缺血性心律失常的危险评估方法
2017-01-12彭丁柳景华
彭丁 柳景华
·综述·
缺血性心律失常的危险评估方法
彭丁 柳景华
缺血性心脏病; 心律失常; 危险评估
心血管疾病死亡率居各类疾病死亡构成的首位原因。其中最重要的就是缺血性心脏病,而缺血性心律失常更是最重要的死亡原因之一。本文旨在对缺血性心脏病患者发生心律失常的危险评估方法进行综述,帮助临床医师对高危患者进行筛选及预防。
1 缺血性心律失常概况
2014年中国心血管病报告提示,中国心源性猝死年发生率为41.8/10万人[1]。在美国,每年心源性猝死事件为53.0/10万人[2]。虽然缺乏全球数据,但是心源性猝死的预防势在必行。恶性心律失常是心源性猝死的主要原因,主要发生于急性或慢性心肌缺血患者[3-4]。心肌的慢性缺血和心肌梗死后心肌灰区的存在,造成心肌细胞膜内外离子梯度变化而产生异常放电以及心肌细胞的去交感化是缺血性心律失常的主要病理基础[5-6]。因此,对于缺血性心律失常的危险分层主要是针对缺血心肌和心脏电生理活动的评估。
2 缺血性心律失常的预防
植入式心律转复除颤器(implantable cardiac defibrillator, ICD)用于心源性猝死的预防,可有效降低缺血性心脏病的死亡率[7]。穿戴式心律转复除颤器主要用于不符合ICD植入条件的患者或ICD植入前的桥接治疗,具有较高的除颤成功率,是抗心源性猝死的一种有效治疗手段[8-9]。另外心脏再同步化治疗可以改善心功能,减少ICD的使用,心脏再同步化治疗后左心室射血分数(left ventricular ejection fraction,LVEF)恢复至45%以上的患者发生缺血性心律失常的风险极低[10]。预防方法的多样性有效降低了缺血性心律失常的发生率,因此,准确评估筛选高危患者,积极防治,患者会更加获益。
3 缺血性心律失常危险评估方法的临床现状
3.1 临床评估策略——指南及专家共识
2014年欧洲血运重建指南[11]指出,对于LVEF<35%的冠心病患者,要先评估患者剩余心肌缺血和血运重建情况;血运重建后,随访评估左心室重构的逆转6个月以上,再考虑植入ICD。
2015年欧洲室性心律失常指南[12]指出,对3 个月以上正规药物治疗,预期寿命在 1 年以上的症状性心力衰竭及LVEF ≤ 35%的缺血性心肌病(心肌梗死后6周以上)患者建议植入ICD。
2016年《室性心律失常中国专家共识》[13]指出,心肌梗死后少于40 d但存在不完全性血运重建、已存在左心室功能异常、急性冠状动脉综合征后的室性心律失常超过48 h、合并多形性室性心动过速或心室颤动等情况,可考虑植入ICD。心肌梗死后6~12周需重新评估左心室功能,以确定是否需要预防性植入ICD。其中心肌梗死后左心室功能正常的存活者和无法解释的晕厥患者应行心室程序电刺激以及评估心源性猝死风险。
3.2 现行的临床评估策略的局限性
考虑到侵入性电生理检查的适应证及风险,很多患者未进行电生理检查,因此临床医师多利用LVEF进行评估并作为高危患者筛选标准。美国一项研究调查发现,LVEF特异度及敏感度不高,将其作为筛选标准筛选出高危并植入ICD进行预防的患者中有相当比例的患者并未激发过ICD,或出现了不恰当的电击与植入器械的感染[14]。LVEF>35%患者的评估方法尚不完善,缺乏系统的危险分层标准。心肌梗死后早期患者的评估也依赖于临床症状,缺乏系统且客观的危险分层方法[15-17]。因此,对于现有评估方法的完善及补充很有必要。
4 ICD植入标准改良——高危患者再分类
4.1 异常电生理评估
缺血性心律失常是心脏异常电生理活动的体现。体表心电检查是一种有效评估风险的检查方法。碎裂性QRS波代表异常心室去极化过程。多项国内外研究证实了碎裂性QRS波的存在是缺血性心律失常发生的重要危险因素[18-19]。对于接受ICD植入的患者,是否存在碎裂性QRS波可作为ICD植入患者进一步危险分层的标准[20-21]。而胸前导联出现碎裂性QRS波合并左束支传导阻滞则意味着发生心律失常的风险更高,需要强化该类患者的ICD使用[22]。T波顶点至T波终末的时间(T peak-T end interval,TpTe)反映心电复极化的过程,可利用常规12导联心电图进行测量。有研究发现,在ICD植入患者中使用TpTe>100 ms作为高危患者评估标准时,其敏感度为75%,特异度为48%,可将LVEF>35%患者的特异度将升高到 61%[23]。近年来,代表去极化及复极化角度的QRS-T角也被证实与心源性猝死有关,多项研究也肯定了其对缺血性心律失常的预测价值[24-27]。在符合ICD植入标准的患者中,可以使用2D-QRS-T 夹角>90°为阈值筛选高危患者,其阳性预测价值为94%[24]。