APP下载

结核分枝杆菌耐利福平机制及其研究进展

2017-02-27向敏综述张泓陈玲审校

海南医学 2017年17期

向敏综述张泓,陈玲审校

(遵义医学院附属医院呼吸二科,贵州遵义563003)

结核分枝杆菌耐利福平机制及其研究进展

向敏综述张泓,陈玲审校

(遵义医学院附属医院呼吸二科,贵州遵义563003)

结核病是严重危害公众健康的全球性公共卫生问题,耐药结核病尤其是耐多药结核病的传播使结核病疫情更加严峻。利福平是重要的一线抗结核药之一,并且作为耐多药结核病的替代标志物。因此了解结核分枝杆菌耐利福平机制对预防及控制耐药结核病有着重要意义。本文就结核分枝杆菌耐利福平机制及其研究进展进行综述。

结核分枝杆菌;利福平;耐药;机制

结核病(tuberculosis,TB)是由结核分枝杆菌(Mycobacterium tuberculosis,Mtb)引起的慢性传染病,已成为严重危害公众健康的全球性公共卫生问题。近年来,由于化疗方案不合理应用、患者医从性差等原因,耐药结核病逐渐增多。耐药结核病,尤其是耐多药结核病(multidrug resistant tuberculosis,MDR-TB)的传播使结核病疫情更加严峻,全球结核病防治工作也面临更大挑战。WHO 2016年结核病报告[1]显示,2015年全球结核病、耐利福平结核病、耐多药结核病发患者数分别为1 040万、10万及48万,结核病死亡人数为140万,提示全球耐药结核病疫情严重。利福平(Rifampin,RIF)是重要的一线抗结核药之一,并且作为耐多药结核病的替代标志物[2]。结核分枝杆菌耐利福平预示着患者化疗疗程延长,预后差。因此了解结核分枝杆菌耐利福平机制对预防及控制耐药结核病有着重要意义。结核分枝杆菌耐药机制主要包括靶基因构改变、外排泵机制、细胞壁通透性变化、产生药物降解、失活酶及代谢途径改变等。本文就结核分枝杆菌耐利福平机制及其研究进展综述如下:

1 药物作用靶基因变异机制

细菌内药物作用靶基因突变是结核分枝杆菌耐利福平的主要机制[3]。结核分枝杆菌RNA聚合酶参与细菌转录及RNA延伸,是生存所必需的酶。利福平通过非共价键与结核分枝杆菌DNA依赖的RNA聚合酶亚基特异性结合,抑制RNA聚合酶活性,干扰细菌转录起始和RNA延伸,阻碍蛋白质合成从而发挥杀菌作用。RNA聚合酶由α2ββ'ω 5个亚单位组成,各亚基分别由rpoA、rpoB、rpoC和rpoZ基因编码[4-5],基因突变将导致相应RNA聚合酶亚基结构改变,影响利福平与之结合从而产生耐药。

