APP下载

Efects of medicinal plants on Alzheimer’s disease and memory def i cits

2017-01-12MuhammadAkramAllahNawaz

Muhammad Akram, Allah Nawaz

1 Department of Eastern Medicine and Surgery, Faculty of Medical and Health Sciences,e University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan

2 First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan

Efects of medicinal plants on Alzheimer’s disease and memory def i cits

Muhammad Akram1,*,#, Allah Nawaz2,#

1 Department of Eastern Medicine and Surgery, Faculty of Medical and Health Sciences,e University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan

2 First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan

How to cite this article:Akram M, Nawaz A (2017) Ef f ects of medicinal plants on Alzheimer’s disease and memory defcits. Neural Regen Res 12(4):660-670.

Open access statement:Tis is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Alzheimer’s disease is an age-related neurodegenerative disorder characterized by memory def i cits. Various studies have been carried out to fi nd therapeutic approaches for Alzheimer’s disease. However, the proper treatment option is still not available.ere is no cure for Alzheimer’s disease, but symptomatic treatment may improve the memory and other dementia related problems. Traditional medicine is practiced worldwide as memory enhancer since ancient times. Natural therapy including herbs and medicinal plants has been used in the treatment of memory def i cits such as dementia, amnesia, as well as Alzheimer’s disease since a long time. Medicinal plants have been used in different systems of medicine, particularly Unani system of medicines and exhibited their powerful roles in the management and cure of memory disorders. Most of herbs and plants have been chemically evaluated and their efficacy has also been proven in clinical trials. However, the underlying mechanisms of actions are still on the way. In this paper, we have reviewed the role of different medicinal plants that play an important role in the treatment of Alzheimer’s disease and memory def i cits using conventional herbal therapy.

nerve regeneration; memory; Alzheimer’s disease; medicinal plants; efficacy; literature review; neural regeneration

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease affecting older adults. In 1906, Alois Alzheimer, a German neuropathologist and psychiatrist discovered AD. About 24 million World population is suf f ering from dementia, in which majority of patients have AD (Ballard et al., 2011). AD is characterized by memory loss, behavior deterioration, performance impairment, and thought slowness.e condition is mimicked by severe depression (Squire, 1992). Cognitive and neural dysfunction occurs due to accumulation of oxidative damage to nucleic acid, protein and mitochondria in the brain. In Spain, survey was conducted on 1,637 people above 64 years of age regarding subjective memory complaints (SMC). SMC were reported in 524 persons (32.4%). Cognitive performance, mood, sex, education and age are associated with prevalence of SMC. SMC are reported in 24% of people between 65 and 69 years of age. SMC increase 57% in people up to 90 years or above group. SMC are 52.8% in people with anxiety and depression (Montejo et al., 2011). Severe psychological stress or drug use can cause amnesia. Various allopathic medicines are prescribed in AD but they exert side effects. Therefore, herbal medicine could be a good source of drugs for treatment of AD and memory def icit with fewer or no side ef f ects.e present article reviews the medicinal plants that are proven for their efficacy to treat AD and memory def i cits.

Pathogenesis

Two characteristic features are seen in the brain of patients with AD.

1. Senile plaques contain extracellular deposits of amyloid-beta (Aβ), a peptide synthesized by breakage of Aβ precursors (genetic locus 21q21–22). Abnormal deposits of Aβ are also found in blood vessels.

2. Neurofibrillary tangles, dense bundles of abnormal fibers in the cytoplasm of neurons which consist of an altered form of the microtubular-associated protein are found in patients with AD (Hoyer, 1992; Iqbal et al., 2005; Kuljis, 2007; Fernandez et al., 2008; Bamburg and Bloom, 2009).

Molecular Mechanism

The main features of AD are extracellular Aβ pathology and neurofibrillary tau pathology (tangles and threads). For 25 years, most studies have been conducted on the Aβ hypothesis of AD pathogenesis and progression (Pimplikar, 2009). But because of failure in clinical trials of Aβ-targeted treatment and the new concept of prion like propagation of intracellular abnormal proteins, tau has come back into the spotlight as a candidate therapeutic target in management of Alzheimer’s disease. Tau pathologies are found in a range of neurodegenerative disorders, but extensive analyses of pathological tau in diseased brains has indicated that the abnormal tau protein in each disease is structurally distinct(Avila et al., 2004), supporting the concept that progression of the diverse but characteristic tau pathologies occur through prion like seed dependent aggregation. Therefore, intervention in the conversion of normal tau to abnormal forms and in cell-to-cell transmission of tau may be the key for development of disease modifying treatment of AD and other memory def i cits (Hasegawa, 2016).

Drug Targets

Drug Treatment

Probiotics have been reported for their efficacy to enhance memory (Lyte, 2011). Probiotics are used as antidepressant in AD. It reduces anxiety like behavior and attenuates psychological stress. Neurochemicals are produced by microbes. Immunological and neurological effects are induced by probiotics. Probiotics also have immunomodulating activity (Misra and Medhi, 2013). In Chinese and Ayurvedic medicines, medicinal plants are used to treat AD, neurodegenerative changes and cognitive diseases. Various western medicines being used in memory loss are derived from plants. Plant derived alkaloids such as anticholinesterase have been used to treat AD. In the United Kingdom, plant derived galantamine is also used in the treatment of neurodegenerative disorders. Five million Americans are suf f ering from AD and this number will increase up to 7.7 million in 2030. Symptoms of neurodegenerative disorders clearly appear aer 60 years of age (Chengxuan et al., 2009). Etiology of neurodegenerative disorders is linked to genetic defect that is 10–15% of total cases. In AD, loss of neurons appears in subcortical structure, cortex and hippocampus. Various compounds have been identified by phytochemical studies such as alkaloids, sterols, triterpenes, polyphenols, tannins, flavonoids and lignins that have pharmacological activities including anti-cholinesterase and anti-amyloidogenic.

Medicinal plants are playing a significant role in the management of AD and memory deficit. The important traditional therapeutic methods are Ayurvedic, homeopathy, Unani and Sidha systems of medicine. Unani system of medicine offers traditionally a highly scientific health care therapy as a divine giand as a result the global interest of the medical profession is focused on medicinal plants. Traditional system of medicine is fundamentally preventive, protective, nutritive and curative. Therefore, traditional medicines are safe and harmless which treat the patients with fewer or no side ef f ects.

Herbal medicines have their origins in ancient cultures, including those of the Egyptian, Indians and Chinese. It involves the use of medicinal plants to treat AD and enhances general health and well beings. In fact, many pharmaceutical drugs are based on the synthesized adaptations of naturally occurring compounds found in plants. In recent years, interest in herbal medicine has increased, leading to a greater scientific interest in the medicinal use of plants in treating disease and improving health, oen without any signif i cant side ef f ects. Herbal medicines and natural products are the oldest remedies known to mankind. Medicinal plants have been used by all cultures throughout the history. In present scenario, the demand for herbal products is growing, exponentially throughout the World.

In human body, the nervous system coordinates and regulates the various voluntary and involuntary activities of the body. The central nervous system and the autonomic nervous system are interlinked and some drugs affect the CNS producing reactions associated with the autonomic system (McCorry, 2007). Drugs involved with the CNS may have general stimulatory or depressant action with anticonvulsant and psychopharmacological activities. Memory deficit is a major global health problem. Current therapies are inadequate and have numerous adverse ef f ects.ere is an urgent need for possible alternative treatments for AD and memory def i cit. Various medicinal plants are prescribed to enhance the memory. We have reviewed the literature onmedicinal plants used in the treatment of AD and memory def i cit (Xu et al., 2009). Several medicinal plants have been used for decades in different cultures to improve memory such asValeriana of fi cinalis, Punica granatumL.,Salvia offcinalis, Myristica fragrans Bacopa monnieriLinn,Centella asiaticaLinn andEvolvulus alsinoidesLinn. Elufioye et al. (2012) reported some plants used as anti-aging and memory enhancing activities in Sagamu, Nigeria that areBacopa fl oribunda, Angraecum eichlerianum, Parquet inanigrescens, Cleome gynandra, Dalbergia lacteal, Capsicum fructescens, Aframomum melegueta, Digitaria debilis, Musa sapientum, Bryophyllum pinnatum, Abrus precatorius, Ficus exasperate, Dioscorea mangenotiana, Jatropha curcas, Spondia smombin, Capsicum frutescens, Cola acuminate, Mirabilis jalapa, Elaies guineensis, Canna indica, Ipomoea mauritania, Bambusa vulgaris, Cordia millenii, Piper guineense, Dioclea sarmentosa, Cucumeropsis mannii, Eleusine indica, Ocimum basilicum, Khaya ivorensis, Carpolobia alba, Carapa procera, Entandrophragma utile, Xylopiaae thiopica, Garcinia kola, Teobroma cacao, Milicia excels, Blighia sapida, Baphia nitida, Peperomia pellucid, Vernonia amygdalinaandZea mays. Jazayeri et al. (2014) reported some plants having anticholinesterase activity such asBrassica alba, Brassica nigra, Camellia sinensis, Cinchona officinalis, Citrus aurantifolia, Citrus aurantium, Ferula assafoetida, Humulus lupulus, Juglans regia, Juniperus sabina, Myristica fragrans, Pelargonium graveolens, Pistacia vera, Punica granatum, Rheum officinale, Rosa damascena, Salix albaandZizyphus vulgaris. Other plants having memory enhancing properties areJuglans regia(Haider et al., 2011),Cuminum cyminum(Koppula and Choi, 2011),Ficus religiosa(Kaur et al., 2010),Melissa of fi cinalis(Kennedy and Scholey, 2006),Rosmarinus of fi cinalis(Ozarowski et al., 2013),Piper nigrum(Hritcu et al., 2014),Ginkgo biloba(Tan et al., 2015),Bacopa monnieri(Roodenrys et al., 2002),Desmodium gangeticum(Mahajan et al., 2015) andEmblica officinalis Gaerth(Justin Thenmozhi et al., 2016). Herbal medicines have been used to treat various ailments in Unani system of medicine since ancient times. However, there is a lack of scientif i c data on the ef f ectiveness and stability of bioactive chemical constituents in medicinal plants. In this review, we aimed at documenting the information on plants used as a memory enhancer in AD.

Withania somnifera

Withania somniferabelongs to the family Solanaceae. It (500 mg/d) exhibited calming ef f ects on stress and reversed memory loss (Auddy et al., 2008). Cholinergic activity ofWithania somniferahas been reported in a previous study (Schliebs et al., 1997). Memory enhancing activity and cognition improving property ofWithania somniferaincrease due to its ability to increase acetylcholine level in the brain. Neurotic outgrowth activity ofWithania somniferais reported already in human neuroblastoma cells that are time- and dose-dependent.Withania somniferaenhances dendrite and axon regeneration (Tomoharu et al., 2005). A molecular modeling study indicates that withanamides A and C bind to Aβ and inhibit fi bril synthesis (Jayaprakasam et al., 2010).

Curcuma longa

Curcuma longabelongs to the family Zingiberaceae. In Southeast Asian countries, prevalence of AD is low due to consumption of turmeric. It has anti-inf l ammatory activity that is also associated with reduced risk of AD (Aggarwal and Harikumar, 2009).Curcuminreduces the plaque deposition in the brain. Turmeric decreases oxidative stress and amyloid pathology (Mishra and Palanivelu, 2008). In one study, administration of low doses ofcurcuminreduced Aβ level up to 40% in mice with AD as compared to control drug (Shytle et al., 2009).Curcuminat low doses caused 43% decrease in the plaque burden that these Aβ have on the brain of mice with AD (Mishra and Palanivelu, 2008). A previous study indicates that low doses ofcurcuminadministered for long duration are more ef f ective in the treatment of AD as compared to higher doses ofcurcumin(Yang et al. 2005).Curcuminhas an ability to bind with Aβ and inhibits its self assembly (Reinke and Gestwicki, 2007).Curcuminhas powerful anti-inf l ammatory and antioxidant ef f ects (Fan et al., 2015); according to the researchers, these ef f ects help in treating Alzheimer’s symptoms caused by inf l ammation and oxidation (Frautschy and Hu, 2001). Hypercholesterolemia and hyperlipidemia increase amyloid plaques by intracellular accumulation of cholesterol esters (Tokuda et al., 2000). Scientists believe thatcurcuminmight have therapeutic ef f ects on AD by inhibiting cholesterol synthesis and reducing serum peroxides (Soni and Kuttan, 1992).

Convolvulus pluricaulis

Convolvulus pluricaulisbelongs to the family Convolvulaceae. It is used as a memory enhancing agent. A previous study has shown that aqueous and ethyl acetate extract ofConvolvulus pluricaulisincreases memory functions and learning abilities (Bihaqi et al., 2011). In another study, a wide range of secondary metabolites such as steroids, anthocyanins, fl avonol glycosides and triterpenoids have been isolated that are responsible for memory enhancing and nootropic properties (Malik et al., 2011).Convolvulus pluricaulishas been repoted to calm the nerves by regulating the stress hormones synthesis (cortisol and adrenaline) in the body (Sethiya et al., 2009). The ethanolic extract ofConvolvulus pluricaulisand its aqueous and ethyl acetate fractions signif i cantly improved memory retention and learning abilities in rats (Nahata et al., 2008). Another study conducted by Bihaqi et al. (2011) indicated that extracts ofConvolvulus pluricaulisenhance the memory in Wistar rats in a dose-dependent manner. Similarly, administration ofConvolvulus pluricaulisfor 1 week increased memory in aged mice (Sharma et al., 2010). Administration ofConvolvulus pluricaulisincreased the acetylcholinesterase activity in the hippocampal CA1 and CA3 regions associated with the memory function and learning abilities (Dubey et al., 1994).

Centella asiatica

Centella asiaticabelongs to the family Apiaceae. It contains saponins, asiaticosides, madecassoside, madasiatic acid, brahmoside, brahminoside, sasiaticoside, sitosterol, tannins,ascorbic acid, centoic acid, centellic acid, thankuniside, brahmoside, brahminoside, siatic acid, thankuniside, glycoside, triterpine, thankunic acid, vellarin, asiaticosides, thankuniside, and isothankuniside (Siddiqui et al., 2007).Centella asiaticais used in depression, rheumatism, mental weakness, abdominal pain, and epilepsy (Gohil et al., 2010). It is diuretic, anti-spasmodic, anti-convulsive, tonic, stimulant, emmenagogue, antioxidant and spermatogenic (Heidari et al., 2007).Centella asiaticareversed the Aβ pathology and reduced oxidative stress response (Amala et al., 2012).

Rao et al. (2007) reported that treatment withCentella asiatica(Linn) fresh leaf extract enhanced learning ability and memory retention power in Wistar rats. Adult rats of 2.5 months old were selected for this study.ree different doses (2, 4, and 6 mg/kg) of extracts were administered for 2, 4, and 6 weeks. Spatial learning (T-maze) and passive avoidance tests were performed aer the treatment period. Results were compared with those of age matched control rats. Improvement in spatial learning was signif i cant at the dose of 6 mL of extract.e use ofCentella asiaticaextract enhanced memory retention that was evident from passive avoidance test.is data showed thatCentella asiaticaenhances learning ability and memory retention power in adult rats. Veerendra and Gupta (2003) reported efficacy ofCentella asiaticain AD. Its cognition enhancing activities and anti-oxidant ef f ects have been reported. Aqueous extract ofCentella asiatica(100, 200 and 300 mg/kg) was administered for 21 days in streptozotocin (STZ)-induced cognitive impairment and oxidative stress in rats. STZ at 3 mg/kg was intracerebroventricularly injected into male Wistar rats bilaterally on days 1 and 3. Cognitive behavior was assessed aer 13, 14 and 21 days of treatment. Rats were sacrif i ced for assessment of oxidative stress aer 21 days of treatment. Cognitive behaviors of rats treated withCentella asiaticaextract improved signif icantly.e maximum response was observed aer administration of extract at the doses of 200 and 300 mg/kg. Results from Veerendra and Gupta (2003) showed thatCentella asiaticais ef f ective in STZ-induced cognitive impairment in rats.

Celastrus paniculatus

Celastrus paniculatusbelongs to the family Celastraceae. It prevented neuronal cell damage against hydrogen peroxide toxicity due to its antioxidant activity (Godkar et al., 2006). Administration ofCelastrus paniculatusprevents neuronal cell damage caused by glutamine induced toxicity (Godkar et al., 2003).Celastrus paniculatusincreases cholinergic activity that contributes its ability to improving memory performance (Bhanumathy et al., 2010). Aqueous extract ofCelastrus paniculatushas antioxidant and cognition enhancing properties (Kumar and Gupta, 2002).Celastrus paniculatusextracts protected neuronal cells against hydrogen peroxide induced toxicity in part by virtue of their antioxidant and free radical scavenging activities (Katekhaye et al., 2011).

Nardostachys jatamansi

Nardostachys jatamansibelongs to the family Caprifoliaceae. It contains sesquiterpene valeranone that has been used for treatment of stress (Lyle et al., 2009). In a study,Nardostachys jatamansiexhibited memory retention and learning enhancing abilities in aged and young mice and reversed scopolamine and diazepam induced amnesia.Nardostachys jatamansialso reversed aging induced amnesia (Joshi and Parle, 2006). Karkada et al. (2012) reported efficacy ofNardostachys jatamansiin the prevention of stress induced memory def i cit.

Coriandrum sativum

Coriandrum sativumbelongs to the family Apiaceae. In one study,Coriandrum sativumwas given for 45 days for its effi cacy on cognitive function in male Wistar rats.is study was conducted in comparison with aging, scopolamine and diazepam induced amnesia.Coriandrum sativumexhibited memory enhancing effects due to its antioxidant, anti-inflammatory and cholesterol lowering activities (Vasudevan and Milind, 2009).

Ficus carica

Ficus caricabelongs to the family Moraceae. It was investigated for its effect in retrieval, retention and acquisition of spatial recognition.Ficus caricacontains quercetin that plays an important role in memory def i cit and AD due to its antioxidant activity. For this study, mice with memory def i cit and normal mice were used. Rectangular maze model and Y-maze were used to assess efficacy ofFicus caricaon cognitive functions. Hexane extract (100 and 200 mg/kg) was administered to adult swiss Wistar albino mice. In this study, Bacopa monniera and scopolamine were used as standard drug and amnestic agent respectively.Ficus carica200 mg/kg exhibited maximum nootropic response that is near to response exhibited by a standard drug Bacopa monniera. In conclusion,Ficus caricaat lower doses exhibits mild memory enhancing ef f et and higher doses evoke better learning ability and alter behavior (Saxena et al., 2013).

Ginkgo biloba

Ginkgo bilobabelongs to the family Ginkgoaceae. It contains bilobalide that has a neuroprotective activity (Chandrasekaran et al., 2001).Ginkgo bilobadecreases free radical and improves memory in patients with AD (Shi et al., 2010). It contains flavonoids that are involved in memory enhancement (Bastianetto et al., 2000). Gingko biloba prevents neurodegeneration and GABA inhibitory neurotransmission induced by hippocampal corticosterone (Walesiuk and Braszko, 2009). Administration ofGinkgo bilobasignif i cantly improved memory and learning performance in albino rats (Nalini et al., 1992).

Ilex paraguariensis

Ilex paraguariensisbelongs to the family Aquifoliaceae. It has a memory enhancing property. It contains vitamin B12, B1 and C.Ilex paraguariensisis being used as an anti-dementia agent (Bastos et al. 2007). Its memory enhancing property was investigated in different rat models (Colpo et al., 2007).Ilex paraguariensishas been shown to improve short and long term memory (Rui et al., 2008).ere is evidence thatIlex paraguariensisfor treatment of vascular dementia improves memory (Heck et al., 2007). Literature review indicates thatIlex paraguariensisis ef f ective in the treatment of neurodegenerative disorders such as AD (Muzzafera, 1997).

Commiphora whighitti

Commiphora whighittibelongs to the family Burseraceae. It is a potent cognition enhancer for memory improvement in scopolamine induced memory def i cits (Gujran et al., 2007). Another study shows that brain pathology develops in cholesterol fed rabbits similar to AD (Ghribi, 2008), which is supported by clinical trials in human, showing that statin treatment decreases the risk of AD (Raja and Hoyer, 2004). Memory enhancing and anti-dementia activity ofCommiphora whighittihas been reported that is due to reduction in acetylcholinesterase contents in the hippocampus (Lannert and Hoyer, 1998).

Glycyrrhiza glabra

Glycyrrhiza glabrabelongs to the family Fabaceae. It contains pentanol, hexanol, linalool oxide, tetramethyl pyrazine, terpinen, terpinol, geraniol, propionic acid, benzoic acid, ethyl linolenate, methyl ethyl ketone, butanediol, feuferaldehyde, furfuryl formate, trimethylpyrazine, maltol, glycyrrhizin, tannin, and glycyrrhizic acid (Rekha and Parvathi, 2012).Glycyrrhiza glabrais used in gastric ulcer, lung congestion, hoarseness and throat problems (Dastagir and Rizvi, 2016). Memory enhancing activity ofGlycyrrhiza glabrawas reported in scopolamine induced dementia (Ambawade et al., 1998). Dhingra et al. (2004) reported the memory enhancing activity ofGlycyrrhiza glabrain mice.ree dose levels (75, 150, 300 mg/kg, p.o.) ofGlycyrrhiza glabraextracts were administered to mice in 7 successive days.Glycyrrhiza glabraat 150 mg/kg was found ef f ective in memory enhancement.

Lepidium meyenii

Lepidium meyeniibelongs to family Brassicaceae. It is known as Maca which shows improvement in learning abilities and memory function (Julio et al., 2007).Lepidium meyeniiexhibited memory enhancing activity in patients with AD. It enhances memory by increasing level of acetylcholine (Wang et al., 2006). It improves experimental memory impairment induced by ovariectomy, due in part to its acetylcholinesterase inhibitory and antioxidant effects. Results showed thatLepidium meyeniican enhance memory retention and learning abilities in ovariectomized mice and this activity might be related, at least in part, to its ability to decrease lipid peroxidation and acetylcholinesterase in ovariectomized mice (Rubio et al., 2011).

Panax ginseng

Panax ginsengbelongs to the family Araliaceae. A previous study has shown that learning ability increases in animals by consumptions ofPanax ginseng. Recent studies have shown the efficacy ofPanax ginsengpowder, extract and various ginsedosides on AD usingin vivoandin vitromodels (Heo et al., 2008; Cho, 2012; Hee et al. 2013). Patients receiving Korean white ginseng powder (4.5 g/d) or Korean red ginseng powder (9 g/d) showed significant improvement in Clinical Dementia Rating, Mini-Mental State Examination scores and the Alzheimer’s Disease Assessment Scale aer 12 weeks of ginseng treatment in comparison with those in the control group (Heo et al., 2008; Lee et al., 2008).

Emblica officinalis

Emblica officinalisbelongs to the family Euphorbiaceae. It exhibited significant improvement in memory retention of young and aged rats in a dose-dependent manner. It reversed the diazepam and scopolamine induced amnesia. As a memory enhancer and reversal of memory def i cits,Emblica of ficinalisplays an important role in the treatment of memory def i cits and AD (Mani et al., 2007). A study was conducted to investigate the memory enhancing effect of piracetam when used together withEmblica officinalisandcurcuma longaagainst aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride at 100 mg/kg was given orally to rats for 6 weeks.Emblica officinalis(100 mg/kg, p.o.),curcumin(100 mg/kg, p.o.) and piracetam (200 mg/kg, i.p.) were concomitantly administered to rats daily for 6 weeks. Elevated plus maze task paradigms and Morris water maze tests were used to evaluate memory on days 21 and 42 of treatment. On day 43 of treatment, rats were sacrif i ced to evaluate the extent of oxidative stress. Oxidative stress was signif i cantly reduced and memory was signif i cantly improved in rats treated withEmblica officinalis(100 mg/kg, p.o.),curcumin(100 mg/kg, p.o.) and piracetam (200 mg/kg, i.p.) than the rats treated only with piracetam (200 mg/kg, i.p.). As antioxidant and memory enhancer agent,Emblica of fi cinaliscould be used to treat memory loss and AD (Ramachandran et al., 2013).

Magnolia officinalis

Magnolia officinalisbelongs to the family Magnoliaceae. It improves the scopolamine induced memory def i cits (Lee et al., 2009).Magnolia of fi cinalisinhibits acetyl cholinesterase activity (Jae et al., 2009). Ethanolic extract ofMagnolia of fi cinaliscontaining honokiol and magnolol has been reported to possess antioxidant ef f ects (Lo et al., 1994; Chiu et al., 1997; Kong et al., 2000).In vitroantioxidant activities of various Soxhlet and supercritical fl uid extracts have been reported, with the ethyl acetate Soxhlet extract being the most active (Li and Weng, 2005). Biphenolic lignins (magnolol (29) and honokiol (28) derived fromMagnolia of fi cinalis, have the ability to enhance the choline acetyltransferase ef f ects and inhibit the acetylcholine cleavage and have also been shown to release acetylcholine from the hippocampus (Hou et al., 2000). Both compounds exhibitedin vivoantioxidant ef f ects (Lo et al., 1994). Magnolol showedin vitroneuroprotective activity (Lee et al., 2000).e compound also exhibited anti-inf l ammatory ef f ectin vivoandin vitro(Wang et al., 1992, 1995). Honokiol exhibits anti-inflammatory activity by inhibiting reactive oxygen species synthesis (Dikalov et al., 2008). Asan anti-inf l ammatory and antioxidant agent,Magnolia of fi cinalisplays an important role in the management of AD and memory def i cits (Jie et al., 2000; Chen et al., 2001; Liou et al., 2003).

Zingiber officinale

Zingiber of fi cinalebelongs to the family Zingiberaccae. It is used for treatment of headache, rheumatism and stomach trouble (Malhotra and Singh, 2003). It improves memory impairment induced by scopolamineviainhibition of acetylcholinesterase activity (Hanumanthacar et al., 2006). As a booster of antioxidant and a reducer of free radical,Zingiber officinaleplays an important role in the treatment of AD and memory def i cits (Masuda et al., 1997). In another study, male rats (250–300 g) were divided into treatment and control groups. The treatment group was further divided into three subgroups. Plant mixed in food at a ratio of 6.25% was administered in the fi rst group. Plant extract at 50 mg/kg and 100 mg/kg (intraperitoneal) was administered to the second and third subgroups, respectively. Shuttle box test and Y maze test were used to investigate acquisition-recalling and spatial recognition behaviors. Significant improving effects on recall, retention and acquisition were observed in male rats aer intraperitoneal and oral administration ofZingiber of fi cinale(Gharibi et al., 2013).

Tinospora cordifolia

Tinospora cordifoliabelongs to the family Menispermaceae. Pharmacological activities include anti-fertility, antioxidant and immunomodulating activities (Reddy and Rajasekhar, 2015).Tinospora cordifoliapossesses a memory improving ef f ect in animals with memory def i cits (Malve et al., 2014). The mechanism by whichTinospora cordifoliaimproves memory is the synthesis of acetylcholine and immunostimulation (Asuthosh et al., 2000). Administration ofTinospora cordifoliaincreases the cognitive function in patients with AD (Lannert and Hoyer, 1998).

Punica granatum

Punica granatumbelongs to the family Punicaceae. It contains corilagin, granatin, punicacortein A, pedunculagin and punicafolin.Punica granatumis used in diarrhea and dysentery (Das et al., 1999). It is anthelmintic and astringent. Cambay et al. (2011) reported the ef ficacy ofPunica granatumflower in learning and memory performance impaired by diabetes mellitus in rats. In this study, rats were divided into fi ve groups (n= 12): control, streptozocin, streptozocin + pomegranate fl owers at 300, 400 and 500 mg/kg/d. Results showed that rats in the streptozocin group showed memory impairment than those in the control group. Administration of pomegranate fl ower powder led to improvement in learning abilities and memory retention in diabetic rats. Pomegranate fl ower powder supplementation decreased oxidative stress and alleviated learning and memory impairment as compared to streptozocin induced diabetic rats.erefore,Punica granatumfl ower plays an important role in the treatment of neurological def i cits in patients with diabetes mellitus.

Crocus sativus

Crocus sativusbelongs to the family Iridaceae. There is an increasing trend to prescribe theCrocus sativusin the treatment of AD and memory def i cits. In clinical trials, ef ficacy ofCrocus sativuswas investigated in 54 patients aged 55 years during a 22-week study period. Patients were randomly assigned to receive donepezil 10 mg/d or capsule saf f ron 30 mg/d.Crocus sativusat 30 mg/d was found to be ef f ective similar to donezepil in patients with mild to moderate AD after 22 weeks of treatment. Adverse effects occurred at similar frequencies between donezepil-treated and saffron-treated patients, with the exception of vomiting which occurred more in donezepil-treated patients (Akhondzadeh et al., 2010). Another similar study was conducted to investigate the ef f ects of saf f ron extractversusmemantine in decreasing cognitive deterioration of patients with moderate to severe AD. In this clinical trial, 68 patients received saffron extract (30 mg/d) or memantine (20 mg/d) for 1 year. Functional Assessment Staging and Severe Cognitive Impairment Rating Scale were used to evaluate patients every month and possible adverse effects were recorded.Crocus sativusat 30 mg/d was found to be ef f ective similar to memantine in patients with moderate to severe AD after 1 year of treatment.ere was no signif i cant difference in frequency of adverse effects in both treatment groups (Farokhnia et al., 2014).

Cissampelos pareira

Cissampelos pareirabelongs to the family Menispermaceae. It was investigated for its ef f ect on memory and learning in mice. Memory and learning was testedviapassive avoidance paradigm and elevated plus maze. Hydroalcoholic extract ofCissampelos pareirawas given orally at 100, 200 and 400 mg/kg for 7 days. Memory and learning significantly improved aer administration ofCissampelos pareiraat 400 mg/kg in mice.Cissampelos pareiraextract at 400 mg/kg reversed the scopolamine induced amnesia. Nootropic ef f ect ofCissampelos pareirawas observed that may be due to decreased activity of acetylcholinesterase enzyme and increased antioxidant and anti-inf l ammatory activities (Pramodinee et al., 2011).

Mellisa officinalis

Mellisa of fi cinalisbelongs to the family Lamiaceae. It is anxiolytic, anti-inf l ammatory and antidepressant (Taiwo et al., 2012). In a randomized clinical trial conducted by Kennedy et al. (2002), 20 young participants received a single dose of 300, 600 and 900 mg ofMellisa of fi cinalisor a matching placebo at 7 day intervals.Mellisa of fi cinalisat 600 mg significantly improved memory and cognitive performance. Akhondzadeh et al. (2003a) conducted a study to investigate the efficacy and safety ofMellisa of fi cinalis(60 drops/day) in the treatment of AD. Patients were randomly divided into test and placebo groups.Mellisa officinalisextract was administered to patients between 65 and 80 years of age for 4 months. At 4 months of treatment,Mellisa of fi cinalisextract exhibited a signif i cant ef f ect on cognitive function as com-pared to the placebo group. There were no significant side ef f ects observed in both treatment groups except agitation in the placebo group.

Moringa oleifera

Moringa oleiferabelongs to the family Moringaceae.Moringa oleiferaleaf extract contains Vitamin C and E that are anti-oxidant and are involved in enhancing memory in AD (Pakade et al., 2013). It has nootropics activity and combat stress in AD (Mohan et al., 2005).Moringa oleiferaalters monoamines that are involved in memory process (Ganguly and Guha, 2008). A study conducted in rats indicated thatMoringa oleiferaameliorates the colchicines-induced AD by modifying levels of monoamines such as nor epinephrine, dopamine and serotonin (Obulesu and Rao, 2011).

Salvia officinalis

Salvia of fi cinalisbelongs to the family Lamiaceae. It enhances memory retention by interacting with muscarinic and cholinergic pathways that are involved in memory retention process (Eidi et al., 2006). A study was conducted to investigate the efficacy ofSalvia of fi cinalisin 42 patients (18 female and 24 male, age between 65 and 80 years) with AD living in Tehran, Iran. Aer 4 months of treatment, signi fi cant effi cacy was observed inSalvia o ffi cinalistreated patients than in the placebo-treated patients. The findings indicate the e ff ectiveness ofSalvia o ffi cinalisin the treatment of AD and memory de fi cits (Akhondzadeh et al., 2003b).

Myristica fragrans

Myristica fragransbelongs to the family Myristicaceae. It contains camphene, b-pinene, sabinene, cymene, garaniol, d-borneol, linolool, terpineol, safrol, elemicin, myristicins, phenylpropane derivatives, lauric acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, oleic acid and b-sitosterol (Maeda et al., 2008).Myristica fragransis used in nervous disorders, digestive disorders, leukemia, bodyache, vomiting, tachycardia, dizziness and memory disturbances (Asgarpanah and Kazemivash, 2012). It is hypolipidemic, antidepressant, antioxidant and antibacterial (Narasimhan and Dhake, 2006). N-hexane extract ofMyristica fragransat three dose levels (5, 10 and 20 mg/kg p.o.) was administered orally to young and aged mice for 3 successive days.is drug was found ef f ective at 5 mg/kg in reversing scopolamine and diazepam induced impairment in learning and memory.is study validated use ofMyristica fragransin the management of AD and memory def i cits (Parle et al., 2004).

Bacopa monnieri

Bacopa monnieribelongs to family Scrophulariaceae. It contains sterols, saponins, alkaloids, monnierin, hersaponin acid A, herpestine and brahmine (Singh, 2012). Traditional healers useBacopa monnieriin combination with Centella astiatica and Evolulus alsinoides to treat memory disorders and AD (Russo and Borrelli, 2005).Bacopa monnierienhances memory in patients with AD. It is adaptogenic, neuroprotective, antimicrobial and memory enhancer (Aguiar and Borowski, 2013). Carlo et al. (2008) reported the efficacy ofBacopa monnierion cognitive performance, anxiety, and depression in the elderly and found ef f ective in enhancing cognitive functions in the elderly.is study justif i es its use as a memory enhancer. Another study demonstrated thatBacopa monnieriinhibits cholinergic degeneration and exhibits cognition enhancing activity in a rat model of AD (Uabundit et al., 2010).

Evolvulus alsinoides

Evolvulus alsinoidesbelongs to the family Convolvulaceae. Nahata et al. (2010) reported the efficacy ofEvolvulus alsinoidesin learning behavior and memory enhancement activity in rodents. Ethanol extracts ofEvolvulus alsinoidesand its ethyl acetate and aqueous fractions were investigated for memory enhancing activities in rats. Extracts at 100 mg/kg and 200 mg/kg were administered orally. All extracts signif icantly enhanced learning ability and memory retention in rats. Furthermore, these extracts (0.3 mg/kg, i.p) signif i cantly reversed scopolamine induced amnesia in rats. Nootropic activity of extracts was compared with piracetam as the standard drug. Extract showed significant memory enhancing activity in the step-down and shuttle-box avoidance paradigms.

Ficus racemosa

Ficus racemosabelongs to the family Moraceae. Faiyaz et al. (2011) reported the memory enhancing activity ofFicus racemosabark in rats and found thatFicus racemosa(250 and 500 mg/kg) signif i cantly increased acetylcholine level in the hippocampus of rats.is study suggests its potential to treat memory def i cits in patients with AD.

Ginkgo ginseng

Ginkgo ginsengbelongs to the family Ginkgoaceae. Wesnes et al. (2000) reported the memory enhancing ef f ect ofGinkgo ginsengin 256 healthy middle-aged volunteers through a 14-week study period. A questionnaire including sleep, mood, and quality of life was fi lled before and during the treatment period. Assessment was done at weeks 0, 4, 8, and 14 of the treatment.Ginkgo ginsengpowder was found ef f ective in improving memory def i cits.

Conclusion

In this paper, we have reviewed more detail about the management of AD and the medicinal plants with potential therapeutic values. Despite the bulk of knowledge regarding this complex disease, there is no complete cure except symptomatic treatment. So, the herbal therapy is now anticipated to control AD progression and help to relieve the symptoms related to AD. Herbal therapy can improve the life quality of patients with AD and memory deficits. Worldwide research is being done to find effective treatment of AD. This review reveals that herbal therapy is an encouraging choice as alternative to treat AD. Medicinal plants used in different systems of medicine particularlyUnani system of medicines exhibit their powerful role in the management and cure of memory disorders. Most of herbs and plants have been chemically evaluated and some of them are in the clinical trial stage.e results are magnif i cent and considerable. However, the underlying mechanisms of action are still on the way. As reviewed in this paper, future clinical trials involving larger sample sizes are needed to investigate the role of different medicinal plants and the underlying mechanisms.

Author contributions:MA conceived and designed the work and wrote the paper. AN performed the analysis with constructive discussion and revised the paper. Both authors approved the fnal version of this paper.

Conficts of interest:None declared.

Plagiarism check:This paper was screened twice using CrossCheck to verify originality before publication.

Peer review:Tis paper was double-blinded and stringently reviewed by international expert reviewers.

Aggarwal B, Harikumar K (2009) Potential therapeutic ef f ects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Inter J Biochem Cell Biol 41:40-59.

Aguiar S, Borowski T (2013) Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 16:313-326.

Akhondzadeh S, Shaf i ee Sabet M, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, Hejazi SS, Yousef i MH, Alimardani R, Jamshidi A, Rezazadeh SA, Yousef i A, Zare F, Moradi A, Vossoughi A (2010) A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology (Berl) 207:637-643.

Akhondzadeh S, Nooroonzian M, Mohammadi M, Ohadinia S, Jamshidi A, Khani M (2003a) Melissa of ficinalis extract in the treatment of patient with mild to moderate Alzheimer’s disease: a double blind, randomized, placebo controlled trial. Food Prot 6:625-632.

Akhondzadeh S, Noroozian M, Mohammadi M (2003b) Salvia of ficinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharmer 28:53-59.

Amala S, Yong P, Joseph F (2012) Centella asiatica extract improves behavioral def i cits in a mouse model of Alzheimer’s disease: Investigation of a possible mechanism of action. Int J Alzheimer Dis 38:974-976.

Ambawade S, Kasture V, Kasture S (2009) Anxiolytic activity of Glycyrrhiza glabra linn. J Nat Remed 2:130-134.

Asgarpanah J, Kazemivash N (2012) Phytochemistry and pharmacologic properties of Myristica fragrans Hoyutt.: A review. Afr J Biotechnol 11:12787-12793.

Asuthosh S, Malini K, Bairy M (2000) Ef f ect of Tinospora cordifolia on learning and memory in normal and memory def i cits rats. Indian J Pharmacol 34:339-349.

Auddy B, Hazra J, Mitra A, Abedon B, Ghosal S (2008) A standardized Withania somnifera extract signif i cantly reduces stress-related parameters in chronically stressed humans: a double-blind randomized, placebo-controlled study. J Am Nutra Assoc 11:50-56.

Avila J, Lucas J, Pérez M, Hernández F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361-384.

Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019-1031.

Bamburg JR, Bloom CS (2009) Cytoskeletal pathologies of Alzheimer’s disease. Cell Motif Cytoskel 66:635-649.

Bastianetto S, Zheng WH, Quirion R (2000)e Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its fl avonoid constituents and protein kinase C. J Neurochem 74:2268-2277.

Bastos D, Oliveira D, Matsumoto R, Carvalo P, Ribeiro M (2007) Yerba mate (Ilex paraguariensis): pharmacological research, research and biotechnology. Med Plant Aromat Plant Sci Biotechnol 1:37-46.

Bhanumathy M, Harish MS, Shivaprasad HN, Sushma G (2010) Nootropic activity of Celastrus paniculatus seed. Pharm Biol 48:324-327.

Bihaqi SW, Singh AP, Tiwari M (2011) In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamineinduced cognitive impairments in Wistar rats. Indian J Pharmacol 43:520-525.

Bird T (2008) Genetic aspects of Alzheimer disease. Genet Med 10:231-239.

Cambay Z, Baydas G, Tuzcu M (2011) Pomegranate (Punica granatum L.) fl owers improves learning and memory performances impaired by diabetes mellitus in rats. Acta Physiol Hung 98:409-420.

Carlo C, William L, Michael L (2008) Ef f ects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: A randomized, double-blind, placebo-controlled trial. J Altern Complement Med 14:707-713.

Chandrasekaran K, Mehrabian Z, Spinnewyan B, Drieu K, Kiskum G (2001) Neuroprotective ef f ects of bilobalide, a component of Ginkgo biloba extract (EGb 761), in gerbil global brain ischemia. Brain Res 922:282-292.

Chen YL, Lin KF, Shiao MS, Chen YT, Hong CY, Lin SJ (2001) Magnolol, a potent antioxidant from Magnolia of fi cinalis, attenuates intimal thickening and MCP-1 expression aer balloon injury of the aorta in cholesterol fed rabbits. Basic Res Cardiol 96:353-363.

Chengxuan Q, Miia K, Eva S (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Clin Neurosci 11:111-128.

Chiu JH, Ho CT, Wei YH, Lui WY, Hong CY (1997) In vitro and in vivo protective ef f ect of honokiol on rat liver from per oxidative injury. Life Sci 61:1961-1971.

Cho I (2012) Ef f ects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 3:342-353.

Colpo G, Trevisol F, Teixeira A, Fachinetto R, Pereira R, Rocha B (2007) Ilex paraguariensis has antioxidant potential and attenuates haloperidol-induced orofacial dyskinesia and memory dysfunction in rats. Neurotox Res 12:171-180.

Das A, Mandal S, Banerjee S, Sinha S, Das J (1999) Studies on antidiarrhoeal activity of Punica granatum seed extract in rats. J Ethnopharmacol 68:205-208.

Dastagir G, Rizvi M (2016) Review - Glycyrrhiza glabra L. (Liquorice). Pak J Pharm Sci 29:1727-1733.

Dhingra D, Parle M, Kulkarni S (2004) Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol 91:361-365.

Dikalov S, Losik T, Arbiser J (2008) Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem Pharmacol 76:589-596.

Dubey GP, Pathak SR, Gupta BS (1994) Combined effect of Brahmi (Bacopa monniera) and Shankhpushpi (Convolvulus pluricaulis) on cognitive functions. Pharmacopsychoecol 7:249-251.

Eidi M, Eidi A, Bahar M (2006) An ef f ect of Salvia of fi cinalis leaves on memory retention and its interaction with the cholinergic system in rats. J Nut 22:321-326.

Elufioye T, Oladele A, Olutayo C, Agbedahunsi J, Adesanya S (2012) Ethnomedicinal study and screening of plants used for memory enhancement and antiaging in Sagamu, Nigeria. Europ J Med Plants 2:262-275.

Fan Z, Yao J, Li Y, Hu X, Shao H, Tian X (2015) Anti-inflammatory and antioxidant ef f ects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb. Int J Clin Exp Pathol 8:3451-3459.

Faiyaz A, Narendra J, Sharath C (2011) Acetylcholine and memory-enhancing activity of Ficus racemosa bark. Pharmacog Res 3:246-249.

Farokhnia M, Shaf i ee SM, Iranpour N, Gougol A, Yekehtaz H, Alimardani R, Fasrad F, Kamalipour M, Akhondzadeh S (2014) Comparing the ef ficacy and safety of Crocus sativus with memantine in patient with moderate to severe Alzheimer’s disease: a double blind randomized clinical trial. Hum Psychopharmacol 29:351-359.

Fernandez JA, Rojo L, Kuljis RO, Maccioni RB (2008)e damage signals hypothesis of Alzheimer’s disease pathogenesis. J Alzheimer Dis 14:329-333.

Frautschy SA, Hu W (2001) Phenolic anti-inflammatory, antioxidant reversal of b induced cognitive def i cits and neuropathology. Neurobiol Aging 22:993-1005.

Ganguly R, Guha D (2008) Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian J Med Res 128:744-751.

Gharibi A, Khalili M, Kiasalari Z, Hoseinirad M (2013) The effect of Zingiber officinalis L. on learning and memory in rats. J Bas Clin Pathophysiol 2:2013-2014.

Ghribi O (2008) Potential mechanisms linking cholesterol to Alzheimer’s disease-like pathology in rabbit brain, hippocampal organotypic slices, and skeletal muscle. J Alzheimers Dis 15:673-684.

Godkar P, Gordon R, Ravindran A (2003) Celastrus paniculatus seed water soluble extracts protect cultured rat forebrain neuronal cells from hydrogen peroxide-induced oxidative injury. Fitoterapia 74:658-669.

Godkar PB, Gordon RK, Ravindran A, Doctor BP (2006) Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxideand glutamate-induced injury in embryonic rat forebrain neuronal cells. Phytomedicine 13:29-36.

Gohil K, Patel J, Gajjar A (2010) Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J Pharm Sci 72:546-556.

Grossberg GT (2003) Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Currerapeut Res 64:216-235.

Gujran S, Singh SP, Pal R, Singh S, Ram P, Nath C (2007) Gugulipid, an extract of Commiphora whighitti with lipid lowering properties, has protective ef f ects against streptozotocin induced memory def i cits in mice. Pharmacol Biochem Behav 8:797-805.

Haider S, Batool Z, Tabassum S (2011) Ef f ects of Juglans regia on learning and memory functions. Plant Foods Hum Nutr 66:335-340.

Hanumanthacar J, Milind P (2006) Zingiber Of fi cinale: Evaluation of its nootropic ef f ect in mice. Afr J Trad Complement Alternat Med 3:64-74.

Hasegawa M (2016) Molecular mechanisms in the pathogenesis of Alzheimer’s disease and tauopathies-prion-like seeded aggregation and phosphorylation. Biomolecules 6. pii: E24.

Heck CI, De Mejia EG (2007) Yerba Matic Tea (Ilex Paraguariensis), A comprehensive review on chemistry. Health complications and technological considerations. J Food Sci 72:138-151.

Hee J, Pitna K, Shin S (2013) A comprehensive review of the therapeutic and pharmacological ef f ects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37:8-29.

Heidari M, Jamshedi A, Akhondzadeh S, Ghaf f ari N, Sadeghi M, Khansari G (2007) Evaluating the ef f ects of Centella asiatica on spermatogenesis in rats. Med J Reprod Infert 7:367-374.

Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, Kim M (2008) An open label trial of Korean ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur J Neurol 15:865-868.

Hosseinzadeh H, Sadeghnia H, Ghaeni F, Motamedshariaty V, Mohajeri S (2012) Ef f ects of saf f ron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory aer chronic cerebral hypoperfusion in rats. Phytother Res 26:381-386.

Hou YC, Chao PD, Chen YT (2000) Honokiol and magnolol increased hippocampal acetylcholine release in freely moving rats. Am J Chin Med 28:379-384.

Houghton J, Howes J (2005) Natural products and derivatives af f ecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 14:6-22.

Howes J, Houghton J (2012) Ethnobotanical treatment strategies against Alzheimer’s disease. Curr Alzheimer Res 9:67-85.

Hoyer S (1992) Oxidative energy metabolism in Alzheimer brain. Studies in early onset and late onset cases. Mol Chem Neuropathol 16:207-224.

Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Kuete V, Mihasan M (2014) Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease. Cell Mol Neurobiol 34:437-449.

Iqbal K, Alonso B, Adel C, Chen S, Chohan M, Khatoon S, Liu F, Rahman A (2005) Tau pathology in Alzheimer’s disease and other taupathies. Biochem Biophys Acta 1739:198-210.

Jae L, Kyung L, Beom J, Yoon N, Sang L, Hong T (2009) Inhibitory ef f ect of ethanol extract of Magnolia of ficinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol Biochem Behav 95:31-40.

Jayaprakasam B, Padmanabhan K, Nair MG (2010) Withanamides in Withania somnifera fruit protect PC-12 cells from beta amyloid responsible for Alzheiemr’s disease. Phytother Res 24:859-863.

Jazayeri SB, Amanlou A, Ghanadian N, Pasalar P, Amanlou M (2014) A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. Daru 22:17.

Jie M, Hu Y, Hang H (2000) Study on anti-oxidant ef f ect of Magnolia of fi cinalis. Zhongguo Youzhi 25:30-32.

Joshi H, Parle M (2006) Nardostachys jatamansi improves learning and memory in mice. J Med Food 9:113-118.

Julio R, Dang H, Gong M, Gonzales F (2007) Aqueous and hydroalcoholic extracts of black maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol 45:1882-1890.

Karkada G, Shenoy K, Halahalli H, Karanth K (2012) Nardostachys jatamansi extract prevents chronic restraint stress-induced learning and memory def i cits in a radial arm maze task. J Nat Sci Biol Med 3:125-132.

Katekhaye S, Duggal S, Singh A (2011) An inside preview of nutritional and pharmacological profile of Celastrus paniculatus. Int J Recent Adv Pharm Res 1:19-24.

Kaur H, Singh D, Singh B, Goel RK (2010) Anti-amnesic ef f ect of Ficus religiosa in scopolamine-induced anterograde and retrograde amnesia. Pharm Biol 48:234-240.

Kennedy D, Scholey A, Tildesley N (2002) Modulation of mood and cognitive performance following acute administration of Melissa offi cinalis. Pharmacol Biochem Behav 72:953-964.

Kennedy O, Scholey B (2006) The psychopharmacology of European herbs with cognition-enhancing properties. Curr Pharm Des 12:4613-4623.

Kim J, Basak J, Holtzman D (2009)e role of apolipoprotein E in alzheimer’s disease. Neuron 63:287-303.

Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS, Gracon SI (1994) A thirty week randomized controlled trial of high dose tacrine in patients with Alzheimer’s diseas. J Am Med Assoc 271:985-991.

Kong CW, Tsai K, Chin JH, Chan WL, Hong CY (2000) Magnolol attenuates per oxidative damage and improves survival of rats with sepsis. Shock 12:24-28.

Koppula S, Choi D (2011) Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach. Pharm Biol 49:702-708.

Kuljis OR (2007) Advances in the understanding of pathophysiological mechanisms in Alzheimer’s disease applied to new treatment paradigm. Applied Neurol 3:1-9.

Kumar MH, Gupta YK (2002) Antioxidant property of Celastrus paniculatus willd.: a possible mechanism in enhancing cognition. Phytomedicine 9:302-211.

Lahiri DK, Farlow MR, Greig NH, Sambamurti K (2002) Current drug targets for Alzheimer’s disease treatment. Drug Develop Res 261-280.

Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199-1208.

Lee MK, Kim SR, Sung SH, Lim DY, Kim H, Choi H, Park HK, Jew SR, Kim YC (2000) Asiatic acid derivatives protect cultured cortical neurons from glutamate induced excitotoxicity. Res Commun Mol Pathol Pharmacol 108:75-86.

Lee T, Chu K, Sim Y (2008) Panax ginseng enhances cognitive performance in Alzheimer disease. Alzh Dis Assoc Disord 22:222-226.

Lee Y, Yuk D, Kim T, Nam S, Hong J (2009) Protective effect of the ethanol extract of Magnolia of ficinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J Nat Med 63:274-282.

Li Q, Weng X (2005) