5 mm厚的过滤板(其上铺置多层玻璃纤维网),过滤板下部为1个高3 cm的淋洗液储存区,最后出水通过橡胶管流入收液瓶,供测试分析(图1)。参照FGDG改良土壤的常用适宜配比(FGDG添加量过高会增加土壤中的全盐量,影响植物生长)[16-17,25-26],设置了4种质量配比(FGDG占总质量的0,1%,2.5%及5%),将预先完全混匀后的土壤样和FGDG装入对应的土柱装置中,填充高度30 cm,单个土柱用土约320 g。每种质量配比处理组分别作3个重复。在土柱上端连续注入去离子水,以模拟自然降雨,持续收集淋溶液,测定液体的体积、溶解态磷(total dissolved phosphorus,TDP),并每天记录收集淋溶液的时间,待淋溶液中TDP浓度趋于稳定后试验结束。
注:FGDG,脱硫石膏;下同。
依据室内土柱淋溶试验测定结果,选取石膏用量最少且效果接近最佳的1种质量配比开展人工斜坡坡径流试验,装置采用8 mm厚有机玻璃板制作,坡角接近15°,边坡长度80 cm,宽度15 cm,边坡装置四边有挡板,边坡尾端安装坡面径流收集槽,并通过硅胶管接入收液瓶。按照2种配比方式(不添加FGDG和添加1%FGDG)将预处理好的土壤样品和FGDG均匀混合后,装入边坡装置,铺置厚度约15 cm,单个装置用土约22 kg,形成仿自然的土坡。边坡上方布置简易的人工降雨器,对坡面进行均匀“降雨”,模拟降雨量以五年一遇的暴雨强度(58 mm/h),每3~5 d模拟1次降雨,每次收集坡面径流,测定收集液的体积、含沙量以及TDP浓度,直到最后2次收集液的TDP含量稳定后结束试验。每次试验从装置末端收集坡面径流,测定径流的总体积、固体悬浮物(suspended solid,SS)含量以及总磷含量。所有试验结束后,对各处理进行土壤混合取样,测定土壤全磷含量。
1.3 测试指标与方法
土柱的淋洗液和边坡径流水样(悬浮物含量很高)首先要离心(10 000 r/min)2 min,取上清液采用钼酸铵分光光度法[27]测定溶解态磷。土柱淋洗后土壤无机磷采用“石灰性土壤无机磷测定方法”[28]:连续使用NaHCO3、NH4AC、NH4F、NaOH-Na2CO3、柠檬酸钠、H2SO4提取土壤中无机磷各组分:Ca2-P、Ca8-P、Al-P、Fe-P、闭蓄态P(O-P)和Ca10-P。土柱淋洗试验前、后和边坡模拟降雨试验前、后,均对土壤取混合样,采用HClO4-H2SO4消解方法和钼酸铵分光光度法[29]测定全磷含量。人工边坡的径流收集液中固体悬浮物采用重量法[30]。
1.4 数据处理
土柱渗透性能按平均每小时收集的淋溶液体积表示(mL/h);坡面产流系数为边坡装置末端收集的坡面径流量与模拟降雨量的比值(<1);坡面泥沙流失量为径流中的固体悬浮物含量与收集径流体积的乘积;坡面TDP流失量为径流中的TDP浓度与收集径流体积的乘积。
采用Origin Pro 8.5软件进行数据处理和作图,采用SPSS 17.0 软件进行统计分析,基于Duncan法检验各处理间的显著性差异。
2 结果与分析
2.1 不同FGDG处理土柱的渗透性能及固磷效果
2.1.1 土柱渗透性能比较
在土柱淋洗过程中,比较掺入不同质量配比FGDG的土柱渗透性能,未添加FGDG的对照组平均出水速率最低仅为1.58 mL/h,而添加1%至5% FGDG的土柱平均出水速率为14.4~15.2 mL/h,为对照组的近10倍(图2),说明FGDG的施入能显著改善土壤的渗透能力,但FGDG各处理间无显著差异(>0.05),说明添加1%的FGDG就能使土柱的渗透能力接近最大。而添加5% FGDG的出水速率反而略低于1%和2.5%处理,这是因为掺入过量的FGDG粉末不能进一步提升土壤渗透性能,粉末可能反而会对土壤局部孔隙造成一定的堵塞。
