APP下载

去分化脂肪细胞多向分化潜能与应用

2017-02-26张洋肖丽玲

海南医学 2017年9期
关键词:内皮细胞干细胞分化

张洋,肖丽玲

(暨南大学附属第一医院整形外科,广东 广州 510632)

去分化脂肪细胞多向分化潜能与应用

张洋,肖丽玲

(暨南大学附属第一医院整形外科,广东 广州 510632)

去分化脂肪细胞(DFAT cells)来源于成熟脂肪细胞,且具有多向分化潜能,其特征类似于干细胞的一种细胞。在体外可通过天花板培养法提取出DFAT细胞,经过诱导后,DFAT细胞可向脂肪细胞、骨细胞、软骨细胞、内皮细胞、肌细胞、神经细胞等分化。因此,DFAT细胞是一种在组织工程和干细胞治疗中很好的潜在资源,从而广泛应用于多种疾病及组织损伤修复的研究当中。

去分化脂肪细胞;分化;脂肪干细胞;临床应用

作为干细胞移植治疗的代表,骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)与脂肪来源干细胞(adipose-derived stem cells,ADSCs)的多向分化潜能在转化医学的应用中已被大量研究及体内外实验所证明[1-5]。然而,某些客观因素却限制了其在临床中的广泛使用,比如BMSCs来源的局限性、取材的有创性、对供体年龄的限制、提取细胞的均一性差,以及传代后的老化现象;ADSCs虽然来源广泛,取材创伤性小,但同样对供体的年龄有所限制,且细胞的均一性较差。

相较于BMSCs与ADSCs,来源于皮下脂肪组织的去分化脂肪细胞(dedifferentiated fat cells,DFAT cells),除了具有类似ADSCs来源广、取材易、低免疫性等特征之外,还具有对供体年龄限制低、具有较高的细胞均一性等特点。此外,DFAT细胞同样拥有与BMSCs和ADSCs相类似的多向分化潜能[6-7]。因此,DFAT细胞在组织工程和干细胞治疗中是一个很好的潜在资源。

1 DFAT细胞的分离与鉴定

1.1 DFAT细胞的提取与去分化机制 成熟脂肪细胞经天花板培养法可自发去分化为不含脂滴的类成纤维细胞,即DFAT细胞。相对于传统的(培养瓶)天花板培养法,宋子仪等[8]首次采用培养皿加细胞载玻片组合的培养法,既保证了去分化的效果,又极大地节省了实验材料;Wei等[9]也采用了培养皿细胞培养法,并对提取方法进行了改良,使其更有利于脂肪细胞内脂滴的去除。然而,对于成熟脂肪细胞去分化的机制,国内外学者虽然对此做了大量研究,但至今尚未定论。宋子仪等[8]发现在成熟脂肪细胞去分化过程的中后期,脂肪分解的关键基因激素敏感脂酶(HSL)和脂肪组织甘油三酯脂肪酶(ATGL)的mRNA水平分别上调了40倍和10倍,而成脂关键基因过氧化物酶体增殖物激活受体γ(PPARγ)、脂肪细胞型脂肪酸结合蛋白(aP2)和脂蛋白酯酶(LPL)的mRNA水平分别上调了8倍、3倍和7.5倍,证明了脂肪去分化是一个以脂解为主并伴有一定水平成脂的脂代谢过程。Peng等[10]和Lessard等[11]在最近的研究中也指出,在成熟脂肪细胞去分化的过程中,其脂肪细胞标志物PPARγ、aP2、LPL和脂联素均有显著下降。Lessard等[11]还发现,在脂肪细胞去分化的过程中FAP、DPP4、MMP1和TGFβ1均明显升高,且发现FAP和DPP4对脂肪组织的重塑和细胞可塑性有所关联。此外,Ono等[12]则首次对DFAT细胞进行了基因表达谱的研究,发现在脂肪细胞去分化的过程中,其功能表型相关基因表达减少,而细胞增殖、细胞形态学的改变和相关基因的分化调控则相对增加。

