APP下载

胞外诱捕网与动脉粥样硬化的研究

2017-01-14郑志磊杨爽

中国循证心血管医学杂志 2017年5期
关键词:胞外复合物中性

郑志磊,杨爽

• 综述 •

胞外诱捕网与动脉粥样硬化的研究

郑志磊1,杨爽1

动脉粥样硬化(AS)是危害人类健康的一种常见疾病,目前已成为人类健康的第一杀手。AS的特征是动脉内膜斑块形成,斑块内均存在炎性细胞浸润和脂质沉积[1]。近年来,有研究显示细胞外游离的DNA-蛋白复合物与动脉粥样硬化的发生及发展有关[2],且可能增加斑块负荷[3],而这种DNA-蛋白复合物即为胞外诱捕网(ETs)。自该项研究结果提出以来,ETs成为了近年来与动脉粥样硬化研究高度相关的概念。本文就胞外诱捕网的研究及其与动脉粥样硬化的相关研究进展作一综述。

1 胞外诱捕网定义

在2004年,Zychlinsky and coauthors发现中性粒细胞可以在细胞外通过一种DNA-蛋白质复合物杀死病原体,这种DNA-蛋白质复合物被Science命名为中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)[4]。NETs是中性粒细胞在被刺激因素激活后释放其核内的DNA,并与胞浆蛋白结合释放至胞外形成的网状结构,是细胞经刺激后进行的一种新型的程序性死亡[5],这种过程被Steinberg等命名为NETosis[6],因这种DNA-蛋白质被释放到细胞外的机制,不仅只发生在中性粒细胞,所以NETosis更确切的说应为ETosis。ETs的形成过程是一种新型程序性死亡,既不同于凋亡也不同于坏死,被称为“ETosis”[7]。ETosis形成的细胞通常会出现核染色体解聚,继而核膜溶解,染色质和细胞质中的蛋白酶等混合后以挤压的方式释放到细胞外,最终形成ETs[8]。

2 胞外诱捕网家族

目前发现能够形成胞外诱捕网的细胞有:中性粒细胞、巨噬细胞、嗜酸性粒细胞、嗜碱性粒细胞、肥大细胞,单核细胞其释放的ETs分别为:NETs[4],巨噬细胞胞外诱捕网(METs)[9],嗜酸性粒细胞胞外诱捕网(EETs)[10], 嗜碱性粒细胞胞外诱捕网(BETs)[11],肥大细胞胞外诱捕网(MCETs)[12],单核细胞胞外诱捕网[13]。

3 NETs的形态

NETs有一个独特的超微结构,由直径为15~17 nm的平滑丝状结构组成[4],这种丝状结构是由修饰过的核小体堆叠而成[14],而NETs的这种骨架结构上布满直径为50 nm的颗粒蛋白和其它细胞成分[4],令人惊讶的是,NETs不仅有细长的薄丝,也可变成比初始细胞占据面积大10~15倍的云雾状或蜘蛛网状的结构。提示我们NETs形成时空间大小的差异可影响NETs的具体形态[15]。

4 NETs的形成机制

4.1 NETs诱导物 很多病原性生物均可诱导NETosis的发生(如细菌、真菌、原生动物和病毒[5]),NETosis的发生可能由这些病原性生物直接刺激诱导,也可能与这些生物细胞成分或细胞分泌的某些成分有关(如某些微生物成分、脂多糖(LPS)[16,17],来自链球菌的M1蛋白[18],亚马逊利什曼原虫的脂磷酸聚糖[19]等)。此外某些生理性或免疫性自身产物亦可诱导NETosis的发生(如TLR4激活的血小板[20]、ROS系统过氧化氢等[5]、抗体[21]和抗原抗体复合物[22,23]等)。

4.2 NETs形成的分子机制 NETosis是一种依赖不同刺激物刺激细胞发生不同形态变化,最终导致细胞死亡的复杂过程。刺激物不同,NETs的成分和进展也有所不同。Neeli等提出MAC-1整合蛋白可能参与中性粒细胞细胞核及细胞膜崩解形成NETs的过程,当Mac 1整合素受体被激活,细胞附着于基底意味着NETosis发生发展的开始[24]。然而,在中性粒细胞接受刺激后启动何种机制选择吞噬或NETosis的精确识别,还有待于进一步的研究发现。

