APP下载

铜纳米粒子/聚丙烯酸/石墨烯纳米复合材料修饰玻碳电极检测水中的4—硝基苯酚

2017-02-06张翠忠张贞发连欢梁彩云李凯彭金

分析化学 2017年1期
关键词:电极石墨复合材料

张翠忠+张贞发+连欢+梁彩云+李凯+彭金云

摘 要 采用一种温和且简单的原位生长法将铜纳米粒子和石墨烯非共价键合,得到铜纳米粒子/聚丙烯酸/石墨烯(CuNPs/PAA/GR)纳米复合材料,对4.硝基苯酚(4.NP)表现出良好的电催化活性。用扫描电镜对此纳米复合材料的形貌进行了表征。以此材料修饰的玻碳电极受吸附控制,4.NP在该电极表面的反应机理为两电子转移过程,电子转移数n=2.3,修饰电极的有效面积为0.6275 cm2,是裸电极的2.22倍,电极吸附量Гs为1.6×10 11 mol/cm2,催化速率常数k cat的平均值为1.15×104 L/(mol/s)。修饰电极的响应电流与4.NP的浓度在1~150 μmol/L范围内呈良好的线性关系,线性方程为: I pa(μA)= 0.015C (μmol/L)-0.98,(R2=0.9951),检出限为0.23 μmol/L(S/N=3)。此传感器制备简单、灵敏性高、稳定性和重现性好。使用此传感器检测实际水样中4.NP的回收率为88.6%~100.7%,相对标准偏差为2.6%~5.9%。

关键词 还原性石墨烯;4.硝基苯酚;纳米铜;计时安倍;计时库仑;微分脉冲伏安法

1 引 言

硝基苯酚是一类分子结构中包含苯环、硝基和酚羟基的化合物,常被用作合成染料、药物、橡胶添加剂、感光材料等的中间体[1]。其中对硝基苯酚(4.硝基苯酚,p.Nitrophenol(p.NP)或4.Nitrophenol(4.NP))是化工生产中重要的有机合成原料,用于生产农药、皮革着色、炸药合成以及木材防腐等[2]。4.NP能溶于水,性质稳定,在环境中残留时间较长,难以生物降解,对生态系统和人体有很强毒性[3,4],被列入于世界“环境优先控制有毒有机污染物”的名单[5]。因此,开发简单、灵敏、准确的4.NP分析方法具有重要的实际价值。美国环保局在2012年发布的《饮用水水水质标准和健康指导》(Drinking Water Standards and Health Advisories)中规定饮用水中4.NP的终生安全饮用限值(LHA)为0.06 mg/L[6]。国内环境标准尚没有关于4.NP限量的规定[7]。国标GB 8978.1996仅规定挥发酚的最大允许排放量为0.5 mg/L[8],GB 5749.2006规定饮用水中挥发酚(以苯酚计)的浓度限值为0.002 mg/L[9]。4.NP常用的检测方法有毛细管气相色谱和高效液相色谱法,具有较高的灵敏度和准确度。然而,水体中常同时存在多种酚类化合物,且4.NP由于苯环上硝基(NO2)和羟基(OH)随着取代位置的不同而具有多种同分异构体,彼此的结构和理化性质相似,色谱保留时间非常接近,难以分离,无法准确定性。而预处理程序比较繁琐、耗时,无法实时检测,检测仪器昂贵[10,11]。近年发展起来的快速检测方法,特别是电化学生物传感器因具有成本低、方法简单和可实时在线测定等优点,在环境监测中得到广泛应用[12~14]。