注:不同小写字母表示处理间差异显著(P<0.05);下同。
2.1.2 淋溶液中总磷累积量及淋洗后土壤P变化
不同处理组淋溶液中的TDP累积量可反映不同配比的FGDG与土壤P的相互结合程度。淋溶液中TDP含量越少,则石膏对土壤磷流失的阻控效果越好。与对照组相比,施加FGDG的土柱淋溶液中TDP累积量极显著降低(=0.001)(表1),FGDG对土壤的TDP流失阻控率高达92.8%~94.8%。添加FGDG土柱的P排出量随着FGDG配比增加而缓慢下降,质量配比从1%提高至5%,淋溶液TDP累积量从85.7下降至62.2g,降低幅度为27.1%,说明FGDG添加量为1%时,土壤P的淋溶流失即接近最高,随着FGDG添加量进一步加大,控P的边际效益逐步减小。
表1 不同FGDG质量配比土柱淋出液中溶解态磷累积量与淋洗后土壤总磷含量
注:TDP,溶解态磷;TP,总磷;下同。
Note: TDP, total dissolved phosphorus; TP, total phosphorus. The same below.
测定各处理组淋洗前、后的土壤TP含量,随FGDG质量配比从0增加至5%,淋洗后土壤TP质量分数由544.1上升至562.8 mg/kg(表1)。依据淋洗前、后土壤TP浓度差值及土壤质量(320 g),计算出配比0、1%、2.5%及5%土柱的磷流失总量分别为19.5、14.9、12.6和4.0 mg。与对照组相比,1%、2.5%及5%FGDG对P流失的阻控率分别为23.6%、35.4%和79.5%。
各处理组淋溶液中的TDP累积量占流失的TP总量比例只有0.6%~6.1%,说明流失的P主要是泥沙颗粒结合态P,而不是溶解态P。
2.1.3 淋洗后土壤无机磷组分的变化
分析FGDG与各种无机磷形态的相互作用对探讨脱硫石膏固P机理与效果具有重要意义。对各处理土柱完成淋洗后的土壤无机磷进行分析,可知无机磷组分以Ca10-P、O-P和Fe-P为主,占总量的85%,而Ca2-P、Ca8-P和Al-P的比例相对较少。随着FGDG配比增加,Ca2-P和Al-P含量显著下降(<0.05),Ca8-P含量相应上升,Fe-P、O-P和Ca10-P的含量在处理间均没有显著差异(>0.05)(图3)。说明添加FGDG(钙盐)会将溶解态Ca2-P和Al-P转化成微溶或难溶的Ca8-P和Ca10-P,减少P的淋溶流失,但这种转化量占土壤全磷含量的比例很低,在统计上未能体现出Ca10-P含量的变化。
图3 不同FGDG质量配比土壤无机磷各组分含量
2.2 人工斜坡的土壤抗侵蚀性能及固磷效果
2.2.1 坡面产流及泥沙流失控制
依据室内土柱淋洗试验中1%配比组的石膏用量最少且土壤渗透性能改善接近最佳的结果,开展0和1%FGDG配比组的边坡降雨模拟试验。在实施的5次模拟降雨试验中,除第5次模拟降雨外,1%FGDG边坡的坡面径流产流系数均显著低于对照组(<0.05)(图4a),说明脱硫石膏显著提升了土壤的渗透性能。与对照组相比,计算得出1%FGDG对坡面径流的削减率为6.0%~37.5%,降低坡面径流冲刷强度。随着模拟次序的推移,坡面产流系数都是先升后降,这是由于试验初期整个土体的含水率持续增加,产流系数就相应上升,而在最后2次试验中土体在干湿交替的情况下出现裂缝,坡面产流系数出现下降。