另外,将标准心电图转换为三维心电向量图后可以得到3D-QRS-T,当使用3D-QRS-T夹角>100°为高危筛选标准时,阳性预测价值升高到98%[25]。各导联上每一次心脏舒张期心电波形平均梯度变化的标准差的平均值(regional restitution instability index, R2I2)和峰值心电恢复斜率(peak ECG restitution slope, PERS)是目前危险评估的新方法之一。有研究证明上述两项指标可以预测缺血性心脏病患者发生室性心动过速的风险[28]。随后针对ICD植入患者的前瞻性研究表明,PERS和R2I2是两个独立的室性心律失常或心源性猝死的风险预测因素,联合使用这两项指标,即R2I2≥1.03 且 PERS≥1.21作为筛选高危患者的方法,可以得到80%的阳性预测价值和95%的特异度[29]。值得注意的是,这两种方法需要使用高分辨率心电图才可获得。
4.2 缺血面积评估
超声斑点追踪技术是最近几年超声技术发展的新方向。平均左心室整体纵向收缩期峰值应变(global longitudinal strain,GLS)与心肌梗死面积有关,以及到达纵向收缩期峰值应变时间的标准差(mechanical dispersion,MD)用于反映心肌变形程度。多项研究证实了上述两项指标在预测缺血导致的心律失常时优于LVEF,均是独立危险预测因素[30-32]。有研究报道在目前推荐ICD植入的患者中,MD>70 ms的患者为高危患者,其敏感度为65%,特异度为92%[32]。还有一些初步研究利用最新的影像学方法评估坏死心肌面积,进而协助评估缺血性心律失常的风险。其中,有研究提出心脏核磁共振可以准确评估心肌梗死及梗死灶周围休眠心肌的面积,而2年的随访时间里发生室性心律失常的患者和无不良事件组之间梗死面积比较,差异有统计学意义[33]。Rijnierse等[34]利用正电子发射计算机断层显像技术(positron emission tomography,PET)结合CT技术评估心肌血流受损程度,并认为可用于评估患者缺血性心律失常发生风险。另外,利用PET定量分析心肌的去交感神经支配面积也被认为是心律失常的独立影响因素,可有效预测心律失常的发生。
5 心肌梗死患者早期(<40 d)评估方法补充
5.1 体表心电检查
体表心电检查同样是心肌梗死后早期筛选心律失常高危患者的重要检查方法。有研究发现,使用3D-QRS-T 角>112°作为心肌梗死早期患者的评价标准,行ICD植入,特异度为78%,敏感度为64%,阴性预测价值为98%。而低危患者在随后30个月的随访时间里,心源性猝死小于1%。当2D-QRS-T角>123°,可以得到相近结果[35]。24 h心电监测是心肌梗死早期患者评估缺血性心律失常风险的方法之一。近期研究发现,对于LVEF<50%的患者延长心电监测时间至7 d,可以提高发现室性心律失常的敏感度,进而早期发现高危患者,进行ICD植入预防心源性猝死[36]。有研究证明,在7 d的心电监测过程中,非持续性室性心动过速持续时间≥4次心脏搏动时,缺血性心律失常发生率明显增加;等于3次心脏搏动时,其预后与未发生室性心动过速组差异无统计学意义[37]。微伏级T波电交替(microvolt T-wave alternans,MTWA)已被多项研究证实与心律失常有关,可用于危险评估[38-39]。随后的Meta分析指出,MTWA对预测LVEF值<40%患者的缺血性心律失常具有重要意义,MTWA非阴性组发生严重心律失常或心源性死亡事件的风险是阴性组的2倍[40]。
5.2 电生理检查
电生理检查使用程序性电刺激诱发室性心动过速的方法多用于评估心肌梗死后左心室功能正常患者的心源性猝死风险[41]。Zaman等[42]指出,对于ST段抬高心肌梗死后早期严重心功能衰竭(LVEF≤30%或LVEF≤35% 合并心力衰竭症状)的患者行电生理检查,可诱发室性心动过速患者心律失常事件发生率高达33%,而未诱发室性心动过速患者3年的心律失常事件发生率与LVEF>40%患者差异无统计学意义。随后的研究则建议对初级介入治疗后早期LVEF ≤35%且可诱发室性心动过速的患者进行ICD植入,预防心源性猝死[43]。在后续关于心肌梗死患者早期的程序性电刺激的研究中发现,第二次诱发阳性患者发生室性心律失常的风险高于第一次诱发阳性患者[44]。另外,第三及第四次诱发阳性的患者远期发生室性心动过速的风险与第一次诱发阳性相近[45]。这也提示临床医师对多次刺激才诱发室性心动过速的患者不能放松警惕。
5.3 超声心动图
Thakkar等[46]指出,急性ST段抬高心肌梗死介入治疗后早期,LVEF ≤40%合并右心室射血分数(RVEF)≤35%的患者在电生理检查中更易诱发室性心动过速。这可能意味着RVEF的减低对于评估远期缺血性心律失常的发生有预测价值。另外,在一项纳入988例急性心肌梗死患者的前瞻性研究中,研究者利用超声斑点追踪技术测量了入院4 h内的GLS及MD,并证实心源性猝死组与无不良事件组或者其他死因组比较,差异均有统计学意义,对致命性室性心律失常有预测意义[32]。