金属纳米颗粒具有独特的光电特性[15]。然而,化学合成的纳米金属颗粒易团聚或者易被表面活性剂包埋活性位点,无法与反应物充分接触,严重降低了催化活性[16]。石墨烯(Graphene)具有二维平面结构和良好的导电性、大的比表面积以及丰富的含氧官能团和表面缺陷,可以为负载纳米金属粒子提供位点[17,18],目前已成功负载Ag[19], Au[20], Pd[21], Pt.Au[22] 等多种贵金属纳米粒子,然而,贵金属昂贵的价格和有限的资源限制了它的广泛使用[23]。过渡金属Cu廉价且导电性好,特别是纳米尺寸的金属Cu在某些方面比贵金属具有更高的氧化电势[24]。Hang等[25]制备出纳米铜颗粒.氧化石墨烯(CuNPs@rGO)核壳阵列的纳米材料,电催化4.硝基苯酚的效果是AuNPs的14倍。Shaabani等[26]制备出纳米铜.纳米金.还原石墨烯和纳米铜.纳米银.还原石墨烯(AuCu@G.rGO 和AgCu@G.rGO)双金属纳米颗粒,Krishna等[27]制备出高催化活性的铜.镍.还原石墨烯纳米复合物(Cu@Ni/RGO),用于环境污染物4.NP的处理。

本研究采用石墨烯为基底,通过聚丙烯酸(PAA)键合氧化石墨烯(GO),以NaBH4为还原剂,将Cu2+还原为纳米铜(CuNPs),将GO还原为还原性石墨烯(GR),制备出新型铜纳米复合材料(CuNPs/PAA/GR),以此修饰玻碳电极快速检测4.NP,获得了满意的结果。

2 实验部分

2.1 仪器与试剂

CHI620E电化学分析仪(上海辰华仪器有限公司); PHS.3C型pH计(上海精科实业有限公司); TGL.16C离心机(常州朗越仪器制造有限公司); EVO MA 15/LS 15扫描电子显微镜(德国卡尔蔡司公司)。

聚丙烯酸(PAA,天津市科密欧化学试剂公司); KMnO4, NaBH4,CuCl 2·2H 2O(国药集团化学试剂有限公司); 30% H 2O 2(成都市科龙化工试剂厂); 4.硝基苯酚(Aladdin公司)。以上试剂均为分析纯。膨胀石墨(青岛福金石墨有限公司); 实验用水均为二次蒸馏水。

2.2 氧化石墨烯和CuNPs/PAA/GR复合材料的制备

采用改进的Hummers法制备氧化石墨[28], 将45.00 mg氧化石墨超声分散在45 mL二次蒸馏水中,加入20 mL PAA(15%, w/w),超声分散5 h,静置过夜。加入75 mL 0.2 mol/L CuCl 2,室温下磁力搅拌2 h。逐滴加入0.4 mol/L NaBH4,直到呈现棕褐色,静置分层。将得到的还原石墨烯(GR)和纳米铜(CuNPs)混合物进行抽滤,再分别用CH 3OH和H 2O各洗涤4次。最终产物在50℃真空干燥。

2.3 GCE/CuNPs/PAA/GR修饰电极的制备

将2.0 mg CuNPs/PAA/GR纳米复合材料超声分散在1.0 mL水中,取2 μL滴涂在预先处理好的玻碳电极表面,室温下晾干,得到修饰电极GCE/CuNPs/PAA/GR。

2.4 电化学测定

电化学检测采用三电极体系:以修饰的玻碳电极(GCE,直径3 mm)为工作电极,饱和甘汞电极(SCE)作为参比电极,铂柱电极作为对电极。电解质溶液为0.1 mol/L PBS (pH 7.0)。

3 结果与讨论

3.1 扫描电镜和能谱表征

由氧化石墨烯(GO)的扫描电镜图(图1a)可见,石墨烯在玻碳电极表面形成一层均匀的单层膜。由纳米复合材料PAA/GR/CuNPs的扫描电镜图(图1b)可见,均匀分散在石墨烯中,未出现团聚现象,这是因为PAA分子上存在大量羧基,当与氧化石墨烯中羟基键合后,会增加石墨烯表面的配位氧原子,与铜形成稳定的络合物。图1c为EDX能谱图,表明此材料含有元素C(1.70%)和Cu(1.08%),其中Au是测样喷金的缘故。

3.2 4.NP在不同修饰电极上的电流响应

考察了不同修饰电极在0.1 mol/L PBS (pH 7.0)和10 μmol/L 4.NP溶液中的电流响应情况(图2)。玻碳电极(GCE) 在0.1 mol/L PBS中未观察到电流响应(曲线a),而在10 μmol/L 4.NP溶液中,在0.92 V出现了4.NP的特征峰(曲线b),