图4 5次模拟降雨人工边坡坡面产流系数与泥沙流失量
1%FGDG边坡的泥沙流失量除第1次模拟降雨外,均显著低于对照组(<0.05)(图4b),说明FGDG在削减坡面径流的基础上可有效控制土壤侵蚀。与对照组相比,计算得出1%FGDG对土壤侵蚀的有效控制率为7.5%~59.5%。随着模拟次序的推移,对照和1%FGDG的泥沙流失量均呈逐渐下降趋势,这与多次模拟降雨后土壤团粒结构趋于稳定有关。
2.2.2 坡面径流总磷排出量及试验后土壤全磷含量
分析坡面径流P流失情况,前3次模拟试验中对照组径流出水的TDP浓度超出1%FGDG处理组17.8%~47.0%,最后2次试验两者坡面径流TDP浓度基本持平(图5a)。前3次试验的TDP流失量也是最高的,1%FGDG处理组5次试验累积TDP流失量平均为286.7g,而对照组TDP流失累积量平均为527.0g(图5b),添加1%FGDG对土壤TDP流失的有效控制率可达到45.6%。
图5 5次模拟降雨人工边坡坡面径流中TDP浓度与流失量
测定降雨前和结束后的土壤TP含量,对照组和1%FGDG处理组降雨结束后土壤TP含量平均值分别为586.8和592.6 mg/kg,均低于降雨前的TP浓度,但对照组降雨前、后的TP差值明显高于1%FGDG配比的试验组(图6),说明FGDG将更多的P固定在边坡土壤中。依据降雨前、后土壤TP含量差值及土壤质量(22 kg),计算出对照组、1%FGDG边坡的磷流失总量分别为364.0和140.1 mg。与对照组相比,1%FGDG对边坡土壤TP流失的阻控率为61.5%,高于对TDP流失的有效控制率45.6%。
对照边坡和添加1%FGDG边坡TDP流失总量分别只占各自TP流失总量的比例小于0.2%,说明边坡流失的P绝大部分是泥沙颗粒结合态,但这个比值远低于土柱淋洗试验中的TDP流失量与TP流失量的比值。
3 讨 论
土壤中的P向地表水体迁移是推动湖库富营养化的重要因素。FGDG主要成分是CaSO4·2H2O,掺入土壤后会增加土中的Ca2+,Ca2+通过将土壤中部分溶解度更高、活性更强的P形态转化为溶解度更低、更稳定的P形态,限制了P的迁移,实现土壤固P效应[23,31-32]。本研究与其他相关研究[33-34]均表明Ca2+对土壤中溶解态磷酸盐(TDP)进行吸收与沉淀,首先生成二钙磷化合物(Ca2-P),随着时间推移,土壤中的Ca2-P会转变为Ca8-P和Ca10-P。本次土柱淋洗试验中添加FGDG对土壤TDP流失阻控率高达92.8%~94.8%,斜坡试验中1%FGDG对土壤TDP流失的有效阻控率为45.6%。Stout等[35]研究发现1%质量配比的FGDG可使农田土壤中的TDP浓度下降大约50%。Murphy等[36]研究发现加入FGDG的土壤可减少14%~56%的TDP向水体中迁移。Torbert等[37]通过添加FGDG使土壤中TDP的流失量最大可削减61%。不同研究得到的FGDG对TDP的实际控制率存在差异,这与土壤TDP含量、FGDG添加量、过水水量、水力停留时间(反应时间)密切相关[22]。随着FGDG施加量增加,其溶解液中所溶出的Ca2+量越多,可结合更多的TDP,但具体需要施用多少量的FGDG,还取决于土壤中TDP的含量[37]。本研究表明1%配比FGDG对TDP削减量接近最大(表1),说明1%配比FGDG溶出的Ca2+量就足以满足固定试验土壤中绝大部分TDP的需要。