Sirtuins蛋白与肿瘤关系的研究进展
2017-01-13潘艳娜李慧玉郝新奇郑州大学化学与分子工程学院河南郑州45000上海电力学院数理学院上海00090
潘艳娜,李慧玉,郝新奇(郑州大学化学与分子工程学院,河南 郑州45000;上海电力学院数理学院,上海00090)
Sirtuins蛋白与肿瘤关系的研究进展
潘艳娜1,2,李慧玉2,郝新奇1(1郑州大学化学与分子工程学院,河南 郑州450001;2上海电力学院数理学院,上海200090)
Sirtuins是一类依赖于烟酰胺腺嘌呤二核苷酸NAD+的蛋白去乙酰化酶.Sirtuin蛋白家族通过与多种底物进行去乙酰化作用(包括组蛋白、转录因子和代谢酶)来调节转录、细胞存活、DNA损伤和修复以及寿命等多种生物过程.本文将分别对sirtuin家族成员作一介绍,总结有关sirtuins对于癌症在生物方面的主要发现,并从基因研究层面讨论sirtuins与肿瘤的关系.
Sirtuins;HDAC;去乙酰化;肿瘤;抑制剂
0 引言
表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的改变,包括DNA修饰、蛋白质翻译后修饰等[1].常见的蛋白质翻译后修饰过程有磷酸化、乙酰化、甲基化、泛素化等.近年来,人们对蛋白质翻译后修饰乙酰过程中经典的Ⅰ类和Ⅱ类组蛋白去乙酰化酶(histone deacetylase,HDAC)的研究较为透彻,已成为抗肿瘤药物设计的热门靶标,已有多个HDACs抑制剂被美国FDA批准上市用于肿瘤的治疗[2],我国首个HDAC抑制剂西达本胺于2014年12月底被CFDA批准上市.
Sirtuins是一类依赖于NAD+和核心区域高度保守的蛋白去乙酰化酶和ADP核糖基转移酶[3],在组蛋白的乙酰化/去乙酰化基因表达调控中起重要作用.哺乳动物中主要有七种sirtuins蛋白,即SIRT1-7,可与p53、FOXO、PGC-1α、NF-κB、Ku70等蛋白相互作用,参与细胞的应激反应系统,调节基因表达、DNA损伤修复、代谢和存活等多种生物过程[4-5].具有调节 sirtuins活性能力的小分子被认为具有治疗包括癌症、帕金森、肥胖、糖尿病及其它衰老相关疾病的潜力[6].
过去十几年的研究揭示出sirtuins在肿瘤发生发展中具有双重作用,即同时具有肿瘤抑制和肿瘤促进的作用,这些研究促进了对sirtuins和小分子抑制剂作用机制的认识,有利于进一步确立sirtuins作为治疗靶标的有效性.本文将从基因研究层面综述SIRT1-7与肿瘤的关系.
1 SIRT1在癌症中的作用
1.1 SIRT1的肿瘤抑制作用SIRT1是迄今为止sirtuins家族成员中最为重要,且研究最为广泛的一员.对SIRT1转基因小鼠的研究显示,SIRT1过表达能够抑制胃肠道肿瘤[7]、恶性肿瘤、原发性肿瘤,以及肝癌[8]的发病率.SIRT1的肿瘤抑制作用可能来自其通过调节染色质和DNA修复而稳定基因组的能力.Wang等[9]研究发现,与对照组相比,SIRT1+/-p53+/-小鼠在不同的组织中易产生肿瘤细胞.SIRT1的肿瘤抑制作用也可能是由于其具有通过组蛋白的去乙酰化来抑制促瘤基因转录的能力[5].BRCA1与SIRT1启动子结合并增加SIRT1表达,反过来会通过H3K9的去乙酰化抑制存活蛋白.因此,BRCA1的切除或突变导致存活蛋白水平的增加,并通过抑制SIRT1的表达来促进肿瘤生长[10].SIRT1的肿瘤抑制作用还可能来自于其去乙酰化和失活某些肿瘤促进转录因子的能力,比如HIF-1α和NF-κB.在小鼠异种移植模型中通过去乙酰化和失活HIF-1α,SIRT1的过表达可以抑制纤维肉瘤HT1080肿瘤的生长和血管再生[11].SIRT1可将NF-κB的RelA/p65亚单元中的310位赖氨酸残基去乙酰化,并抑制它的转录活性,使其对TNF-α所诱导的凋亡敏感性增加[12].