但电流比较微弱。与GCE相比,GCE/GO上4.NP的特征峰电流增加0.03 μA(曲线c)。当GCE上修饰CuNPs/PAA/GR后,峰电流与GCE相比增加了1.3倍(曲线d),这是因为在PAA的协助下,CuNPs被均匀而稳定地分散在改性后的石墨烯中,活性位点暴露于材料表面,更好地发挥了协同催化效应[29,30]。

3.3 pH值和扫速对响应电流的影响

考察了GCE/CuNPs/PAA/GR修饰电极在不同pH值(4.0,5.0,6.0,7.0,8.0和9.0)下的4.NP峰电流响应信号。随着pH值从4.0增至 7.0,峰电流呈上升趋势;继续增大pH值,峰电流减小。因此,本研究选择0.1 mol/L PBS缓冲溶液(pH 7.0)为电解质溶液。

图3为扫速对4.NP氧化峰电流和电位影响的循环伏安图,在扫描速率50~300 mV/s范围内,当扫速以50 mV/s的规律不断递增时,4.NP的氧化峰电流或峰电位呈线性递增关系。氧化峰电流与扫速的线性方程分别为I pa= 0.09ν-6.25(R2=0.9978), 说明4.NP在GCE/CuNPs/PAA/GR电极表面是受吸附控制。氧化峰电位与扫速对数的线性方程E pa=0.022lnν +0.81(R2= 0.9962),根据Laviron方程[31], 计算电子转移数n=2.3,表明电极过程为两电子的传递过程。

3.4 电化学有效面积及吸附量的计算

GCE/CuNPs/PAA/GR修饰电极的电化学有效面积用公式(2)计算[32]。其中K3[Fe(CN)6\] 可作标准物质,浓度0.1 mmol/L,扩散系数D为7.6×10 6cm2/s,电子转移数n为1,法拉第常数F为96480 C/mol, Q dl为双层电荷, Q ads为Faradaic电荷。

3.5 催化速率常数的计算

3.7 GCE/CuNPs/PAA/GR电极稳定性、重现性、干扰性

将制备好的GCE/CuNPs/PAA/GR修饰电极于4℃避光保存,每5天取出测定一次。结果表明,随着存放天数增加,电流响应值不断降低,20天后降为初始电流的93%,相对标准偏差(RSD, n=3)小于3.2%,表明制备的修饰电极稳定性和重现性良好。

3.8 分析应用

为进一步研究此修饰电极的实用性,采用本方法测定了广西民族师范学院校区内湖水、自来水以及生活废水,水样经简单过滤直接测定,3种水样中均未检测到4.NP。对上述水样进行加标回收实验,结果如表2所示,相对标准偏差均小于5%,回收率在88.6%~100.7%之间,表明此修饰电极测实际水样中的4.NP含量准确度高,精密度好,具有良好的实用性。

4 结 论

采用一种简单、温和的原位生长法将铜纳米粒子和石墨烯非共价键合,制备得到纳米复合材料CuNPs/PAA/GR,用于修饰玻碳电极(GCE/CuNPs/PAA/GR),对4.NP具有良好的电催化活性。采用DPV方法进行检测, 4.NP的浓度在1~150 μmol/L范围内与电极响应呈良好的线性关系,检出限为0.23 μmol/L (S/N=3)。此修饰电极具有良好的稳定性和重现性。测定了实际水样品中的4.NP含量,表明此电极具有良好的实用性。

References

1 LI Juan, WANG Hui. Environmental Monitoring in China, 2013, 04: 85-88

李 娟, 王 荟. 中国环境监测, 2013, 04: 85-88

2 Zhang B, Li Feng, Wu Tao, Sun D J, Li Y J. Colloids Surf. A, 2015, 464: 78-88

3 ZHA Fei, YU Xia, ZHU Yu, ZHENG Hai.Rong, WANG Ya.Fei. Journal of Northwest Normal University(Natural Science), 2016, 2: 60-67