本次土柱试验的水力停留时间长于斜坡降雨模拟试验,前者有利于FGDG的Ca2+与TDP之间沉淀反应更加充分,对土壤TDP流失的阻控率高于后者(92.8%~94.8% vs. 45.6%)。由于Ca2+对土壤中TDP的固定效应,添加FGDG后的土壤中有效磷一般会有所降低[18],但新生成的Ca8-P可作为潜在磷源,成为Ca2-P的有效补充,因此土壤有效磷的降低和无机磷组分磷酸钙盐的增加在一定范围内并不影响植物对P素的吸收[20],添加适量FGDG可提高农作物的出苗率、果实千粒质量、产量等[26,38]。在农田面源污染控制中,应根据土壤中的TP、TDP实际含量来决定FGDG的施用量,既满足农作物生长对有效磷的基本需要,又最大限度控制P的流失。
土壤中的P从形态上分为溶解态P和颗粒态P,溶解态P的流失是由降雨渗透淋溶作用引起,颗粒态P是因降雨冲刷或地表径流搬运产生,后者往往是土壤P的主要流失形态[39],但溶解态P对水体中的藻类生物量爆发起到更加直接的作用。本研究结果显示TDP流失累积量占TP流失总量的比例很低,边坡试验的TDP/TP比值和土柱淋洗试验的TDP/TP比值分别为0.15%和0.6%~6.1%,说明流失的P主要是泥沙颗粒结合态P。因此,FGDG固P的机理除了Ca与P的沉淀反应,还能有效控制泥沙结合态P流失。
土柱淋洗试验和人工斜坡试验都证明施入FGDG能明显改善土壤渗透性能,这主要是因为带负电荷的土壤胶体遇上FGDG溶出的带正电荷的Ca2+,可发生胶体的凝聚,改善土壤的团粒结构,提升导水能力[40]。其中,土柱试验显示添加FGDG的土柱渗透性能达到对照组的近10倍。施用FGDG可重新分配土壤入渗流与径流的数量关系,随着入渗流增加,人工斜坡地表径流产生量和泥沙流失量相应得到削减,径流对表土冲刷效应会增加泥沙结合态P的流失。流失TDP与流失TP的比值很低说明削减地表径流冲刷才是FGDG控制磷流失的最重要机制,而Ca与P的沉淀反应属于辅助机制。
4 结 论
采用土柱淋溶试验和人工边坡降雨侵蚀模拟试验,针对上海某火电厂的脱硫石膏(FGDG),系统研究不同质量配比(0、1%、2.5%和5%)的FGDG对农田土壤的固P效果及机理。得到如下结论:
1)FGDG的Ca2+通过将土壤中活性强的P形态(Ca2-P、Al-P)转化为性质更稳定的P形态(Ca8-P、Ca10-P),有效控制土壤中溶解态P的直接流失。与对照组相比,施加FGDG对土柱溶解态P流失的阻控率达到92.8%~94.8%,各处理组间无显著差异(>0.05)。
2)FGDG显著提高土壤的渗透性能和抗侵蚀能力,添加了FGDG的土柱渗透性能提升近10倍。 FGDG对人工边坡径流量的最大削减率达到37.5%,对坡面泥沙流失的最大削减率为59.5%,有效控制了土壤侵蚀所引起的P流失。
3)淋洗土柱和人工边坡所流失的溶解态P量占流失总P量的比例很低,流失的P主要是泥沙颗粒结合态P。提升土壤渗透性能和削减地表径流冲刷作用是FGDG控制土壤P流失的主要机制,而Ca与溶解态P之间的沉淀反应属于从属机制。
[1] Schindler D W. The dilemma of controlling cultural eutrophication of lakes[J]. Proceedings of the Royal Society B Biological Sciences, 2012, 279(1746): 4322-4333.