1.2 DFAT细胞的鉴定 至今DFAT细胞的表型和细胞性质仍不清楚,但是近年来对DFAT细胞表面标志的各项研究表明,其CD29、CD44、CD73、CD90、CD105显示为阳性,CD14、CD34、CD45、CD117、CD133、CD271、CD309、HLA-DR显示为阴性,与BMSCs、ADSCs的表面标志基本相同[13-17]。

此外,Gao等[18]发现DFAT细胞表达若干胚胎干细胞的表面标志,如Oct4、Sox2、c-Myc、Nanog等。在最近的相关研究中,Song等[19]发现DFAT细胞还表达与血管周围细胞高度相关的标志物,如CD140b、NG2和肌间线蛋白等,且显示了良好的血管网形成能力;但是常见的血管内皮细胞标记物,如CD31、CD34和cd309则为阴性。

2 DFAT细胞多向分化潜能的研究与应用

2.1 向脂肪细胞分化 成熟的脂肪细胞在去分化的过程后形成DFAT细胞,而DFAT细胞经体外诱导培养后,镜下可见显著性脂滴聚集。Kou等[16]研究发现DFAT细胞的成脂能力要优于ADSCs。此外,陈晓炜等[20]将DFAT细胞与纤维蛋白胶混合后注射于裸鼠皮下,并构建出了脂肪组织;而Nobusue等[21]则将DFAT细胞移植到小鼠皮下,14 d后即可发现有高度血管化的脂肪垫生成。目前的各项体内外实验均证实了DFAT细胞具有强大的成脂分化能力。此外,Guo等[22]发现DFAT细胞在分化的过程中,受胰岛素受体底物1(insulin receptorsubstrate 1,IRS1)介导,上调了miR-145,使脂肪的生成受到抑制。最近,Hu等[23]发现在DFAT细胞成脂过程中视网膜母细胞瘤-1(Rb1)基因同样起到了负调节作用。

2.2 向骨细胞、软骨细胞分化 相对于传统的使用地塞米松成骨诱导方法,Nakamura等[24]发现将骨形态发生蛋白-9(bone morphogenetic protein,BMP-9)与FK506联合使用可有效的诱导DFAT细胞成骨分化。Oki等[25]使用全反式维甲酸即可在体内外完成对DFAT细胞成骨分化的诱导。对于其成骨分化能力研究,Kishimoto等[26]将从颊脂垫中分离出的DFAT细胞与ADSCs诱导成骨后比较,发现DFAT细胞在碱性磷酸酶(BAP)、骨钙素(OCN)、钙沉积和茜素红染法的评估均优于ADSCs。相似的,Sakamoto等[27]发现,DFAT细胞在成骨诱导后,Runx2基因表达、碱性磷酸酶(ALP)活性以及骨钙素(OCN)和钙含量的测定均优于hMSCs。此外,Tansriratanawong等[28]将DFAT细胞与牙周韧带干细胞体外共培养后,增强了RUNX2基因的表达。在新型生物复合材料的研究中,Sakamoto等[27]将DFAT细胞种植到α磷酸三钙/胶原海绵(α-TCP/CS)上,14 d后电镜下可见众多球形细胞几乎完全将α-TCP/CS覆盖,形成培养骨的矿化细胞外基质沉积;Kishimoto等[29]则将DFAT细胞与刚性支架组成的钛纤维网(TFM)结合制成新型生物材料;Shirakata等[30]则将DFAT细胞与聚乳酸-羟基乙酸/羟基磷灰石(PLGA/HA)复合材料使用在了大鼠颅骨缺损的模型上,并取得了明显效果。这些生物复合材料的诞生对于骨组织工程来说是一种不错的选择。此外,将DFAT细胞运用到骨疾病的治疗中也逐渐被重视起来[31],Kikuta等[32]在卵巢摘除后诱导的骨质疏松模型上,将DFAT细胞进行骨髓内注射,可使其骨密度明显增加。然而在诱导DFAT细胞向软骨分化的过程中至今并没有有效的诱导方法。Okita等[33]发现,将适量锶离子(Sr)添加到诱导软骨生成的培养基中,明显促进DFAT细胞早期向软骨细胞的分化。这对提高DFAT细胞向软骨分化及用于软骨再生治疗或许是一种可行的方法。