查 飞, 于 霞, 朱 钰, 郑海蓉, 王亚飞. 西北师范大学学报(自然科学版), 2016, 2: 60-67

4 Buikema A L, McGinniss M J, Cairns J. Mar. Environ. Res., 1979, 2(2): 87-181

5 Feng X, Gao W W, Zhou S H, Shi H Y, Huang H, Song W B. Anal. Chim. Acta, 2013, 805: 36-44

6 EPA 822.S.12.001, 2012 Edition of the Drinking Water Standards and Health Advisories

7 QIN Cheng.Hua, WANG Jing.Jing, ZHANG Jun, PENG Hua, WANG Ling.Ling, NAN Shu.Qing, LI Hong.Liang, WU Li.Ye. Environmental Monitoring in China, 2015, 04: 86-90

秦承华, 王晶晶, 张 军, 彭 华, 王玲玲, 南淑清, 李红亮, 吴立业. 中国环境监测, 2015, 04: 86-90

8 Xin H S, Zhang Q M, Zhou Y L, Ma Q, liu T, Zhu L S, Ai S Y. Electrochim. Acta, 2011, 56(6): 2748-2753

9 GB 5749.2006, Standards for Drinking Water Quality. National Standards of the Peoples Republic of China.

生活饮用水卫生标准. 中华人民共和国国家标准. GB 5749.2006

10 He K Y, Wang X S, Meng X H, Zheng H T, Suye S I. Sens. Actuators, B, 2014, 193: 212-219

11 Gao W H, Legido.Quigley C. J. Chromatogr. A, 2011, 1218(28): 4307-4311

12 Niu X L, Yang W, Wang G Y, Ren J, Guo H, Gao J Z. Electrochim. Acta, 2013, 98: 167-175

13 HE Feng.Yun, PAN Zhao.Rui, ZHOU Hong, LIU Huan, YU Jing, GU Xiao.Yan, TANG Peng.Peng. Chinese J. Appl. Chem., 2015, 32(2): 225-231

何凤云, 潘兆瑞, 周 宏, 刘 欢, 俞 静, 顾小燕, 唐鹏鹏. 应用化学, 2015, 32(2): 225-231

14 Xue C, Han Q, Wang Y, Wu J H, Wen T T, Wang R Y, Hong J L, Zhou X M, Jiang H J. Biosens. Bioelectron., 2013, 49: 199-203

15 Saha S, Pal A, Kundu S, Basu S, Pal T. Langmuir, 2010, 26(4): 2885-2893

16 Pradhan N, Pal A, Pal T. Langmuir, 2001, 17(5): 1800-1802

17 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669

18 ZHU Xu, LI Chun.Lan, LIU Qin, ZHU Xiao.Hua, ZHANG Yin.Tang, XU Mao.Tian. Chinese J. Anal. Chem., 2011, 39(12): 1846-1851

朱 旭, 李春兰, 刘 琴, 朱效华, 张银堂, 徐茂田. 分析化学, 2011, 39(12): 1846-1851

19 Li Y Z, Cao Y L, Xie J, Jia D Z, Qin H Y, Liang Z T. Catal. Commun., 2015, 58: 21-25

20 Zhang M M, Lu X, Wang H Y, Liu X L, Qin Y J, Zhang P, Guo Z X. RSC Adv., 2016, 6(42): 35945-35951

21 Wang Z M, Xu C L, Gao G Q, Li X. RSC Adv., 2014, 4(26): 13644-13651

22 Ye W C, Yu J, Zhou Y X, Gao D Q, Wang D A, Wang C M, Xue D S. Appl.Catal. B, 2016, 181: 371-378

23 ZHANG Cui.Zhong, WANG Li.Wei, LU Yong.Ke, ZHENG Guang.Jin, PENG Jin.Yun. Chinese J. Anal. Chem., 2016, 44(8): 1263-1269