[2] 司友斌,王慎强,陈怀满. 农田氮、磷的流失与水体富营养化[J]. 土壤,2000,32(4):188-193.
Si Youbin, Wang Shenqiang, Chen huaiman. Water eutrophication and losses of nitrogen and phosphates in farmland[J]. Soils, 2000, 32(4): 188-193.
[3] 陈英旭. 氮磷在农田土壤中的迁移转化规律及其对水环境质量的影响[M]. 北京:科学出版社,2012:1-10.
[4] 区惠平,周柳强,黄美福,等. 不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估[J]. 植物营养与肥料学报,2016,22(1):40-47. Ou Huiping, Zhou Liuqiang, Huang Meifu, et al. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates[J]. Plant Nutrition and Fertilizer Science, 2016, 22(1): 40-47.(in Chinese with English abstract)
[5] 盛海君,夏小燕,杨丽琴,等. 施磷对土壤速效磷含量及径流磷组成的影响[J]. 生态学报,2004,24(12):2837-2840. Sheng Haijun, Xia Xiaoyan, Yang Liqin, et al. Effects of phosphorus application on soil available P and different P form in runoff[J]. Acta Ecologica Sinica, 2004, 24(12): 2837-2840. (in Chinese with English abstract)
[6] 钱晓雍,沈根祥,黄丽华,等. 崇明东滩旱作农田土壤磷素流失及其影响因素[J]. 生态与农村环境学报,2010,26(4):334-338. Qian Xiaoyong,Shen Genxiang,Huang Lihua,et al. Loss of soil phosphorus from rain-fed cropland and its affecting factors in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment, 2010, 26(4): 334-338. (in Chinese with English abstract)
[7] 王道涵,梁成华. 农业磷素流失途径及控制方法研究进展[J]. 土壤与环境,2002,11(2):183-188.Wang Daohan, Liang Chenghua. Transportation of agriculture phosphorus and control to reduce the phosphorus loss to water: A review[J]. Soil and Environmental Sciences, 2002, 11(2): 183-188. (in Chinese with English abstract)
[8] 吴电明,夏立忠,俞元春,等. 坡耕地氮磷流失及其控制技术研究进展[J].土壤,2009,41(6):857-861.Wu Dianming, Xia Lizhong, Yu Yuanchun, et al. Reviews on mechanisms of nitrogen, phosphorus losses from sloping farmland and control techniques[J]. Soils, 2009, 41(6): 857-861. (in Chinese with English abstract)
[9] 李学平,邹美玲. 农田土壤磷素流失研究进展[J]. 中国农学通报,2010,26(11):173-177.Li Xueping, Zou Meiling. Advance of farmland soil phosphorus running off[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 173-177.(in Chinese with English abstract)
[10] 姬红利,颜蓉,李运东,等. 施用土壤改良剂对磷素流失的影响研究[J]. 土壤,2011,43(2):203-209. Ji Hongli, Yan Rong, Li Yundong, et al. Effects of soil ameliorants on phosphorus loss[J]. Soils, 2011, 43(2): 203-209. (in Chinese with English abstract)
[11] 李彦,张峰举,王淑娟,等.脱硫石膏改良碱化土壤对土壤重金属环境的影响[J]. 中国农业科技导报,2010,12(6):86-89.Li Yan, Zhang Fengju, Wang Shujuan, et al. Environmental impact on alkali soil amelioration using FGD gypsum[J]. Journal of Agricultural Science and Technology, 2010, 12(6): 86-89.(in Chinese with English abstract)
[12] USGS. Minerals commodity summaries[EB/OL]. 2013-01-22 [2013-08-22]. http://minerals.usgs.gov/minerals/pubs/commodity/ gypsum/mcs-2013-gypsu.pdf.
[13] American Coal Ash Association. Coal combustion products production and use statistics[EB/OL]. 2013-6-15[2013-07-05].http://acaa.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=3.