对ROS产物的依赖性是NETosis发生的特征之一,其基本步骤已大致明确[25,26]。在激活的过程中,中性粒细胞通过NADPH氧化酶产生了大量的ROS,Fuchs已经证实ROS也是NETs产生的启动者[5]。例如,来自CGD患者的中性粒细胞不能产生NETs,因为CGD的患者NADPH氧化酶的亚基发生突变进而影响了酶的活性。而且,CGD患者的中性粒细胞在经过H2O2的处理后恢复了形成NETs的能力[27]。在刺激之后,中性粒细胞通过常染色体与异染色体的混合完成了染色体的解旋,这个过程是由储存在噬天清颗粒中的酶介导的,主要包括中性粒细胞弹性蛋白酶以及髓过氧化物酶等,它们通过一种还未明确的机制重新定位到细胞核上。首先,弹性蛋白酶降解了组蛋白H1和核心组蛋白之间的连接,导致染色体的解旋,解旋的过程可以被髓过氧化物酶强化(MPO),但不依赖后者酶的活性[28,29]。而且,在NETs形成的过程中,组蛋白H3中的精氨酸残基被瓜氨酸化[30-32]。这组蛋白的瓜氨酸化可以被定位在中性粒细胞核酸上的PAD4促进(peptidylarginine deiminase 4, PAD4)。PAD4基因敲除小鼠的中性粒细胞失去了释放NET的能力并且组蛋白的瓜氨酸化也没被观察到[33],随后,这核膜被破坏,细胞内的染色体扩张并且与颗粒抗菌因子混合,最终,细胞膜破坏释放NETs[15]。上面提到的这些过程都提示这是一种新型的细胞死亡过程,但是NETs也能被活的中性粒细胞通过非氧化依赖的途径在几分钟内产生,就像在S.aureus infection中展示的一样[34,35],考虑到其它细胞(如肥大细胞、嗜碱性粒细胞、巨噬细胞)也能产生胞外诱捕网ETs[36]这种新的防御机制,目前还没有被研究明白统称为NETosis。

5 NETs与动脉粥样硬化

在动脉粥样硬化中NETs的成分易被误认为是自身细胞成分,NETs被发现存在于人和小鼠的动脉粥样硬化管腔病变处[37]。最近Borissoff等[38]表明循环中NETs的水平与动脉粥样硬化的相关性。2012年4月,Döring等[2]在Circulation发表的文章中,阐述了动脉粥样硬化和自身免疫疾病之间的关系,文章指出:细胞外游离的DNA-蛋白质复合物刺激浆细胞样树突状细胞导致动脉粥样硬化的发生发展。Döring等在同年6月又发表文章表明这种DNA-蛋白质复合物通过诱导树突细胞合成并释放促动脉粥样硬化物质干扰素γ增加斑块负荷[3]。在ApoE基因缺陷小鼠,pDCs显示加重动脉粥样硬化相关炎症[39]。此外,Villanueva等[40]观察到在炎症过程中NETs对内皮细胞的细胞毒作用。Warnatsch等[41]研究表明,胆固醇结晶诱导NETs生成,反过来又激活Th17细胞和巨噬细胞释放IL-1β。血小板来源的趋化因子刺激NETs生成[42]。NETs可促进局部的凝血活性通过借助血小板促进凝血酶的生成机制[43]。另一方面,NETs可增强血小板活化,促进动脉粥样硬化在小鼠的下肢深静脉血栓形成[44]。

动脉粥样硬化对人类健康的威胁日益增大,其病理学研究主要集中在炎性细胞浸润及脂质沉积,且斑块局部有胞外诱捕网的形成,胞外诱捕网是炎性细胞激活后的结果,那么动脉粥样硬化中的胞外诱捕网形成可能与脂质沉积发生相互作用,协同促进动脉粥样硬化的发生发展。对胞外诱捕网的进一步研究,有望为动脉粥样硬化的形成提供新的机制,同时也为动脉粥硬化相关疾病提供新的诊断及治疗思路。

[1] Ross R. Atherosclerosis an inflammatory disease[J]. New Engl J Med,1999,340(2):115-26.

[2] Döring Y,Manthey HD,Drechsler M,et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis[J]. Circulation,2012,125(13):1673-83.

[3] Döring Y,Zernecke A. Plasmacytoid dendritic cells in atherosclerosis[J]. Front Physiol,2011,3(16):230.

[4] Brinkmann V,Reichard U,Goosmann C,et al. Neutrophil extracellular traps kill bacteria[J]. Science,2004,303(5663):1532-5.

[5] Fuchs TA,Abed U,Goosmann C,et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol,2007,176(2):231-41.

[6] Steinberg BE,Grinstein S. Unconventional roles of the NADPH oxidase:signaling, ion homeostasis,and cell death[J]. Science's STKE: signal transduction knowledge environment,2007,(379):pe11.

[7] Guimaraes-Costa AB,Nascimento MT,Wardini AB,et al. ETosis: A Microbicidal Mechanism beyond Cell Death[J]. J Parasitol Res,2012,929743.

[8] Remijsen Q,Vanden Berghe T,Wirawan E,et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J]. Cell research, 2011,21(2):290-304.

[9] Chow OA,von Kockritz-Blickwede M,Bright AT,et al. Statins enhance formation of phagocyte extracellular traps[J]. Cell Host Microbe,2010, 8(5):445-54.

[10] Yousefi S,Gold JA,Andina N,et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense[J]. Nature medicine,2008,14(9):949-53.

[11] Morshed M,Hlushchuk R,Simon D,et al. NADPH oxidaseindependent formation of extracellular DNA traps by basophils[J]. J Immunol,2014,192(11):5314-23.

[12] Von Köckritz-Blickwede M,Goldmann O,Thulin P,et al. Phagocytosisindependent antimicrobial activity of mast cells by means of extracellular trap formation[J]. Blood,2008,111(6):3070-80.

[13] Munoz-Caro T,Silva LM,Ritter C,et al. Besnoitia besnoiti tachyzoites induce monocyte extracellular trap formation[J]. Parasitology research, 2014,113(11):4189-97.

[14] Urban CF,Ermert D,Schmid M,et al. Neutrophil extracellular traps contain Calprotectin,a cytosolic protein complex involved in host defense against Candida albicans[J]. PLoS pathogens,2009,5(10): e1000639.

[15] Brinkmann V,Zychlinsky A. Neutrophil extracellular traps:is immunity the second function of chromatin?[J]. J Cell Biol,2012,198(5):773-83.

[16] Neeli I,Dwivedi N,Khan S,et al. Regulation of extracellular chromatin release from neutrophils[J]. Journal of innate immunity,2009,1(3):194 -201.

[17] Lim MB,Kuiper JW,Katchky A,et al. Rac2 is required for the formation of neutrophil extracellular traps[J]. J Leukoc Biol,2011,90(4):771-6.

[18] Oehmcke S,Morgelin M,Herwald H. Activation of the human contact system on neutrophil extracellular traps[J]. Journal of innate immunity, 2009,1(3):225-30.

[19] Guimaraes-Costa AB,Nascimento MT,Froment GS,et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps[J]. Proc Natl Acad Sci U S A,2009,106(16):6748-53.

[20] Clark SR,Ma AC,Tavener SA,et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nature medicine,2007,13(4):463-9.

[21] Kessenbrock K,Krumbholz M,Schonermarck U,et al. Netting neutrophils in autoimmune small-vessel vasculitis[J]. Nature medicine,2009,15(6): 623-5.

[22] Garcia-Romo GS,Caielli S,Vega B,et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus[J]. Sci Transl Med,2011,3(73):73ra20.

[23] Lande R,Ganguly D,Facchinetti V,et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus[J]. Sci Transl Med,2011,3(73):73ra19.