张翠忠, 王丽伟, 卢永课, 郑广进, 彭金云. 分析化学, 2016, 44(8): 1263-1269

24 Guo X N, Hao C H, Jin G Q, Zhu H Y, Guo X Y. Angew. Chem. Int. Ed., 2014, 53(7): 1973-1977

25 Hang L F, Zhao Y, Zhang H H, Liu G Q, Cai W P, Li Y, Qu L T. Acta Mater., 2016, 105: 59-67

26 Shaabani A, Hezarkhani Z, Nejad M K. RSC Adv., 2016, 6(36): 30247-30257

27 Krishna R, Fernandes D M, Ventura J, Freire C, Elby T. Int. J. Hydrogen Energy, 2016, 41(27): 11608-11615

28 Chen C M, Yang Q H, Yang Y G, Lv W, Wen Y F, Hou P X, Wang M Z, Cheng H M. Adv. Mater., 2009, 21(29): 3007-3011

29 Qiang X L, Xia J F, Wang Z H, Xia Y Z, Zhang F F, Li Y H. Adv. Mater. Res., 2012, 600: 238-241

30 WANG Wei.Ni, GUO Xin.Li, ZHANG Ling.Min, HAO Wei, YU Jin, SUN Li.Tao. Journal of Functional Materials, 2015, 16: 16090-16094, 16105

王蔚妮, 郭新立, 张灵敏, 郝 威, 于 金, 孙立涛. 功能材料, 2015, 16: 16090-16094, 16105

31 Laviron E. J. Electroanal. Chem., 1979, 101(1): 19-28

32 Anson F C. Anal. Chem., 1964, 36(4): 932-934

33 Andrieux C P, Saveant J M. J. Electroanal. Chem., 1978, 93(2): 163-168

34 Yin H S, Zhou Y L, Ai S Y, Liu X G, Zhu L S, Lu L N. Microchim. Acta, 2010, 169(1.2): 87-92

35 Lupu S, Lete C, Marin M, Totir N, Balaure P C. Electrochim. Acta, 2009, 54(7): 1932-1938

36 Chu L, Han L, Zhang X L. J. Appl. Electrochem., 2011, 41: 687-694

Abstract A moderate and simple in situ growth approach was employed to load copper nanoparticles (CuNPs) noncovalently on graphene for preparation of CuNPs/poly acrylic acid/reduced graphene oxide (CuNPs/PAA/GR) nanocomposites for electro.catalysis of 4.nitrophenol (4.NP). The morphology of the material was observed by scanning electron microscopy (SEM). Tests with various scan rates and pH conditions indicated an adsorption.controlled electrode process occurred. The mechanism of the electrode reaction of 4.NP involved a two.electron process accompanied by a deprotonation step. Electrochemical parameters were calculated with the electron transfer number (n) as 2.3, the effective area (0.6275 cm2) of CuNPs/PAA/GR/GCE electrode was 2.22 times as large as that of bare electrode, the adsorption capacity Гs value was 1.6×10 11 mol/cm2, and the average value of the calculated k cat value was 1.15×104 L/(mol·s). Under the optimal conditions, the differential pulse voltammetric response of the electrode showed a linear relationship with 4.NP concentration in the range of 1-150 μmol/L. The regression equation was I pa (μA)= 0.015C (μmol/L)-0.98 (R2=0.9951), and the detection limit was 0.23 μmol/L (S/N=3). The fabricated sensor exhibited high sensitivity, good stability and high reproducibility. This sensor was applied for detection of 4.NP in water samples with favorable recoveries of 88.6%-100.7% and relative standard deviation (RSD) of 2.6%-5.9%.

Keywords Graphene; 4.Nitrophenol; Copper nanoparticles; Chronoamperometry; Chronocoulometry; Differential pulse voltammetry

猜你喜欢

电极石墨复合材料
橡皮为什么能擦铅笔字?
型砂压力传递在复合材料成型中的应用研究
巧妙解决燃料电池电极式书写问题
二氧化钛纳米管阵列/钛pH电极制备与表征
石墨烯助力传统产业改造提升
原电池电极的判断及电极反应式的书写
石墨烯理疗U型枕
湖南省石墨烯产业基地布局郴州
中国复合材料市场的新机遇和新挑战
陶瓷基复合材料材料、建模和技术