[14] Watts D B, Dick W A. Sustainable uses of FGD gypsum in agricultural systems: Introduction[J]. Journal of Environmental Quality, 2014, 43(1): 246-252.
[15] 李彦,衣怀峰,赵博,等. 燃煤烟气脱硫石膏在新疆盐碱土壤改良中的应用研究[J]. 生态环境学报,2010,19(7):1682-1685. Li Yan, Yi Huaifeng, Zhao Bo, et al. Study on improving Xinjiang sodic soils amelioration with desulfurized gypsum[J]. Ecology and Environmental Sciences, 2010, 19(7): 1682-1685. (in Chinese with English abstract)
[16] 程镜润,陈小华,刘振鸿,等. 脱硫石膏改良滨海盐碱土的脱盐过程与效果实验研究[J]. 中国环境科学,2014,6(6):1505-1513. Cheng Jingrun, Chen Xiaohua, Liu Zhenhong, et al. The experimental study on the process and effect to the FGD-gypsum as an improvement in coastal saline-alkali soil[J]. China Environmental Science, 2014, 6(6): 1505-1513. (in Chinese with English abstract)
[17] Li X P, Mao Y M, Liu X C. Flue gas desulfurization gypsum application for enhancing the desalination of reclaimed tidal lands[J]. Ecological Engineering, 2015, 82(9): 566-570.
[18] 李晓娜,张强,陈明昌,等. 不同改良剂对土壤有效磷的影响[J]. 水土保持学报,2005,1(19):72-74.Li Xiaona, Zhang Qiang, Chen Mingchang, et al. Study on effect of using three soil conditioners to phosphorus validity of soda-alkali soil[J]. Journal of Soil and Water Conservation, 2005, 1(19): 72-74. (in Chinese with English abstract)
[19] 邹璐,范秀华,孙兆军,等. 盐碱地施用脱硫石膏对土壤养分及油葵光合特性的影响[J]. 应用与环境生物学报,2012,18(4):575-581. Zou Lu, Fan Xiuhua, Sun Zhaojun, et al. Effects of desulfurized gypsum addition on saline-alkali soil nutrients and photosynthetic characteristics of cultivated oil-sunflower[J]. Chinese Journal of Applied and Environmental Biology, 2012, 18(4): 575-581. (in Chinese with English abstract)
[20] 张峰举,许兴,肖国举. 脱硫石膏改良对碱化土壤磷素营养的影响[J]. 西北农业学报,2013,22(5):151-156. Zhang Fengju, Xu Xing, Xiao Guoju. Influence of flue gas desulfurization gypsum on the availability of phosphorus in sodic soil[J]. Acta Agriculture Boreali-Occidentalis Sinica, 2013, 22(5): 151-156. (in Chinese with English abstract)
[21] Mishra A, Cabrera M L, Rema J A. Phosphorus fractions in poultry litter as affected by flue-gas desulphurization gypsum and litter stacking[J]. Soil Use and Management, 2012, 28(1): 27-34.
[22] Endale D M, Schomberg H, Fisher D S, et al. Flue gas desulfurization gypsum: Implication for runoff and nutrient losses associated with broiler litter use on pastures on Ultisols[J]. J Environ Qual, 2014, 43(1): 281-289.
[23] Lee C H, Lee Y B, Lee H, et al. Reducing phosphorus release from paddy soils by a fly ash-gypsum mixture[J]. Bioresource Technology, 2007, 98(10): 1980-1984.
[24] Kordlagharia M P, Rowellb D L. The role of gypsum in the reactions of phosphate with soils[J]. Geoderma, 2006, 132(1/2): 105-115.
[25] Schomberg H H, Fisher D S, Endale D M, et al. Evaluation of FGD-gypsum to improve forage production and reduce phosphorus losses from Piedmont soils[EB/OL]. 2011-01- 20[2011-05-09]. http://www.flyash.info/2011/148-Schomberg- 2011. pdf.