2.3 向内皮细胞分化 Jumabay等[34]的研究发现DFAT细胞可以在体外自发进行内皮细胞分化,且使用BMP4和BMP9可促进分化的进行。Kou等[16]却提出在DFAT细胞经过常见的血管生成因子诱导的前后,均无表达内皮细胞关键标志物CD31、CD34、CD309和vWF等。这与Matsumoto等[35]和Poloni等[15]的报道是一致的。而Shimizu等[36]将DFAT细胞培养于微血管内皮细胞生长基-2(microvascularendothelial cell growth medium-2,EGM-2MV)即可检测到DFAT细胞表达内皮细胞的表面标记;而将DFAT细胞与人齿龈内皮细胞(human gingival endothelial cells,HGECs)共培养后,则可在12 h内形成丰富的毛细血管样结构,并可保持管状结构24 h以上不被分解;另外,共培养的DFAT细胞明显增强周细胞表面标记的表达,促进了微血管的成熟与稳定。此外,Soejim等[37]和Asami等[38]均通过实验发现,将DFAT细胞与碱性成纤维细胞生长因子(bFGF)混合使用于人工真皮移植后,明显缩短皮肤再生和血管形成所需要的时间,甚至在移植后第2天即可观察到真皮内已有毛细血管的渗透。Kashimura等[39]也通过实验证实局部注射DFAT细胞后,可显著增加皮瓣移植区新生血管的生成,促进皮瓣的存活。对于牙周组织的再生,Sugawara等[40]将DFAT细胞与胶原支架结合构成的生物支架运用于牙周组织缺损模型,证明了DFAT细胞用于细胞移植治疗的可行性。

2.4 向肌肉细胞分化 在向心肌分化的研究中,杨华等[41]通过使用催产素对DFAT细胞进行诱导分化,3周后DFAT细胞在基因及蛋白水平上即可检测到心脏特异性标记GATA4、Nkx2.5及cTnT的表达,但未发现自主搏动现象。而Jumabay等[42]则通过抑制骨形态发生蛋白(bone morphogenetic proteins,BMP)和Wnt信号通路,可增强DFAT细胞向心肌样细胞的分化,且检测到此细胞具有自主收缩性。此外,Jumabay等[43]则将DFAT细胞移植于大鼠急性心肌梗死模型,并检测到DFAT细胞可有效的聚集于心肌梗死区,表达心脏横纹肌肌动蛋白,且梗死区的毛细血管密度也得以显著增加。近期,李福海等[44]首次证明了维生素C可诱导DFAT细胞向心肌分化,并且在心脏细胞裂解液体外模拟心肌微环境的条件下,可进一步提高细胞的心肌分化效率。在向平滑肌分化的研究中,Sakuma等[45]在小鼠膀胱壁冷冻伤模型中注射DFAT细胞后,在受伤的膀胱组织中监测到平滑肌肌动蛋白-α阳性区显著大于对照组,证明了DFAT细胞可有助于膀胱平滑肌组织的再生。Obinata等[46]则将DFAT细胞注射入小鼠尿道扩张模型中,即可在受损平滑肌层观察到移植的DFAT细胞,且平滑肌肌动蛋白-α呈阳性染色,其肌肉层厚度增加明显。Hsiao等[47]利用细胞纤维技术制作出一种螺旋弹簧状三维细胞结构模型,其中含有的DFAT细胞经诱导后生成平滑肌细胞,这种新型结构可精确控制平滑肌细胞的排列与方向,可作为组织工程的构建模块,使用于器官或细胞移植等临床治疗。在向骨骼肌分化的研究中,Kazama等[48]通过肌源性诱导后,可导致DFAT细胞MyoD和肌细胞生成素的表达,这些结果表明,DFAT细胞可以在体外培养中诱导分化为骨骼肌细胞。