1.2 SIRT1的肿瘤促进作用SIRT1在体内的致癌活性可从小鼠基因组的角度研究[13].Leko等[14]的研究表明在患有肠道肿瘤的APC(+/min)小鼠模型中,SIRT1的肠上皮细胞特异性失活会减少肿瘤的数量和大小.在小鼠模型中的一项研究中显示,SIRT1的敲除会抑制小鼠骨髓细胞BCRABL的转录和慢性骨髓性白血病(chronic myelocytic leukimia,CML)的发展[10].此外,在多种癌细胞中抑制或减少SIRT1可抑制癌细胞增殖[15].Pten+/-小鼠的SIRT1过表达会导致甲状腺和前列腺肿瘤的发生,基于对mRNA分析发现,当SIRT1过表达时,c-MYC的水平增加[16].
SIRT1能够通过去乙酰化和抑制p53的功能来促进细胞存活[17].该研究支持了SIRT1的致癌作用是通过抑制肿瘤调节而抑制细胞死亡的[18].SIRT1通过将p53中赖氨酸的382位残基去乙酰化对转录激活进行负调节[17].过表达的SIRT1通过DNA损伤和氧化应激使p53依赖的细胞凋亡显著降低.Bizzarri等[19]发现SIRT1是褪黑激素在癌细胞中凋亡的主要原因.根据这一理论发现p53乙酰化水平和泛素蛋白连接酶MDM2水平大大降低和下调,而相反的是,p300在褪黑激素中培养的MCF-7乳腺癌细胞则过表达[20],这与褪黑素对肺癌细胞的抑制结果一致[21].
FOXO转录因子是肿瘤抑制重要的家庭成员,参与调节细胞周期控制、凋亡和DNA修复的基因表达.SIRT1可以通过FOXO家族成员的去乙酰化来调节各种细胞过程.例如SIRT1将FOXO1去乙酰化并抑制FOXO1介导的前列腺癌细胞凋亡[22].SIRT1的FOXO1激活与人乳腺癌MCF-7细胞的他莫昔芬耐药密切相关[23].此外,SIRT1介导的FOXO3a去乙酰化有助于其泛素化和降解[24].SIRT1虽能抑制FOXO3诱导的细胞死亡,但也会使FOXO3介导的细胞周期和抗氧化应激能力增加[5],这些都表明 SIRT1对FOXO的调节过程比较复杂.
SIRT1在DNA修复和基因组稳定中的作用也可以解释SIRT1的肿瘤促进作用.Wang等[25]课题组研究表明 SIRT1有助于 CML细胞中耐药性的突变.SIRT1通过调节KU70和NBS1这些过程中的关键组分来改变同源重组和易错的非同源末端连接的DNA修复过程.SIRT1增强错误DNA损伤修复,导致CML耐药而引起的基因突变[25].SIRT1也可以通过调节表观遗传标记促进癌症发展.SIRT1和Suv39h1在核糖体DNA中建立沉默染色质基因,抑制rRNA转录,从而保护细胞免受能量剥夺依赖性的细胞凋亡[26].SIRT1与DNMT1,DNMT3B和PcG蛋白形成多梳抑制复合物4[27],在由可能引起癌症风险的状态下,多梳抑制复合物4的诱导形成和再定位可导致癌症特异性异常DNA甲基化和转录沉默[27].而且,通过去乙酰化H3K9和调节H3K9me3甲基转移酶Suv39h1的活性和稳定性,SIRT1可促进H3K9me3以及沉默染色质的形成[28].
SIRT1和c-MYC形成阳性的反馈回路,即c-MYC可以增加SIRT1的表达,SIRT1反过来使c-MYC乙酰化,稳定并增强c-MYC的转录活性.这种SIRT1-c-MYC阳性反馈环路的激活通过抑制凋亡和衰老促进c-MYC诱导的细胞增殖[29].在神经母细胞瘤中,N-MYC使 SIRT1上调,反过来通过参与 MKP3和ERK正反馈环路促进肿瘤形成.用SIRT1抑制剂cambinol预防性治疗可减少TH-MYCN转基因小鼠的肿瘤发生[30].然而,SIRT1和c-MYC之间的负反馈环也被报道会抑制癌细胞增殖[31].