[26] 邢秀芹,张为华,于静娟. 脱硫石膏的施用量对盐碱地葵花生长的影响[J]. 鞍山师范学院学报,2013,15(2):58-61. Xing Xiuqin, Zhang Weihua, Yu Jingjuan. Effects on growth of sunflower (L.) by application rates of desulfurized gypsum in amelioration of saline-alkali soil[J]. Journal of Anshan Normal University, 2013, 15(2): 58-61. (in Chinese with English abstract)
[27] 水质总磷的测定钼酸铵分光光度法:GB 11893-1989[S]. 北京:中国标准出版社,1989.
[28] 顾益初,蒋柏藩. 石灰性土壤无机磷分级的测定方法[J]. 土壤,1990,22(2):101-102.
[29] 土壤全磷测定法:NY/T 88-1988[S]. 北京:中国标准出版社,1988.
[30] 水质悬浮物的测定重量法:GB11901-1989[S]. 北京:中国标准出版社,1989.
[31] Kordlaghari M P, Rowell D L. The role of gypsum in the reactions of phosphate with soils[J]. Geoderma, 2006, 132(1): 105-115.
[32] Misra S M, Tiwari K N, Sai Prasad S V. Reclamation of alkali soils: Influence of amendments and leaching on transformation and availability of phosphorus[J]. Communications in Soil Science and Plant Analysis, 38(7): 1007-1028.
[33] 金亮,周健民,王火焰,等. 石灰性土壤肥际磷酸-钙的转化及肥料磷的迁移[J]. 土壤,2009,41(1):72-78.Jin Liang, Zhou Jianmin, Wang Huoyan, et al. Transformation and translocation of fertilizer-P with monocalcium phosphate monohydrate application in fertisphere of calcareous soil[J]. Soils, 2009, 41(1): 72-78. (in Chinese with English abstract)
[34] Lindsay W L, Vlek P L G, Chien S H. Phosphate minerals[C]// Dixon J B, Weed S B. Minerals in soil environment (2nd ed.). Soil Science Society of America, Madison, WI, USA, 1989: 1089-1130.
[35] Stout W L, Sharpley A N, Gburek W J, et al. Reducing phosphorus export from croplands with FBC fly ash and FGD gypsum[J]. Fuel, 1999, 78(2): 175-178.
[36] Murphy P N, Stevens R J. Lime and gypsum as source measures to decrease phosphorus loss from soils to water[J]. Water Air and Soil Pollution, 2010, 212(1): 101-111.
[37] Torbert H A, Watts D B. Impact of flue gas desulfurization gypsum application on water quality in a Coastal Plain soil[J]. J Environ Qual, 2014, 43(1): 273-280.
[38] 陈永伟,马琨,胡景田,等. 脱硫废弃物改良盐碱地对水稻生长发育及土壤的影响[J]. 宁夏大学学报:自然科学版,2011,32(3):288-292.Chen Yongwei, Ma Kun, Hu Jingtian, et al. Effect of desulphurization waste on rice growing development and soil[J]. Journal of Ningxia University: Natural Science Edition, 2011, 32(3): 288-292. (in Chinese with English abstract)
[39] Sharpley A N, Smith S J, Jones O R, et al. The transport of bioavailable phosphorus in agricultural runoff[J]. Journal of Environmental Quality, 1992, 21(1): 30-35.