6 心肌梗死稳定期(6~12周)评估方法补充
超声斑点追踪技术测量GLS可以发现很细小的心肌功能变化,与心脏射血分数(EF)相比更加敏感,尤其在EF>35%的患者,该值越低患者发生心律失常的风险越高,术后40 d评估MD>75 ms结合GLS <-16%作为阈值,其阳性预测价值为21%,显著优于单独使用EF>35%[30]。心脏磁共振成像评估梗死范围相较超声心动图更加准确。Yalin等[47]通过对LVEF>35%患者梗死面积的分析中,发现梗死周围组织面积和左心室质量的比值在是否发生心律失常的两组患者中存在统计学差异,可以作为评估方法进一步研究的方向。Exner等[48]则报道了在LVEF<50%患者中,存在T波电交替及心率变异现象的患者为高危患者,敏感度55%,特异度86%。
7 结语
随着科学技术的发展,检查手段的多样性让临床医师有了更多选择,其中值得注意的是大多数研究都是基于LVEF值的危险分层提出的更加系统的评价方法。就目前的研究来看,考虑到费用及可行性,超声斑点追踪技术及体表心电检查是最可行的临床评估手段,对于缺血性心脏病各阶段的患者均可有效进行危险分层,可在一定程度上帮助临床医师筛选高危患者。然而对于缺血性心律失常的患者,危险分层从来不是单一检查手段可以完成,综合分析超声心动图、体表心电图、实验室检查的结果,确立评分体系可能是评估缺血性心律失常的更优手段。
[1] 隋辉,陈伟伟,王文. 中国心血管病报告2014要点介绍.中华高血压杂志,2015,23(7): 627-629.
[2] Chugh SS, Jui J, Gunson K, et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol,2004,44(6):1268-1275.
[3] Bayes de Luna A, Coumel P, Leclercq JF,et al. Ambulatory sudden cardiac death: mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am J Cardiol,117(1):151-159.
[4] Podrid PJ, Myerburg RJ. Epidemiology and stratification of risk for sudden cardiac death. Clin Cardiol,2005,28(11 Suppl 1):I3-11.
[5] Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev,1989 69(4):1049-1069.
[6] Cain ME. Impact of denervated myocardium on improving risk stratification for sudden cardiac death. Trans Am Clin Climatol Assoc,2014,125:141-153.
[7] Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation,2013,128(16):e240-e327.
[8] Kutyifa V, Moss AJ, Klein H, et al. Use of the wearable cardioverter defibrillator in high-risk cardiac patients: data from the prospective registry of patients using the wearable cardioverter defibrillator (WEARIT-II Registry). Circulation,2015,132(17):1613-1619.
[9] Zishiri ET, Williams S, Cronin EM, et al. Early risk of mortality after coronary artery revascularization in patients with left ventricular dysfunction and potential role of the wearable cardioverter defibrillator. Circ Arrhythm Electrophysiol,2013,6(1):117-128.