2 SIRT2在癌症中的作用
针对小鼠的SIRT2敲除实验表明,SIRT2具有肿瘤抑制作用.SIRT2敲除的小鼠比野生型小鼠长有更多的肿瘤.这种影响是在细胞周期中通过SIRT2对APC/C的乙酰化调节实现的[32].该假设说明SIRT2对细胞周期有重要的作用,因此如果没有SIRT2,细胞就会异常分裂而导致肿瘤产生.但是在另一项研究[33]中并未发现SIRT2-/-小鼠会增加自发性肿瘤形成,与野生型细胞相比,SIRT2-/-细胞增加了DNA的损伤和异常细胞周期的进展.在达到一岁的小鼠敲除实验研究中发现,虽然没有观察到自发性肿瘤增加的发生,但在诱导皮肤肿瘤模型中观察到肿瘤发生增加[33].Lin等[34]研究认为SIRT2可以去乙酰化并促进ATP-柠檬酸裂解酶的降解,ATP-柠檬酸裂解酶的降解对脂质生物合成非常重要,并能促进肿瘤生长.SIRT2的抑制促进了ATP-柠檬酸裂解酶的稳定性并可促进肿瘤生长.此外,SIRT2可以通过表观遗传沉默肿瘤抑制因子控制组蛋白乙酰化而发挥肿瘤促进作用,如乳腺癌细胞中的ARRDC3[35].
与SIRT2的肿瘤抑制作用相反,在许多癌细胞中,已经被证明SIRT2的敲低或药理学抑制可以抑制癌细胞的增殖和生长[36].抑制SIRT2肿瘤抑制蛋白的水平增加,如p53和p21[37].通过调节p53的乙酰化水平来增加p53,但对于如何增加p21,机制尚不清楚.SIRT2抑制或降低可以干扰癌细胞的代谢,例如,Warburg效应.LDH-A在许多癌细胞中过表达,是癌细胞中乳酸产生量增加的原因,而SIRT2可以去乙酰化并激活LDH-A[38].因此抑制SIRT2可以潜在地抑制癌细胞中乳酸的产生并破坏癌细胞代谢[38].
对于抑制或敲低SIRT2可以抵抗恶性细胞增生,研究人员提出了几种可能的机制.一种机制是SIRT2有助于稳定或激活癌基因蛋白,如MYC,K-RAS和FOXO.因此,抑制SIRT2将使这些癌蛋白失去稳定性或失活,从而抑制肿瘤.据报道,K-RAS在许多癌症中可引起激活突变,并促进其活动和癌细胞生长,而SIRT2可以使K-RAS去乙酰化[39].Liu等[40]课题组研究报道在神经母细胞瘤和胰腺癌细胞中,抑制或敲低SIRT2可以使c-MYC和N-MYC癌蛋白下调,这是通过抑制SIRT2而影响泛素连接酶NEDD4的转录来实现的.SIRT2也已被报道去乙酰化并降低FOXO1的水平/活性[41],FOXO1可以通过激活自噬而增加细胞死亡.因此,SIRT2抑制可以通过增加FOXO1活性来促进细胞死亡[42].此外,SIRT2与AKT的结合对胰岛素的活化至关重要,这显示抑制SIRT2对癌症的治疗具有重要的作用[43].
3 SIRT3在癌症中的作用
SIRT3主要存在于线粒体,可以调节许多线粒体蛋白的活性。SIRT3-/-小鼠或细胞可以减少ATP产生和增加ROS水平[5],因此SIRT3的主要功能可能是促进线粒体代谢并抑制活性氧(reactive oxygen species,ROS)的产生.
Finley等[44]研究报道SIRT3-/-小鼠超过24个月后会生长乳腺肿瘤,而SIRT3+/+小鼠则没有,这类似于癌细胞中的Warburg效应,SIRT3-/-MEF细胞的ROS水平增加和糖酵解功能增强.相应地,SIRT3-/-MEF细胞比SIRT3+/+细胞增殖更快,这种效应是由于ROS的增加和脯氨酸羟化酶活性的减少引起的,从而导致缺乏 SIRT3时 HIF-1α 的水平增加[44-45].SIRT3-/-MEF细胞中ROS水平升高与线粒体DNA损伤的增加紧密相关[46].SIRT3敲除本身不会转化MEF细胞,但当另一个致癌基因,Ras或Myc过表达时就容易转化MEF细胞.与此相反,SIRT3+/+MEF细胞不能通过Ras或Myc的过表达而被转化[46].在人类癌细胞中,SIRT3的过表达逆转Warburg效应并减少细胞增殖[44].