[40] Chen L, Dick W A. Gypsum as an agricultural amendment: Generaluse guidelines[EB/OL]. 2012-12-24[2013-01-04]. http://ohioline.osu.edu/b945/index.html
Inhibiting effects and mechanism experiment of flue-gas desulfurization gypsum on soil phosphorus loss
Chen Xiaohua1, Qian Xiaoyong1, Li Xiaoping2, Zhang Hui1, Hu Shuangqing1, He Kun2, Li Jing3
(1.200233,; 2.200062,; 3.201620,)
Increased phosphorus (P) losses from land to waterbody via runoff and drainage are one of the important factors causing eutrophication of surface waterbody. Flue gas desulfurization gypsum (FGDG) is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. Due to the high Ca2+content of FGDG it can potentially be used to immobilize P in soils. To study the effects of FGDG on soil P losses, not only to open up a new way of FGDG resource utilization, but also to enrich engineering technologies for controlling agricultural non-point source P load. In this study, soil column leaching experiment and artificial soil slope & rainfall simulation experiment were conducted to examine the impact of FGDG which came from one of Shanghai coal-fired power plant, on the leaching and runoff P losses from coastal plains soil of Chongming East Headland, Shanghai. Four mass rates of FGDG (0, 1%, 2.5% and 5%) were applied to soil column and two mass rates of FGDG (0 and 1%) applied to artificial soil slope.The results indicated that: 1) Ca2+dissolved from FGDG transformed water-soluble P to insoluble P in soil, and turned Ca2-P, Al-P into Ca8-P and Ca10-P which were more inclined to fix in soil. Compared with the control group, the reduction rate of total dissolved phosphorus (TDP) loss of the soil columns applied with FGDG reached 92.8%-94.8%and there was no significant difference among three FGDG treatments (>0.05). 2) FGDG significantly improved soil permeability and anti-erosion ability (<0.05), 1%-5% FGDG made the saturated permeability of soil columns increase nearly 10 times, there was no significant difference among three FGDG treatments (>0.05). Compared with the non-FGDG slopes, 1% FGDG addition achieved the maximum runoff reduction rate of 37.5%, the maximum reduction rate of sediment loss of 59.5%. It was indicated that much adsorbed P on suspended sediment was prevented from migrating along with surface runoff. 3) The reduction rate of TP loss of soil columns with FGDG addition was 23.6%-79.5% and ascended as the adding amount of FGDG increased. Up to 61.5% more TP was held in slope soil with 1% FGDG addition than the non-FGDG treatment. The ratio of TDP loss accounted for TP loss was only 0.6%-6.1%, reflecting enhancement of soil permeability and reduction of surface runoff and sediment loss were the primary mechanisms of FGDG to control P loss from soil, and the deposition reaction of calcium and phosphoric acid belonged to subordinate P-fixing mechanism. When the mass ratio of FGDG was more than 1%, the effect of FGDG on reducing the loss of soil P was not significant (>0.05), which indicated that the effect of FGDG on soil P loss was also influenced by Ca2+dissolution efficiency of FGDG, the TDP content and soil particle physical characteristics and other factors together. On the whole, using FGDG to control phosphorous losses from soil can achieve both resource utilization of desulfurization solid waste and reduction of water eutrophication risk due to P transportation.
soils; phosphorus; runoff; flue-gas desulfurization gypsum; soil permeability; phosphorus loss; inhibiting
10.11975/j.issn.1002-6819.2017.03.020
S156.4
A
1002-6819(2017)-03-0148-07
2016-08-10
2016-12-03
环保公益性行业科研专项项目(NO.201109023-2)。
陈小华,博士,高工,主要研究方向为水土环境污染治理及生态修复工程技术研究。上海上海市环境科学研究院,200233。 Email:shoutfar@aliyun.com
陈小华,钱晓雍,李小平,张 辉,胡双庆,贺 坤,李 静.脱硫石膏对土壤磷流失的阻控效应及机制试验[J]. 农业工程学报,2017,33(3):148-154. doi:10.11975/j.issn.1002-6819.2017.03.020 http://www.tcsae.org
Chen Xiaohua, Qian Xiaoyong, Li Xiaoping, Zhang Hui, Hu Shuangqing, He Kun, Li Jing.Inhibiting effects and mechanism experiment of flue-gas desulfurization gypsum on soil phosphorus loss[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 148-154. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.020 http://www.tcsae.org