2.5 向神经细胞分化 Ohta等[49]发现,DFAT细胞可表达如巢蛋白、β微管蛋白和胶质纤维酸性蛋白等神经标志物,并可明显改善脊髓损伤大鼠模型的后肢运动功能。Yamada等[50]也通过相似实验证实,并指出DFAT细胞在改善脊髓损伤后肢体运动能力的同时,可促进髓鞘再生和减少胶质瘢痕生成。此外,Matsumine等[51]将DFAT细胞移植入大鼠面神经缺损模型,证明了DFAT细胞可以促进再生神经的成熟。

3 DFAT细胞的临床应用潜力

相关实验证明DFAT细胞即使体外传代22代后仍保有增殖和分化的能力[21],且Poloni等[52]证实了DFAT细胞经过去分化过程后并无基因学改变和致瘤倾向。因此DFAT细胞在临床应用领域将拥有广阔的前景。上文中已综合叙述了DFAT细胞移植疗法用于牙周组织再生[28,36,40]、皮肤移植[37-38]、脊髓损伤[49-50]、骨质疏松[32]、尿道、膀胱平滑肌损伤[45-46]等方面的治疗,并取得了显著的效果。此外,在慢性肾功能不全、肾小球肾炎的治疗中,DFAT细胞移植疗法也取得了不错的效果[53-54]。

DFAT细胞移植治疗在慢性创面修复中也备受关注,近些年来诸如糖尿病足、压疮、血管源性疾病等多因素、多系统病变所致慢性溃疡的发病率逐年升高。而糖尿病已经成为第三大威胁人类健康的慢性疾病,糖尿病微循环改变损伤组织内血管重建过程[55]是导致溃疡难愈的原因之一。BMSCs与ADSCs是干细胞移植治疗的代表,虽然可以从糖尿病患者脂肪中成功分离到ADSCs,且已证明了其多向分化的潜能[56],但是相关研究发现糖尿病可使ADSCs的血管生成能力减弱,从而影响了新生血管形成及伤口愈合[57],而且对干细胞的自我修复能力与自体干细胞治疗的效果也会产生影响[58]。而Jumabay等[59]实验发现,与ADSCs相比,糖尿病可增强DFAT细胞的增殖能力,且其向脂肪细胞和内皮细胞分化的能力也相应的增强。此外,Watson等[17]通过比较了来源自同一糖尿病患者体内脂肪的DFAT细胞与ADSCs,发现DFAT细胞的端粒酶水平是ADSCs的2.5倍,其细胞衰老过程也因此较之缓慢,而且DFAT细胞上清液与ADSCs上清液对人皮肤成纤维细胞(human dermalfibroblasts,HDFs)的迁移具有相似的作用,各种相关研究都表明DFAT细胞对于慢性创面治疗具有巨大潜力。

4 展 望

DFAT细胞较之ADSCs,其均一性高、增殖能力强、成脂分化能力强及对供者的年龄要求低,并且具有与ADSCs相似的体内及体外成脂、成骨、成软骨、成肌肉、成神经等多向分化潜能,这些特点使DFAT细胞具有更为广泛的临床应用价值。如何建立一种DFAT细胞高效的提取、扩增方法对其在转化医学应用方面是很有必要的。对于DFAT细胞的研究,目前仍未有用于临床治疗的报道。

随着社会老龄化的进程,难愈性创面患者数量的逐渐增多,结合DFAT细胞的各种临床潜在应用优势,推测DFAT细胞在转化医学领域将发挥其巨大潜力。因此对DFAT细胞在细胞治疗与医学转化应用中应予以足够的重视。相信随着进一步的深入研究,DFAT细胞的临床应用前景将会更加广阔。

[1]Park JS,Suryaprakash S,Lao YH,et al.Engineering mesenchymal stem cells for regenerative medicine and drug delivery[J].Methods, 2015,84:3-16.

[2]Teng M,Huang Y,Zhang H.Application of stems cells in wound healing—an update[J].Wound Repair Regen,2014,22(2):151-160.

[3]Rammal H,Harmouch C,Lataillade JJ,et al.Stem cells:a promising source for vascular regenerative medicine[J].Stem Cells Dev,2014, 23(24):2931-2949.

[4]严龙宗,陈斌.慢性创面愈合的细胞治疗[J].中国组织工程研究, 2013,17(46):8096-8101.