[10] Chatterjee NA, Roka A, Lubitz SA, et al. Reduced appropriate implantable cardioverter-defibrillator therapy after cardiac resynchronization therapy-induced left ventricular function recovery: a meta-analysis and systematic review. Eur Heart J,2015,36(41):2780-2789.
[11] Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization. EuroIntervention,2015,10(9):1024-1094.
[12] Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) endorsed by: association for european paediatric and congenital cardiology (AEPC). Europace,2015,17(11):1601-1687.
[13] 曹克将, 黄从新, 张澍. 室性心律失常中国专家共识. 中国心脏起搏与心电生理杂志,2016,20(4): 283-325.
[14] Gould PA, Krahn AD. Complications associated with implantable cardioverter-defibrillator replacement in response to device advisories. JAMA,2006,295(16):1907-1911.
[15] Buxton AE, Lee KL, Hafley GE, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the MUSTT study. J Am Coll Cardiol,2007,50(12):1150-1157.
[16] Myerburg RJ, Mitrani R, Interian A, et al.Interpretation of outcomes of antiarrhythmic clinical trials: design features and population impact. Circulation,1998,97(15):1514-1521.
[17] Buxton AE, Ellison KE, Lorvidhaya P, et al. Left ventricular ejection fraction for sudden death risk stratification and guiding implantable cardioverter-defibrillators implantation. J Cardiovasc Pharmacol,2010,55(5):450-455.
[18] Sen F, Yilmaz S, Kuyumcu MS, et al. The presence of fragmented QRS on 12-lead electrocardiography in patients with coronary artery ectasia. Korean Circ J,2014,44(5):307-311.
[19] 周萌, 孙林, 李波, 等. 心电图碎裂QRS波与急性心肌梗死患者室性心律失常及左心室收缩功能的相关性. 中国心血管杂志,2014,19(1):24-27.
[20] Ozcan F, Turak O, Canpolat U, et al. Fragmented QRS predicts the arrhythmic events in patients with heart failure undergoing ICD implantation for primary prophylaxis: more fragments more appropriate ICD shocks. Ann Noninvasive Electrocardiol,2014,19(4):351-357.
[21] Das MK, Saha C, El Masry H, et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery disease. Heart Rhythm,2007,4(11):1385-1392.
[22] Brenyo A, Pietrasik G, Barsheshet A, et al. QRS fragmentation and the risk of sudden cardiac death in MADIT Ⅱ. J Cardiovasc Electrophysiol,2012,23(12):1343-1348.
[23] Hetland M, Haugaa KH, Sarvari SI, et al. A novel ECG-index for prediction of ventricular arrhythmias in patients after myocardial infarction. Ann Noninvasive Electrocardiol,2014,19(4):330-337.
[24] Oehler A, Feldman T, Henrikson CA, et al. QRS-T angle: a review. Ann Noninvasive Electrocardiol,2014,19(6):534-542.
[25] Borleffs CJ, Scherptong RW, Man SC, et al. Predicting ventricular arrhythmias in patients with ischemic heart disease: clinical application of the ECG-derived QRS-T angle. Circ Arrhythm Electrophysiol,2009,2(5):548-554.
[26] Kurl S, Makikallio TH, Rautaharju P,et al.Duration of QRS complex in resting electrocardiogram is a predictor of sudden cardiac death in men. Circulation,2012,125(21):2588-2594.
[27] Teodorescu C, Reinier K, Uy-Evanado A, et al. Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization. Heart Rhythm,2011,8(10):1562-1567.
[28] Nicolson WB, McCann GP, Brown PD, et al. A novel surface electrocardiogram-based marker of ventricular arrhythmia risk in patients with ischemic cardiomyopathy. J Am Heart Assoc, 2012,1(4):e001552.
[29] Nicolson WB, McCann GP, Smith MI, et al. Prospective evaluation of two novel ECG-based restitution biomarkers for prediction of sudden cardiac death risk in ischaemic cardiomyopathy. Heart,2014,100(23):1878-1885.
[30] Haugaa KH, Grenne BL, Eek CH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging,2013,6(8):841-850.
[31] Haugaa KH, Smedsrud MK, Steen T, et al. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging,2010,3(3):247-256.
[32] Ersbøll M, Valeur N, Andersen MJ, et al. Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging,2013,6(8):851-860.
[33] De Haan S, Meijers TA, Knaapen P, et al. Scar size and characteristics assessed by CMR predict ventricular arrhythmias in ischaemic cardiomyopathy: comparison of previously validated models. Heart,2011,97(23):1951-1956.
[34] Rijnierse MT, De Haan S, Harms HJ, et al. Impaired hyperemic myocardial blood flow is associated with inducibility of ventricular arrhythmia in ischemic cardiomyopathy. Circ Cardiovasc Imaging,2014,7(1):20-30.
[35] Lingman M, Hartford M, Karlsson T, et al. Value of the QRS-T area angle in improving the prediction of sudden cardiac death after acute coronary syndromes. Int J Cardiol,2016,218:1-11.
[36] Pastor Pérez FJ, Manzano-Fernández S, Goya-Esteban R, et al. Comparison of detection of arrhythmias in patients with chronic heart failure secondary to non-ischemic versus ischemic cardiomyopathy by 1 versus 7-day holter monitoring. Am J Cardiol,2010,106(5):677-681.
[37] Scirica BM, Braunwald E, Belardinelli L, et al. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death: observations from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation,2010,122(5):455-462.
[38] Verrier RL, Nearing BD, La Rovere MT, et al. Ambulatory electrocardiogram-based tracking of T wave alternans in postmyocardial infarction patients to assess risk of cardiac arrest or arrhythmic death. J Cardiovasc Electrophysiol,2003,14(7):705-711.
[39] Stein PK, Sanghavi D, Domitrovich PP, et al. Ambulatory ECG-based T-wave alternans predicts sudden cardiac death in high-risk post-MI patients with left ventricular dysfunction in the EPHESUS study. J Cardiovasc Electrophysiol,2008,19(10):1037-1042.
[40] Chen Z, Shi Y, Hou X, et al. Microvolt T-wave alternans for risk stratification of cardiac events in ischemic cardiomyopathy: a meta-analysis. Int J Cardiol,2013,167(5):2061-2065.
[41] Gatzoulis KA, Tsiachris D, Arsenos P, et al. Prognostic value of programmed ventricular stimulation for sudden death in selected high risk patients with structural heart disease and preserved systolic function. Int J Cardiol,2014,176(3):1449-1451.
[42] Zaman S, Narayan A, Thiagalingam A, et al. Long-term arrhythmia-free survival in patients with severe left ventricular dysfunction and no inducible ventricular tachycardia after myocardial infarction. Circulation,2014,129(8):848-854.
[43] Zaman S, Narayan A, Thiagalingam A, et al. What is the optimal left ventricular ejection fraction cut-off for risk stratification for primary prevention of sudden cardiac death early after myocardial infarction? Europace,2014,16(9):1315-1321.
[44] Zaman S, Narayan A, Thiagalingam A, et al. Significance of repeat programmed ventricular stimulation at electrophysiology study for arrhythmia prediction after acute myocardial infarction. Pacing Clin Electrophysiol,2014,37(7):795-802.
[45] Zaman S, Kumar S, Narayan A, et al. Induction of ventricular tachycardia with the fourth extrastimulus and its relationship to risk of arrhythmic events in patients with post-myocardial infarct left ventricular dysfunction. Europace,2012,14(12):1771-1777.
[46] Thakkar JB, Zaman S, Byth K, et al. Right ventricular dysfunction predisposes to inducible ventricular tachycardia at electrophysiology studies in patients with acute ST-segment-elevation myocardial infarction and reduced left ventricular ejection fraction. Circ Arrhythm Electrophysiol,2014,7(5):898-905.
[47] Yalin K, Golcuk E, Buyukbayrak H, et al. Infarct characteristics by CMR identifies substrate for monomorphic VT in post-MI patients with relatively preserved systolic function and ns-VT. Pacing Clin Electrophysiol,2014,37(4):447-453.
[48] Exner DV, Kavanagh KM, Slawnych MP, et al. Noninvasive risk assessment early after a myocardial infarction the REFINE study. J Am Coll Cardiol,2007,50(24):2275-2284.
10.3969/j.issn.1004-8812.2017.06.008
国家自然科学基金(81570388);国家重点基础研究发展计划(973计划)课题(2015CB554404);北京市自然科学基金项目(7142048)
100029 北京,首都医科大学附属北京安贞医院心内科 北京市心肺血管疾病研究所
柳景华,Email:liujinghua@vip.sina.com
R541.7
2017-01-09)