[24] Neeli I,Khan SN,Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils[J]. J Immunol,2008,180(3):1895-902.

[25] Parker H,Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps[J]. Frontiers in immunology,2012,3:424.

[26] Papayannopoulos V,Zychlinsky A. NETs:a new strategy for using old weapons[J]. Trends in immunology,2009,30(11):513-21.

[27] Nishinaka Y,Arai T,Adachi S,et al. Singlet oxygen is essential for neutrophil extracellular trap formation[J]. Biochemical and biophysical research communications,2011,413(1):75-9.

[28] Papayannopoulos V,Metzler KD,Hakkim A,et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol,2010,191(3):677-91.

[29] Metzler KD,Fuchs TA,Nauseef WM,et al. Myeloperoxidase is required for neutrophil extracellular trap formation:implications for innate immunity[J]. Blood,2011,117(3):953-9.

[30] Wang Y,Li M,Stadler S,et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol,2009,184(2):205-13.

[31] Leshner M,Wang S,Lewis C,et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures[J]. Frontiers in immunology,2012,3:307.

[32] Neeli I,Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release[J].Frontiers in immunology,2013;4:38.

[33] Li P,Li M,Lindberg MR,et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J]. The Journal of experimental medicine,2010,207(9):1853-62.

[34] Pilsczek FH,Salina D,Poon KK,et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol,2010,185(12):7413-25.

[35] Yipp BG,Petri B,Salina D,et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo[J]. Nature medicine,2012,18(9):1386-93.

[36] Goldmann O,Medina E. The expanding world of extracellular traps:not only neutrophils but much more[J]. Frontiers in immunology,2012,3:420. [37] Megens RTA,Vijayan S,Lievens D,et al. Presence of luminal neutrophil extracellular traps in atherosclerosis[J]. Thrombosis and haemostasis, 2012,107(3):597-8.

[38] Borissoff JI,Joosen IA,Versteylen MO,et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state[J]. Arterioscler Thromb Vasc Biol,2013,33(8):2032-40.

[39] Macritchie N,Grassia G,Sabir SR,et al. Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol,2012,32(11):2569-79.

[40] Villanueva E,Yalavarthi S,Berthier CC,et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus[J]. J Immunol,2011,187(1):538-52.

[41] Warnatsch A,Ioannou M,Wang Q,et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis[J]. Science,2015,349(6245):316-20.

[42] Rossaint J,Herter JM,Van Aken H,et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation[J]. Blood,2014,123 (16):2573-84.

[43] Gould TJ,Vu TT,Swystun LL,et al. Neutrophil extracellular traps promote thrombin generation through platelet- dependent and platelet-independent mechanisms[J]. Arterioscler Thromb Vasc Biol,2014,34(9):1977-84.

[44] Brill A, Fuchs TA, Savchenko AS,et al. Neutrophil extracellular traps promote deep vein thrombosis in mice[J]. Journal of thrombosis and haemostasis:JTH,2012,10(1):136-44.

本文编辑:孙竹

R543.5

A

1674-4055(2017)05-0638-03

作者地址:1150000 哈尔滨,哈尔滨医科大学附属第二医院心内科

杨爽,E-mail:dryangshuang@163.com

10.3969/j.issn.1674-4055.2017.05.38

猜你喜欢

胞外复合物中性
四环素和铜离子对生物除磷中微生物胞外聚合物的影响
碳量子点黄芩素复合物对金黄色葡萄球菌抑菌作用的研究
柚皮苷-壳寡糖复合物的制备及其抗氧化和抑菌活性研究
急性发热性嗜中性皮病1例
生物膜胞外聚合物研究进展
曝气对人工湿地胞外多糖累积影响及表征分析
盐胁迫环境下发菜胞外多糖抗氧化作用及镇痛抗炎活性
大黄酸磷脂复合物及其固体分散体的制备和体内药动学研究
画质还原更趋中性 Vsee UH600 4K高清播放机
EUREKA EFFECT?2017引领女装新中性风潮