[5]王贤,张培华.脂肪干细胞的研究及应用进展[J].海南医学,2016, 27(6):965-967.

[6]Shen JF,Sugawara A,Yamashita J,et al.Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues[J].Int JOral Sci,2011,3(3):117-124.

[7]史琳丽,杨向群.脂肪组织来源干细胞的分化潜能和应用[J].中国修复重建外科杂志,2012,26(8):1007-1011.

[8]宋子仪,史新娥,杨浩,等.基于一种新的天花板培养方法分析猪成熟脂肪细胞去分化过程中关键基因表达模式[J].农业生物技术学报,2013,21(4):379-387.

[9]Wei S,Du M,Jiang Z,et al.Bovine dedifferentiated adipose tissue (DFAT)cells:DFAT cell isolation[J].Adipocyte,2013,2(3): 148-159.

[10]Peng X,Song T,Hu X,et al.Phenotypic and functional properties of porcine dedifferentiated fat cells during the long-term culture in vitro [J].Biomed Res Int,2015,2015:673651.

[11]Lessard J,Pelletier M,Biertho L,etal.Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments:fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling[J].PLoS One,2015,10(3):e0122065.

[12]Ono H,Oki Y,Bono H,et al.Gene expression profiling in multipotent DFAT cells derived from mature adipocytes[J].Biochem Biophys Res Commun,2011,407(3):562-567.

[13]Wei S,Zan L,Hausman GJ,et al.Dedifferentiated adipocyte-derived progeny cells(DFAT cells):potential stem cells of adipose tissue[J]. Adipocyte,2013,2(3):122-127.

[14]Kono S,Kazama T,Kano K,etal.Phenotypic and functionalproperties of feline dedifferentiated fat cells and adipose-derived stem cells [J].Vet J,2014,199(1):88-96.

[15]Poloni A,Maurizi G,Leoni P,et al.Human dedifferentiated adipocytes show similar properties to bone marrow-derived mesenchymal stem cells[J].Stem Cells,2012,30(5):965-974.

[16]Kou L,Lu XW,Wu MK,et al.The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes[J]. Biochem Biophys Res Commun,2014,444(4):543-548.

[17]Watson JE,Patel NA,Carter G,et al.Comparison of markers and functional attributes of human adipose-derived stem cells and dedifferentiated adipocyte cells from subcutaneous fat of an obese diabetic donor[J].Adv Wound Care(New Rochelle),2014,3(3): 219-228.

[18]Gao Q,Zhao L,Song Z,et al.Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs[J].Mol Biol Rep,2012,39 (5):5791-5804.

[19]Song N,Kou L,Lu XW,etal.The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes [J].Biochem Biophys Res Commun,2015,457(3):479-484.

[20]陈晓炜,姜平,高建华,等.脂肪细胞去分化及构建组织工程化脂肪的实验研究[J].南方医科大学学报,2009,29(4):606-610.

[21]Nobusue H,Endo T,Kano K.Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue[J].Cell Tissue Res,2008,332(3): 435-446.

[22]Guo Y,Chen Y,Zhang Y,etal.Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1[J].Int JBiol Sci,2012,8(10):1408-1417.

[23]Hu X,Luo P,Peng X,et al.Molecular cloning,expression pattern analysis of porcine Rb1 gene and its regulatory roles during primary dedifferentiated fat cells adipogenic differentiation[J].General and Comparative Endocrinology,2015,214:77-86.

[24]Nakamura T,Shinohara Y,Momozaki S,et al.Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells[J].Biochem Biophys Res Commun,2013,440(2):289-294.

[25]Oki Y,Watanabe S,Endo T,etal.Mature adipocyte-derived dedifferentiated fatcells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid[J].Cell Struct Funct,2008,33(2): 211-222.

[26]Kishimoto N,Momota Y,Hashimoto Y,et al.The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad[J].Clin Oral Investig, 2014,18(8):1893-1901.

[27]Sakamoto F,Hashimoto Y,Kishimoto N,et al.The utility of human dedifferentiated fat cells in bone tissue engineering in vitro[J].Cytotechnology,2015,67(1):75-84.