1.1 rpoB基因ropB基因全长3 519 bp(Gene ID:888164),编码RNA聚合酶β亚基[4],rpoB基因突变是结核分枝杆菌耐利福平的主要机制[3]。近95%~97%的耐利福平菌株突变发生在rpoB基因507~533位密码子共81个碱基组成的区域,也被称为利福平耐药决定区(RRDR)[6]。突变主要以碱基置换为主,插入及缺失较少见。国外多年来报道显示,531、526以及516为最常见的突变位点,其中S531L是最常见的突变形式,突变率约为63%[7-12]。在耐利福平菌株(包括单耐利福平、耐多药及广泛耐药菌株)中突变率在8.3%~97%均有报道[7-12],其差异受菌株耐药谱、研究数量及地域[13]等影响。各国rpoB最常见突变位点也有差异,如南非东开普省、科特迪瓦以D516V为主[11,14],伊朗西部以L511P为主[15],非洲东南部斯威士兰以I572F(30%)为主,且突变率仅次于S531L(46%)[16]。我国研究RRDR区域内基因突变[17-21]发现,在4 895株耐利福平菌株中有4 571株(93.4%)检测到RRDR区发生基因错义突变,197种不同突变类型,突变率略低于国外报道。其中发生单一位点突变4 275株(87.3%)、61种不同突变类型;双位点联合突变菌株251株(5.1%)、115种组合类型;多位点联合突变菌株12株(0.3%)、9种组合类型;碱基插入突变菌株9株(0.18%)、2种组合类型;碱基缺失突变菌株12株(0.3%)、9种组合类型。在所有单位点错义突变中,531、526、516位点突变率居前三位,与国外报道一致[22]。531位点突变率为52.8%,共12种氨基酸突变类型:其中Ser→Leu突变率最高为50.2%,与国外报道大抵一致。其次为Ser→Trp 1.7%和Ser→Tyr 0.5%。526位点突变率为21.8%,共13种氨基酸突变类型,频率最高的是His→Asp 9.1%,其次是His→Tyr 6.7%、His→Leu 1.94%、His→Arg 1.6%和His→Asn 1.2%。516位点突变率为6.0%,共11种氨基酸突变类型,频率最高的前几位分别为Asp→Val 2.6%、Asp→Gly 1.6%和Asp→Tyr 1.1%。联合突变中516、511、526位点出现频率最高,分别为120、109和87次。联合突变中Thr508Pro、Ser509Gly、Ser512Gly、Met515Trp等突变形式在单位点突变中未见报道。插入突变发生在514和515位点,插入密码子为TTC (Phe)。碱基缺失突变发生在509~526位点,其中有1株在526位点发生1碱基(bp)缺失,5株在512、516、517及518区域发生3碱基(bp)缺失,1株在514~515区域发生6碱基(bp)缺失,2株在509~511、513~515位点发生9碱基(bp)缺失,1株在516~520区域发生15碱基(bp)缺失。结核分枝杆菌耐药水平与耐药基因不同的突变位点有关,研究发现513位点、G523A、H526D, H526R,H526Y,H526F、H526Q、S531L、S531F及单个密码子内双碱基突变与利福平高水平耐药有关,而在511、514、516、518、521、522和533等位点突变与低水平耐药有关[4,22-24]。研究发现约6.6%耐利福平菌株未发生RRDR区域内基因突变[17-21],而少数敏感菌株(1.7%)出现RRDR内突变[25],提示并非所有RRDR内突变均与耐药有关,已发现508、509位点突变与结核分枝杆菌耐利福平无关[24]。RRDR序列外基因突变统计[21,26]发现,在1 041株利福平耐药菌株中,有124株(11.9%)菌株在RRDR外发生错义基因突变,共94种突变类型;有25株独立发生RRDR外位点突变,共19种突变类型,总突变率为2.4%,占RRDR外突变的15.3%。这些RRDR外突变包括单位点突变Val146Phe、Val176Phe、Pro206Arg、Glu247Gln、Val251Ala、Val251Phe、Val251Leu、Gln253Leu、Tyr314Cys、His323Tyr、IIe572Phe、IIe572Thr、Asp626Glu、Asp657His和Lys891Thr;双位点突变Val146Phe/ Pro402Ser、Ser311Leu/Leu60Arg、Ser311Leu/Val112Ala及三位点突变Gln139Lys/Gly201Cys/Lys167Arg。有99株发生与RRDR内共同突变,总突变率为9.5%,占RRDR外突变的80.0%,主要以双位点突变(89株)为主。在所有结核分枝杆菌耐利福平菌株中约2.4%菌株独立发生RRDR外序列基因突变,提示RRDR区外突变虽以其极低的突变率存在但仍有不可小觑的作用。研究发现146、572和626位点突变与利福平耐药有关,且146位点发生的突变可能与利福平低水平耐药有关[27-29]。RRDR外基因突变也可能为利福平耐药补偿基因[29]。在泰国曼谷的一项研究发现,155株MDR菌株全部发生常见耐药突变S531L及RRDR区外不常见突变L812P[30],提示L812P可能作为S531L的补偿基因是大型社区爆发菌株传播的补充效应,同时S531L及L812P联合突变可能与社区内MDR菌株持续性传播有关。

1.2 rpoC基因rpoC全长3 951 bp(Gene ID:888177),编码RNA聚合酶β'亚基[4]。β及β'亚基在α亚基处结合并形成形似蟹的两个钳子,钳子间形成包含有催化活性并容纳核酸转录的间隙(称为主通道活性区域),β'亚基使核酸在活性中心内更加牢固并稳定延长复合物[31]。研究发现rpoA或rpoC基因突变在来自包括南非西开普省、非洲西部加纳、非洲东部乌干达、葡萄牙里斯本、瑞典乌普萨拉、俄罗斯等国家的耐利福平菌株十分常见,并且约90%的突变位于rpoC基因[2,32-37]。据统计目前已发现的rpoC基因突变位点超过63个,突变形式超过85个,包括G332R、V483G、V483A、N698S、K1152Q等[2,32-38],暂未发现碱基缺失及插入突变。在中国北方耐利福平菌株中最常见的突变位点是483 (33.7%)和491(14.4%)[2]。但并非所有的rpoA或rpoC基因突变均代表补偿基因,一些rpoC基因的突变是系谱特异性标志,如A542A和G594E分别是拉丁美洲地中海谱系和哈勒姆(Haarlem)谱系的标志[2]。在利福平敏感菌株中发现T721C突变,提示此突变不是利福平耐药性标志[2]。多项研究表明rpoC作为rpoB中耐药基因突变(主要是rpoB S531 L)的补偿突变,能促进一些临床耐药菌株恢复适应性,使耐药菌株存活更久并增强菌株传播能力[33,35,37]。

1.3 rpoA基因rpoA全长1 044 bp(Gene ID:887 629),编码RNA聚合酶α亚基[4]。α亚基(分为αI和αII亚基)位于ββ'亚基结合处,α亚基N-端负责装配ββ'亚基,C-端与各种转录激活因子以及DNA序列启动子相互作用[31]。目前已发现的rpoA基因突变形式有:G31S、G31A、D57N、V59A、T63T、S165I、K177M、T181A、V183G、E184D、T187A、T187P、A189E、D190G、R191L、V192A、V192G、T196P、T196A、T196S、D199G、L304R、S307L和E319K[2,34-37]。rpoA同为rpoB补偿基因,在耐药结核分枝杆菌中作用与rpoC类似[33,35]。

1.4 rpoZ基因rpoZ全长333 bp(Gene ID: 886754),编码RNA聚合酶中最小的ω亚基[5]。ω亚基是RNA聚合酶活性和细胞生存中非必需的,但其在结构上包绕β'亚基C-端尾部有保护及帮助β'亚基折叠的作用,协助RNA聚合酶组装并增加RNA聚合酶稳定性的作用[5,31,39]。研究表明rpoZ基因突变对分枝杆菌生物膜造成损害[5],但其在结核分枝杆菌耐利福平机制中的作用尚不明确。目前暂未见rpoZ基因突变报道。虽然结核分枝杆菌耐利福平主要与rpoB基因突变有关,但到目前为止约3.8%的耐利福平菌株没有检测到rpoB基因突变[29],提示结核分枝杆菌耐利福平尚存在其他机制。

2 药物外排泵机制

越来越多的研究证明结核分枝杆菌细胞对药物的主动排出是耐药的关键因素,在没有rpoB基因突变情况下,结核分枝杆菌对利福平耐药可能由外排泵导致[40-41]。外排泵为胞膜蛋白,当其过度表达时会将结核分枝杆菌内药物过多泵出菌体外,使菌体内抗结核药物浓度降低导致杀菌作用减弱从而产生耐药[41-42]。五个家族的外排泵与药物耐药有关:ATP结合盒(ABC)超家族,主要异化子超家族(MFS),耐药结节分化(RND)超家族,多药和毒性化合物外排(MATE)家族及小多重药耐药(SMR)家族[42]。目前发现与利福平可能相关的外排泵有Rv1410c、Rv1258c、Rv1819c、Rv2333、Rv2846c、Rv2936、Rv2937、Rv2938、Rv3239c、Rv3728、Rv0783、Rv0842、Rv0933,其中属于ABC家族的特异性利福平外排泵Rv2936以及属于MFS家族的Rv1258c、Rv1410c和Rv0783被认为与利福平低浓度耐药有关[40,43-44]。

3 细胞通透性改变

细胞壁通透性变化是除靶基因突变外结核分枝杆菌株利福平耐药的另一主要原因。结核分枝杆菌细胞壁外膜渗透性极低,这一生理特性保护其免受有毒化合物影响,对于结核分枝杆菌的毒性和致病性以及其在体内严峻环境下生存是必需的。细胞壁通透性降低将减少菌体内抗结核药物的浓度导致耐药。近年来有研究表明减少结核分枝杆菌外膜通道蛋白CpnT介导的外膜通透性可能导致结核分枝杆菌耐药[45],编码孔蛋白的MspA基因突变引起的孔蛋白丢失可能导致结核分枝杆菌对链霉素耐药[46],分枝杆菌的MspA基因缺失与利福平耐药有关[47]。但与结核分枝杆菌耐利福平的相关通道蛋白及具体机制目前尚不清楚。

4 其他机制

与外排、转运和毒力相关的基因簇Rv0559c(参与细胞壁和细胞过程)、Rv0560c(编码参与中间代谢和呼吸的蛋白)在结核分枝杆菌耐利福平中起关键作用,但具体促发机制还有待进一步研究[48]。Zheng等[49]认为野生型与耐药型菌株的混合感染是无rpoB基因突变耐利福平菌株的可能耐药机制,并提出摩奴2(Manu2)谱系菌株作为混合感染中的主要群体,有协助或影响宿主免疫应答导致混合感染的能力,由其引起的混合感染是没有任何rpoB基因突变的耐利福平菌株的可能耐药机制。但混合感染可能引起GeneXpert等检测方法的敏感性降低,导致耐利福平菌株突变可能被DNA测序错过[50]。

综上所述,结核分枝杆菌耐利福平机制包括药物作用靶基因突变、外排泵机制、细胞壁通透性变化等,其中靶基因突变,尤其是编码RNA聚合酶β亚基的rpoB基因突变是其主要耐药机制。相关基因中rpoA、rpoC作为补偿基因,主要作用为增强耐药菌株传播能力。但目前仍有部分利福平耐药机制尚不完全清楚。了解已知的利福平耐药机制,进一步研究发现新的耐利福平相关基因及其耐药机制,能为耐药结核病的早期诊治及控制奠定理论和临床实践的基础。

[1]WHO.Global Tuberculosis Report 2016[M].World Health Organization,2016:24-38.

[2]Li QJ,Jiao WW,Yin QQ,et al.Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis beijing genotype strains in China[J].AntimicrobAgents Chemother,2016,60(5):2807-2812.

[3]Goldstein BP.Resistance to rifampicin:a review[J].J Antibiot(Tokyo),2014,67(9):625-630.

[4]Nusrath UA,Hassan S,Indira KV,et al.Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis[J].J Mol Graph Model,2016,67:20-32.

[5]魏亚蕊,吴小刚,伊卫东,等.RNA聚合酶ω亚基的研究进展[J].中国植保导刊,2012,32(6):11-15.

[6]Ullah I,Shah AA,Basit A,et al.Rifampicin resistance mutations in the 81 bp RRDR of rpo B gene in Mycobacterium tuberculosis clinical isolates using Xpert MTB/RIF in Khyber Pakhtunkhwa,Pakistan:a retrospective study[J].BMC Infect Dis,2016,16:413.

[7]Rukasha I,Said HM,Omar SV,et al.Correlation of rpoB mutations with minimal inhibitory concentration of rifampin and rifabutin in Mycobacterium tuberculosis in an HIV/AIDS endemic setting,South Africa[J].Front Microbiol,2016,7:1947.

[8]Singhal R,Myneedu VP,Arora J,et al.Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDR plus assay[J].Indian J Med Microbiol,2015,33 Suppl(5):46-52.

[9]Abate D,Tedla Y,Meressa D,et al.Isoniazid and rifampicin resistance mutations and their effect on second-line anti-tuberculosis treatment[J].Int J Tuberc Lung Dis,2014,18(8):946-951.

[10]Shubladze N,Tadumadze N,Bablishvili N.Molecular patterns of multidrug resistance of Mycobacterium tuberculosis in Georgia[J].Int J Mycobacteriol,2013,2(2):73-78.

[11]N'Guessan K,Assi JS,Ouassa T,et al.Assessment of the genotype MTBDR plus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d'Ivoire[J].Eur J Microbiol Immunol (Bp),2014,4(3):166-173.

[12]Ajbani K,Rodrigues C,Shenai S,et Aal.Mutation Detection and Accurate Diagnosis of ExtensivelyDrug-Resistant Tuberculosis:Report from a Tertiary Care Center in India[J].J Clin Microbiol,2011,49 (4):1588-1590.

[13]Chen L,Gan X,Li N,et al.rpoB gene mutation profile in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Guizhou,one of the highest incidence rate regions in China[J].J Antimicrob Chemother,2010,65(6):1299-1301.

[14]Georghiou SB,Seifert M,Catanzaro D,et al.Frequency and distribution of tuberculosis resistance-associated mutations between Mumbai,Moldova,and Eastern Cape[J].Antimicrob Agents Chemother, 2016,60(7):3994-4004.

[15]Mohajeri P,Sadri H,Farahani A,et al.Frequency of mutations associated with rifampicin resistance in Mycobacterium tuberculosis strains isolated from Patients in West of Iran[J].Microb Drug Resist,2015, 21(3):315-319.

[16]Sanchez-Padilla E,Merker M,Beckert P,et al.Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland[J].N Engl J Med,2015,372(12):1181-1182.

[17]李丽,孟繁荣,刘志辉.中国利福平耐药结核分枝杆菌株rpoB基因耐药决定区基因突变的分子特征[J].实用医学杂志,2015,31(14): 2372-2375.

[18]Zhang Z,Lu J,Liu M,et al.Genotyping and molecular characteristics of multidrug-resistant Mycobacterium tuberculosis isolates from China[J].J Infect,2015,70(4):335-345.

[19]邹悦,肖谦,苏海涛.结核分枝杆菌利福平耐药与rpoB基因突变特征的关系探讨[J].中国卫生标准管理,2015,6(29):199-201.

[20]Yin QQ,Jiao WW,Li QJ,et al.Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosisin Beijing,China: 2006 versus 2012[J].BMC Microbiol,2016,16:85.

[21]胡族琼,刘燕文,周文,等.结核分枝杆菌rpoB基因突变特征与利福平耐药水平关系的研究[J].中国人兽共患病学报,2016,32(1): 39-44.

[22]Bedewi Omer Z,Mekonnen Y,Worku A,et al.Evaluation of the GenoType MTBDR plus,assay for detection of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis,isolates in central Ethiopia [J].Int J Mycobacteriol,2016,5(4):475-481.

[23]Bahrmand AR,Titov LP,Tasbiti AH,et al.High-level rifampin resistance correlates with multiple mutations in the rpoB Gene of pulmonary tuberculosis isolates from the Afghanistan border of Iran[J].J Clin Microbiol,2009,47(9):2744-2750.

[24]金韬,叶松.结核分枝杆菌耐药性分子机制研究现状[J].医学动物防制,2010,26(10):911-913.

[25]Guo Q,Yu Y,Zhu YL,et al.Rapid detection of rifampin-resistant clinical isolates of Mycobacterium tuberculosis by reverse dot blot hybridization[J].Biomed Environ Sci,2015,28(1):25-35.

[26]李丽,孟繁荣,刘志辉.中国结核分枝杆菌株rpoB基因耐药决定区外序列的基因突变[J].现代医院,2015,15(8):24-26.

[27]Jamieson FB,Guthrie JL,Neemuchwala A,et al.Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis[J].J Clin Microbiol,2014,52(6):2157-2162.

[28]Siu GK,Zhang Y,Lau TC,et al.Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis[J].J Antimicrob Chemother,2011,66(4): 730-733.

[29]Tang K,Sun H,Zhao Y,et al.Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China[J].Tuberculosis(Edinb),2013,93(1):89-95.

[30]Regmi SM,Chaiprasert A,Kulawonganunchai S,et al.Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand[J].Mol Genet Genomics,2015,290(5):1933-1941.

[31]Alifano P,Palumbo C,Pasanisi D,et al.Rifampicin-resistance,rpoB polymorphism and RNA polymerase genetic engineering[J].J Biotechnol,2015,202:60-77.

[32]Otchere ID,Asante-Poku A,Osei-Wusu S,et al.Detection and characterization of drug-resistant conferring genes in Mycobacterium tuberculosis complex strains:A prospective study in two distant regions of Ghana[J].Tuberculosis(Edinb),2016,99:147-154.

[33]Ssengooba W,Meehan CJ,Lukoye D,et al.Whole genome sequencing to complement tuberculosis drug resistance surveys in Uganda [J].Infect Genet Evol,2016,40:8-16.

[34]Perdigão J,Silva H,Machado D,et al.Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon,Portugal,a highly drug resistant setting[J].BMC Genomics,2014,15:991.

[35]Casali N,Nikolayevskyy V,Balabanova Y.Evolution and transmission of drug-resistant tuberculosis in a Russian population[J].Nat Genet,2014,46(3):279-286.

[36]Brandis G,Hughes D.Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu,the rifampicin resistance mutation most frequently found in clinical isolates[J].J Antimicrob Chemother,2013,68(11):2493-2497.

[37]de Vos M,Müller B,Borrell S,et al.Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission[J].Antimicrob Agents Chemother,2013,57(2):827-832.

[38]廖小琴,刘梅,彭章丽,等.耐利福平结核分枝杆菌rpoA、rpoB、rpoC和rpoZ突变的研究[J/CD].中华临床医师杂志:电子版,2013,7 (22):38-40.

[39]Minakhin L,Bhagat S,Brunning A,et al.Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence,structural,and functional homologs and promote RNA polymerase assembly[J].Proc Natl Acad Sci USA,2001,98(3): 892-897.

[40]Li G,Zhang J,Guo Q,et al.Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates [J].JAntibiot(Tokyo),2015,68(7):431-435.

[41]Yamchi JK,Haeili M,Feyisa SG,et al.Evaluation of efflux pump gene expression among drug susceptible and drug resistant strains of Mycobacterium tuberculosis,from Iran[J].Infect Genet Evol,2015, 36:23-26.

[42]Aygül A.The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance[J]. Mikrobiyol Bul,2015,49(2):278-291.

[43]Black PA,Warren RM,Louw GE,et al.Energy metabolism and drug efflux in Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2014,58(5):2491-2503.

[44]Pang Y,Lu J,Wang Y,et al.Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis[J].AntimicrobAgents Chemother,2013,57(2):893-900.

[45]Danilchanka O,Pires D,Anes E,et al.The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules[J].Antimicrob Agents Chemother,2015,59(4): 2328-2336.

[46]SpeerA,Rowland JL,Niederweis M.Mycobacterium tuberculosis is resistant to streptolydigin[J].Tuberculosis(Edinb),2013,93(4): 401-404.

[47]Stephan J,Mailaender C,Etienne G,et al.Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis[J].Antimicrob Agents Chemother,2004,48(11):4163-4170.

[48]de Knegt GJ,Bruning O,ten Kate MT,et al.Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis [J].Tuberculosis(Edinb),2013,93(1):96-101.

[49]Zheng C,Li S,Luo Z,et al.Mixed infections and rifampin heteroresistance among Mycobacterium tuberculosis clinical isolates[J].J Clin Microbiol,2015,53(7):2138-2147.

[50]Zetola NM,Shin SS,Tumedi KA,et al.Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by geneXpert MTB/RIF are associated with poor clinical outcomes[J].J Clin Microbiol,2014,52(7):2422-2429.

Mechanism of rifampicin resistance in Mycobacterium tuberculosis and its research progress.

XIANG Min,ZHANG Hong,CHEN Ling.Respiratory DepartmentⅡ,Affiliated Hospital of Zunyi Medical College,Zunyi 563003,Guizhou,CHINA

Tuberculosis is a global public health problem that seriously endanger public health,and the spread of drug-resistant tuberculosis,especially multidrug-resistant tuberculosis(MDR-TB),makes tuberculosis more severe. Rifampicin is one of the important first-line anti-tuberculosis drugs and serves as an alternative marker for MDR-TB. Therefore,understanding the mechanism of rifampicin resistance in Mycobacterium tuberculosis is of great significance to the prevention and control of drug-resistant tuberculosis.In this paper,the mechanism of rifampicin resistance in Mycobacterium tuberculosis and its research progress is reviewed.

Mycobacterium tuberculosis;Rifampicin;Drug resistance;Mechanism

R378.91+1

A

1003—6350(2017)17—2853—04

2017-03-12)

10.3969/j.issn.1003-6350.2017.17.031

国家自然科学基金(编号:81360002)通讯作者:陈玲。E-mail:lingjuncd@163.com