Ozden等[47]指出SIRT3可以脱乙酰化,其可以增加线粒体生物能量和糖酵解,从而增加丙酮酸脱氢酶癌细胞的活性.此外,SIRT3结合并将线粒体丙酮酸载体1(MPC1)去乙酰化而增强其功能,从而抑制结肠癌细胞生长[48].SIRT3部分通过亲环蛋白D的脱乙酰化和与之相伴的从线粒体中解离来的己糖激酶Ⅱ来促进氧化磷酸化(与 Warburg效应相反)[49].通过对心脏肥厚的研究提出SIRT3肿瘤抑制作用的另一种可能的分子机制[50].SIRT3显示通过激活FOXO3a能够抑制心脏肥大[51],而FOXO3a可增加MnSOD的水平同时降低ROS的水平[50].ROS可以激活RAS,进而通过激活MAPK和AKT途径来促进细胞生长和增殖[50].SIRT3可以使F-box蛋白Skp2去乙酰化,并使其变得不稳定,而Skp2是一种通过多种肿瘤抑制因子的泛素化和降解来促进肿瘤发生的蛋白质[52].
SIRT3也被报道存在于细胞核中.细胞核中的SIRT3抑制核编码的线粒体和一些应激相关基因表达,包括Zfat和Wapal,ZFAT和WAPAL具有抗凋亡和致癌功能.通过抑制它们的表达,SIRT3可以抑制肿瘤形成[53].相比之下,SIRT3也可以结合并使KU70去乙酰化,保护细胞免受心肌细胞中细胞死亡的应激压力[54].
4 SIRT4在癌症中的作用
SIRT4分布于线粒体中,具有ADP核糖基转移酶活性,脂酰胺酶和生物素酶活性[55].SIRT4可抑制GDH,从而抑制氨基酸诱导胰腺β细胞胰岛素的分泌[56],这可能有助于SIRT4的肿瘤抑制作用.SIRT4在许多癌症中有所下调,抑制SIRT4使mTORC1上调,谷氨酰胺代谢以及细胞增殖[57].SIRT4已被证明通过调节谷氨酰胺代谢作为肿瘤抑制因子,提示在谷氨酰胺依赖性肿瘤中具有你潜在的治疗用途,如β细胞淋巴瘤[58].另外,C末端结合蛋白SIRT4的抑制和GDH的酶修饰已被证明可促进乳腺癌细胞中的谷氨酸分解[59].除了抑制谷氨酰胺代谢,SIRT4与DNA损伤和修复也有关系[60].在同种异体移植肿瘤形成测试中,转化的SIRT4-/-MEF细胞比转化的SIRT4+/+MEF细胞形成更大的肿瘤[60].18~26个月龄的SIRT4-/-小鼠比SIRT4+/+小鼠长出更多的肺肿瘤[60].
5 SIRT5在癌症中的作用
SIRT5是另一种存在于线粒体的Sirtuins家族蛋白.蛋白质组学研究表明当敲除SIRT5时,可以增加数百种蛋白质的琥珀酰化水平,显示SIRT5参与调节多种代谢途径[61].此外,SIRT5介导FOXO3的去乙酰化在保护香烟提取物诱导凋亡的肺上皮细胞中起着至关重要的作用[62].
6 SIRT6在癌症中的作用
SIRT6去乙酰基底物包括组蛋白 H3K56[5]和H3K9[63].SIRT6通过去乙酰化H3与不同的转录因子相联系,如HIF-1α和MYC,SIRT6抑制这些转录因子靶基因的转录[64].SIRT6的去除长链脂肪酰基的活性比去乙酰化的活性要高数百倍,并且该去长链脂酰化活性能够促进TNFα分泌[65].SIRT6的脱乙酰酶活性可以在特定条件下被刺激,例如细胞核小体[66]和游离脂肪酸[67]可以增加SIRT6在体外的去乙酰活性,显示出SIRT6的去长链脂酰化和去乙酰化活性都可以被调节.
SIRT6能够促进DNA修复和基因组稳定性并抑制肿瘤的发生[68].永生化的SIRT6-/-MEF细胞比永生化的SIRT6+/+MEF更具致瘤作用[64],主要是由于通过对转录因子HIF-1α和MYC的作用引起代谢的重新编码,而不是因为基因组不稳定或癌基因的激活[64].
7 SIRT7在癌症中的作用
SIRT7是一种核沉默调节蛋白,富含于核仁[69].SIRT7也是H3K18的特异性去乙酰化酶[70],它通过控制rRNA,tRNA和核糖体蛋白质合成[71]来调节核糖体的生物过程.SIRT7mRNA在乳腺癌和甲状腺癌中高表达,显示SIRT7可能参与癌症的发生过程[72].SIRT7可以通过特定的转录因子招募,如ELK4[71]和MYC[73],并通过H3K18的去乙酰化来抑制基因的表达.SIRT7的敲低会抑制软琼脂上的纤维肉瘤细胞系HT1080和骨肉瘤细胞系U2OS肿瘤细胞的形成,并使小鼠异种移植模型中胶质瘤细胞系U251的肿瘤减小[71].SIRT7敲低也抑制腺病毒E1A诱导的细胞转化,这可能由某些增加的基因表达所调控,如NME1和通过H3K18乙酰化的核糖体蛋白基因[71].SIRT7在人类胃癌组织中具有高表达的能力,敲低SIRT7能够抑制细胞增殖过程和体外克隆形成.皮下移植瘤实验同样证明SIRT7表达降低能够显著抑制胃癌细胞生长,这种促癌作用主要是通过SIRT7的组蛋白去乙酰化酶影响具有抗癌作用的microRNA-34a的表达来实现的[74].
8 总结
前期研究表明sirtuins与肿瘤的发生和发展密切相关,虽然在肿瘤治疗方面表现出了一定的潜在应用前景,但还需要通过深入研究以阐明sirtuins家族每一成员的生物功能.虽然目前HDAC抑制剂已经上市,但是对于同属去乙酰化酶的sirtuins家族则没有抑制剂上市.因此,针对sirtuins的结构及功能的认识还需要更全面和深入的研究.随着人们对sirtuins结构和功能的认识加深,大量与sirtuins结构及功能的信息被研究报道,这些研究结果正是创新药物研发的重要基础,因此将来基于sirtuins结构与功能的新药发现策略将有可能推动药物研发的进一步发展,从而为基于sirtuins为靶点的药物研发打下坚实的基础.
[1]Conway SJ,Woster PM,Greenlee WJ,et al.Epigenetics:Novel Therapeutics Targeting Epigenetics[J].J Med Chem,2016,59(4):1247-1248.
[2]Guha M.HDAC inhibitors still need a home run,despite recent approval[J].Nat Rev Drug Discov,2015,14(4):225-226.
[3]Finkel T,Deng CX,Mostoslavsky R.Recent progress in the biology and physiology of sirtuins[J].Nature,2009,460(7255):587-591.
[4]Mouchiroud L,Houtkooper RH,Moullan N,et al.The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling[J].Cell,2013,154(2):430-441.
[5]Carafa V,Rotili D,Forgione M,et al.Sirtuin functions and modulation:from chemistry to the clinic[J].Clin Epigenetics,2016,8:61.
[6]Yao Y,Yang Y,Zhu WG.Sirtuins:nodes connecting aging,metabolism and tumorigenesis[J].Curr Pharm Des,2014,20(11):1614-1624.
[7]Firestein R,Blander G,Michan S,et al.The SIRT1 deacetylase suppresses intestinal tumorigenesis andcolon cancer growth[J].PLoS ONE,2008,3(4):e2020.
[8]Herranz D,Muñoz-Martin M,Cañamero M,et al.Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer[J].Nat Commun,2010,1:3.
[9]Wang RH,Sengupta K,Li C,et al.Impaired DNA damage response,genome instability,and tumorigenesis in SIRT1 mutant mice[J].Cancer Cell,2008,14(4):312-323.
[10]Wang RH,Zheng Y,Kim HS,et al.Interplay among BRCA1,SIRT1,and Survivin during BRCA1-associated tumorigenesis[J].Mol Cell,2008,32(1):11-20.
[11]Yeung F,Hoberg JE,Ramsey CS,et al.Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J].EMBO J,2004,23(12):2369-2380.
[12]Lim JH,Lee YM,Chun YS,et al.Sirtuin 1 modulates cellular responses to hypoxia by deacetylatinghypoxia-inducible factor 1alpha[J].Mol Cell,2010,38(6):864-878.
[13]Roth M,Chen WY.Sorting out functions of sirtuins in cancer[J].Oncogene,2014,33(13):1609-1620.
[14]Leko V,Park GJ,Lao U,et al.Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min)mouse model[J].PLoS ONE,2013,8(6):e66283.
[15]Chen L.Medicinal chemistry of sirtuin inhibitors[J].Curr Med Chem,2011,18(13):1936-1946.
[16]Herranz D,Maraver A,Cañamero M,et al.SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency[J].Oncogene,2013,32(34):4052-4056.
[17]Luo J,Nikolaev AY,Imai S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress[J].Cell,2001,107(2):137-148.
[18]Lin Z,Fang D.The Roles of SIRT1 in Cancer[J].Genes Cancer,2013,4(3-4):97-104.
[19]Bizzarri M,Proietti S,Cucina A,et al.Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer:a review[J].Expert Opin Ther Targets,2013,17(12):1483-1496.
[20]Proietti S,Cucina A,Dobrowolny G,et al.Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells[J].J Pineal Res,2014,57(1):120-129.
[21]Ma Z,Yang Y,Fan C,et al.Melatonin as a potential anticarcinogen for non-small-cell lung cancer[J].Oncotarget,2016,7(29):46768-46784.
[22]Yang Y,Hou H,Haller EM,et al.Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation[J].EMBO J,2005,24(5):1021-1032.
[23]Choi HK,Cho KB,Phuong NT,et al.SIRT1-mediated FoxO1deacetylation is essential for multidrugresistance-associated protein 2 expression in tamoxifen-resistant breast cancer cells[J].Mol Pharm,2013,10(7):2517-2527.
[24]Wang F,Chan CH,Chen K,et al.Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation[J].Oncogene,2012,31(12):1546-1557.
[25]Wang Z,Yuan H,Roth M,et al.SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells[J].Oncogene,2013,32(5):589-598.
[26]Murayama A,Ohmori K,Fujimura A,et al.Epigenetic control of rDNA loci in response to intracellular energy status[J].Cell,2008,133(4):627-639.
[27]O’Hagan HM,Wang W,Sen S,et al.Oxidative damage targets complexes containing DNAmethyltransferases,SIRT1,and polycomb members to promoter CpG Islands[J].Cancer Cell,2011,20(5):606-619.
[28]Bosch-Presegué L,Raurell-Vila H,Marazuela-Duque A,et al.Stabilization of Suv39H1 by SirT1 is partof oxidative stress response and ensures genome protection[J].Mol Cell,2011,42(2):210-223.
[29]Menssen A,Hydbring P,Kapelle K,et al.The c-MYC oncoprotein,the NAMPT enzyme,the SIRT1-inhibitor DBC1,and the SIRT1 deacetylase form a positive feedback loop[J].Proc Natl Acad Sci USA,2012,109(4):E187-E196.
[30]Marshall GM,Liu PY,Gherardi S,et al.SIRT1 promotes N-Myc oncogenesis through a positivefeedback loop involving the effects of MKP3 and ERK on N-Myc protein stability[J].PLoS Genet,2011,7(6):e1002135.
[31]Yuan J,Minter-Dykhouse K,Lou Z.A c-Myc-SIRT1 feedback loop regulates cell growth and transformation[J].J Cell Biol,2009,185(2):203-211.
[32]Kim HS,Vassilopoulos A,Wang RH,et al.SIRT2 maintains genome integrity and suppressestumorigenesis through regulating APC/C activity[J].Cancer Cell,2011,20(4):487-499.
[33]Serrano L,Martínez-Redondo P,Marazuela-Duque A,et al.The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation[J].Genes Dev,2013,27(6):639-653.
[34]Lin R,Tao R,Gao X,et al.Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis andtumor growth[J].Mol Cell,2013,51(4):506-518.
[35]Soung YH,Pruitt K,Chung J.Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells[J].Sci Rep,2014,4:3846.
[36]Heltweg B,Gatbonton T,Schuler AD,et al.Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes[J].Cancer Res,2006,66(8):4368-4377.
[37]McCarthy AR,Sachweh MC,Higgins M,et al.Tenovin-D3,a novel small-molecule inhibitor of sirtuinSirT2,increases p21(CDKN1A)expression in a p53-independent manner[J].Mol Cancer Ther,2013,12(4):352-360.
[38]Zhao D,Zou SW,Liu Y,et al.Lysine-5 acetylation negatively regulates lactate dehydrogenase A and isdecreased in pancreatic cancer[J].Cancer Cell,2013,23(4):464-476.
[39]Yang MH,Laurent G,Bause AS,et al.HDAC6 and SIRT2 regulate the acetylation state and oncogenicactivity of mutant K-RAS[J].Mol Cancer Res,2013,11(9):1072-1077.
[40]Liu PY,Xu N,Malyukova A,et al.The histone deacetylase SIRT2 stabilizes Myc oncoproteins[J].Cell Death Differ,2013,20(3):503-514.
[41]Jing E,Gesta S,Kahn CR.SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation[J].Cell Metab,2007,6(2):105-114.
[42]Zhao Y,Yang J,Liao W,et al.Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity[J].Nat Cell Biol,2010,12(7):665-675.
[43]Ramakrishnan G,Davaakhuu G,Kaplun L,et al.Sirt2 deacetylase is a novel AKT binding partnercritical for AKT activation by insulin[J].J Biol Chem,2014,289(9):6054-6066.
[44]Finley LW,Carracedo A,Lee J,et al.SIRT3 opposes reprogramming of cancer cell metabolism throughHIF1α destabilization[J].Cancer Cell,2011,19(3):416-428.
[45]Bell EL,Emerling BM,Ricoult SJ,et al.SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production[J].Oncogene,2011,30(26):2986-2996.
[46]Kim HS,Patel K,Muldoon-Jacobs K,et al.SIRT3 is a mitochondria-localized tumor suppressorrequired for maintenance of mitochondrial integrity and metabolism during stress[J].Cancer Cell,2010,17(1):41-52.
[47]Ozden O,Park SH,Wagner BA,et al.SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells[J].Free Radic Biol Med,2014,76:163-172.
[48]Liang L,Li Q,Huang L,et al.Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity[J].Biochem Biophys Res Commun,2015,468(4):807-812.
[49] Shulga N,Wilson-Smith R,Pastorino JG.Retraction:Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinaseⅡfrom the mitochondria[J].J Cell Sci,2016,129(13):2684.
[50]Sundaresan NR,Gupta M,Kim G,et al.Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J].J Clin Invest,2009,119(9):2758-2771.
[51]Tseng AH,Shieh SS,Wang DL.SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J].Free Radic Biol Med,2013,63:222-234.
[52]Inuzuka H,Gao D,Finley LW,et al.Acetylation-dependent regulation of Skp2 function[J].Cell,2012,150(1):179-193.
[53]Iwahara T,Bonasio R,Narendra V,et al.SIRT3 functions in the nucleus in the control of stress-relatedgene expression[J].Mol Cell Biol,2012,32(24):5022-5034.
[54]Sundaresan NR,Samant SA,Pillai VB,et al.SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stressmediated cell death by deacetylation of Ku70[J].Mol Cell Biol,2008,28(20):6384-6401.
[55]Mathias RA,Greco TM,Oberstein A,et al.Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenasecomplex activity[J].Cell,2014,159(7):1615-1625.
[56]Haigis MC,Mostoslavsky R,Haigis KM,et al.SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells[J].Cell,2006,126(5):941-954.
[57]Csibi A,Fendt SM,Li C,et al.The mTORC1 pathway stimulates glutamine metabolism and cellproliferation by repressing SIRT4[J].Cell,2013,153(4):840-854.
[58]Jeong SM,Lee A,Lee J,et al.SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma[J].J Biol Chem,2014,289(7):4135-4144.
[59]Wang L,Zhou H,Wang Y,et al.CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4[J].Cell Death Dis,2015,6:e1620.
[60]Jeong SM,Xiao C,Finley LW,et al.SIRT4 has tumor-suppressive activity and regulates the cellularmetabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism[J].Cancer Cell,2013,23(4):450-463.
[61]Park J,Chen Y,Tishkoff DX,et al.SIRT5-mediated lysine desuccinylation impacts diverse metabolicpathways[J].Mol Cell,2013,50(6):919-930.
[62]Wang Y,Zhu Y,Xing S,et al.SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3[J].Cell Stress Chaperones,2015,20(5):805-810.
[63]Michishita E,McCord RA,Berber E,et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J].Nature,2008,452(7186):492-496.
[61]Park J,Chen Y,Tishkoff DX,et al.SIRT5-mediated lysine desuccinylation impacts diverse metabolicpathways[J].Mol Cell,2013,50(6):919-930.
[62]Wang Y,Zhu Y,Xing S,et al.SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3[J].Cell Stress Chaperones,2015,20(5):805-810.
[63]Michishita E,McCord RA,Berber E,et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J].Nature,2008,452(7186):492-496.
[64] Sebastián C,Zwaans BM,Silberman DM,et al.The histone deacetylase SIRT6 is a tumor suppressorthat controls cancer metabolism[J].Cell,2012,151(6):1185-1199.
[65]Jiang H,Khan S,Wang Y,et al.SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine[J].Nature,2013,496(7443):110-113.
[66]Gil R,Barth S,Kanfi Y,et al.SIRT6 exhibits nucleosome-dependent deacetylase activity[J].Nucleic Acids Res,2013,41(18):8537-8545.
[67]Feldman JL,Baeza J,Denu JM.Activation of the protein deacetylase SIRT6 by long-chain fatty acidsand widespread deacylation by mammalian sirtuins[J].J Biol Chem,2013,288(43):31350-31356.
[68]Mostoslavsky R,Chua KF,Lombard DB,et al.Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J].Cell,2006,124(2):315-329.
[69]Michishita E,Park JY,Burneskis JM,et al.Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J].Mol Biol Cell,2005,16(10):4623-4635.
[70]Barber MF,Michishita-Kioi E,Xi Y,et al.SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation[J].Nature,2012,487(7405):114-118.
[71]Chen S,Seiler J,Santiago-Reichelt M,et al.Repression of RNA polymerase I upon stress is caused byinhibition of RNA-dependent deacetylation of PAF53 by SIRT7[J].Mol Cell,2013,52(3):303-313.
[72]Ashraf N,Zino S,Macintyre A,et al.Altered sirtuin expression is associated with node-positive breast cancer[J].Br J Cancer,2006,95(8):1056-1061.
[73]Shin J,He M,Liu Y,et al.SIRT7 represses Myc activity to suppress ER stress and prevent fatty liverdisease[J].Cell Rep,2013,5(3):654-665.
[74]Zhang S,Chen P,Huang Z,et al.Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a[J].Sci Rep,2015,5:9787.
Research progress of relationship between sirtuins family and cancer
PAN Yan-Na1,2,LI Hui-Yu2,HAO Xin-Qi11College of Chemistry and Molecular Engineering,Zhengzhou University,Zhengzhou 450001,China;2College of Mathematics and Physics,Shanghai University of Electric Power,Shanghai 200090,China
Sirtuins are a class of III histone deacetylase(HDAC)with nicotinamide adenine dinucleotide (NAD+)-dependent.By deacylating various substrate proteins,including histones,transcription factors,and metabolic enzymes, the sirtuin family of enzymes can regulate transcription,cell survival,DNA damage and repair,and longevity.This article will introduce the sirtuin family members respectively and summarize the major biological findings that connect sirtuins to cancer.The relationship between the sirtuins and cancer from the genetic studies will be discussed.
Sirtuins;HDAC;deacetylase;cancer;inhibitor
R392.12
A
2095-6894(2017)05-15-06
2017-04-16;接受日期:2017-05-03
郑州大学优秀青年教师发展基金(1421316036);上海市教育委员会创新基金(13ZZ129)
潘艳娜.硕士.研究方向:有机合成与不对称催化.E-mail:panyannalw@163.com
郝新奇.博士,副教授.E-mail:xqhao@zzu.edu.cn