[28]Tansriratanawong K,Tamaki Y,Ishikawa H,et al.Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fatcells[J].Hum Cell,2014,27(4):151-161.

[29]Kishimoto N,Momota Y,Hashimoto Y,et al.Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh[J].Cytotechnology,2013,65(1):15-22.

[30]Shirakata Y,Nakamura T,Shinohara Y,etal.An exploratory study on the efficacy of rat dedifferentiated fat cells(rDFATs)with a poly lactic-co-glycolic acid/hydroxylapatite(PLGA/HA)composite for bone formation in a ratcalvarial defect model[J].J Mater Sci Mater Med, 2014,25(3):899-908.

[31]Mikami Y,Matsumoto T,Kano K,et al.Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine[J].AnatSci Int,2014,89(1):1-10.

[32]Kikuta S,Tanaka N,Kazama T,et al.Osteogenic effects of dedifferentiated fat cell transplantation in rabbit models of bone defect and ovariectomy-induced osteoporosis[J].Tissue Eng Part A,2013,19 (15-16):1792-1802.

[33]Okita N,Honda Y,Kishimoto N,et al.Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells[J].Tissue Eng Part A,2015,21 (9-10):1695-1704.

[34]Jumabay M,Abdmaulen R,Urs S,etal.Endothelial differentiation in multipotentcells derived from mouse and human white mature adipocytes[J].J Mol Cell Cardiol,2012,53(6):790-800.

[35]Matsumoto T,Kano K,Kondo D,etal.Mature adipocyte-derived dedifferentiated fatcells exhibit multilineage potential[J].J Cell Physiol,2008,215(1):210-222.

[36]Shimizu Y,Sato S.In vitro study on regeneration of periodontal tissue microvasculature using human dedifferentiated fat cells[J].J Periodontol,2015,86(1):129-136.

[37]Soejima K,Kashimura T,Asami T,et al.Effects of mature adipocyte-derived dedifferentiated fat(DFAT)cells on generation and vascularisation of dermis-like tissue after artificial dermis grafting[J].J Plast Surg Hand Surg,2015,49(1):25-31.

[38]AsamiT,Soejima K,Kashimura T,etal.Effects ofcombination therapy using basic fibroblast growth factor and mature adipocyte-deriveddedifferentiated fat(DFAT)cells on skin graft revascularisation[J].J Plast Surg Hand Surg,2015,49(4):229-233.

[39]Kashimura T,Soejima K,Asami T,et al.The effect of mature adipocyte-derived dedifferentiated fat(DFAT)cells on a dorsal skin flap model[J].J Invest Surg,2016,29(1):6-12.

[40]Sugawara A,Sato S.Application of dedifferentiated fat cells for periodontaltissue regeneration[J].Hum Cell,2014,27(1):12-21.

[41]杨华,陈连凤,沈珠军.催产素诱导去分化脂肪细胞向心肌细胞方向分化(英文)[J].心脏杂志,2011,23(6):705-710,726.

[42]Jumabay M,Zhang R,Yao Y,etal.Spontaneously beating cardiomyocytes derived from white mature adipocytes[J].Cardiovasc Res, 2010,85(1):17-27.

[43]Jumabay M,Matsumoto T,Yokoyama S,et al.Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats[J].J Mol Cell Cardiol,2009,47(5):565-575.

[44]李福海,王志,张陈匀.DFAT细胞体外分化诱导实验及体内生物学特性综述[J].北京生物医学工程,2015,34(3):310-315.

[45]Sakuma T,Matsumoto T,Kano K,et al.Mature,adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration[J].J Urol,2009, 182(1):355-365.

[46]Obinata D,Matsumoto T,Ikado Y,etal.Transplantation of mature adipocyte-derived dedifferentiated fat(DFAT)cells improves urethral sphincter contractility in a rat model[J].Int J Urol,2011,18(12): 827-834.

[47]Hsiao AY,Okitsu T,Onoe H,et al.Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology[J].PLoS One,2015,10(3):e0119010.

[48]Kazama T,Fujie M,Endo T,et al.Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro [J].Biochem Biophys Res Commun,2008,377(3):780-785.

[49]Ohta Y,Takenaga M,Tokura Y,et al.Mature adipocyte-derived cells, dedifferentiated fat cells(DFAT),promoted functional recovery from spinal cord injury-induced motor dysfunction in rats[J].Cell Transplant,2008,17(8):877-886.

[50]Yamada H,Ito D,Oki Y,et al.Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice[J].Biochem Biophys Res Commun,2014,454(2): 341-346.

[51]Matsumine H,Takeuchi Y,Sasaki R,et al.Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model[J].PlastReconstr Surg,2014,134(4):686-697.

[52]Poloni A,Maurizi G,Mattiucci D,et al.Biosafety evidence for human dedifferentiated adipocytes[J].J Cell Physiol,2015,230(7): 1525-1533.

[53]Nur R,Fukuda N,Matsumoto T,etal.Implantation of dedifferentiated fat cells ameliorates habu snake venom-induced chronic renaldysfunction in tenascin-C-deficient mice[J].Nephron Exp Nephrol, 2008,110(3):e91-98.

[54]Maruyama T,Fukuda N,Matsumoto T,etal.Systematic implantation of dedifferentiated fat cells ameliorated monoclonal antibody 1-22-3-induced glomerulonephritis by immunosuppression with increases in TNF-stimulated gene 6[J].Stem Cell Res Ther,2015,6 (1):80.

[55]Guo WY,Wang GJ,Wang P,et al.Acceleration of diabetic wound healing by low-dose radiation is associated with peripheral mobilization of bone marrow stem cells[J].Radiat Res,2010,174(4): 467-479.

[56]拾莉,张德明,任思坡,等.糖尿病患者脂肪间充质干细胞的分离培养与鉴定[J].山东医药,2014,54(42):17-19.

[57]Rennert RC,Sorkin M,Januszyk M,etal.Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellularsubpopulations[J].Stem Cell Res Ther,2014,5(3):79.

[58]Ferrer-Lorente R,Bejar MT,Tous M,etal.Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes:effects on differentiation potentialand function[J].Diabetologia,2014,57(1):246-256.

[59]Jumabay M,Moon JH,Yeerna H,et al.Effectof diabetes mellitus on adipocyte-derived stem cells in rat[J].J Cell Physiol,2015,230(11): 2821-2828.

Multilineage differentiation potential and application of dedifferentiated fat cells.

ZHANG Yang,XIAO Li-ling. Departmentof Plastic Surgery,the FirstAffiliated Hospitalof Jinan University,Guangzhou 510632,Guangdong,CHINA

Dedifferentiated fatcells(DFAT cells)derived from matured adipocytes,similar to stem cells,have multilineage differentiation potential.DFAT cells can be collected by ceiling culture in vitro.Under appropriate culture conditions for inducing differentiation,DFAT cells can transdifferentiate into adipocytes,osteoblasts,chondrocytes,endothelial cells,muscle cells,nerve cells and so on.Therefore,DFAT cells are considered as a potential resource for tissue engineering and stem celltherapy,which are widely used in various diseases and tissue damage repair studies.

Dedifferentiated fatcells(DFAT);Differentiation;Adipose-derived stem cells;Clinicalapplication

R329.2+8

A

1003—6350(2017)09—1458—05

10.3969/j.issn.1003-6350.2017.09.029

2016-07-27)

广东省自然科学基金(编号:S2013010015264)

肖丽玲。E-mail:xlilin@live.cn

猜你喜欢

内皮细胞干细胞分化
干细胞:“小细胞”造就“大健康”
两次中美货币政策分化的比较及启示
分化型甲状腺癌切除术后多发骨转移一例
鲁政委:房地产同城市场初现分化
造血干细胞移植与捐献
浅议角膜内皮细胞检查
原花青素B2通过Akt/FoxO4通路拮抗内皮细胞衰老的实验研究
干细胞产业的春天来了?
HIV-1 Tat对人脑内皮细胞MMP-9蛋白的影响及作用机制
细胞微泡miRNA对内皮细胞的调控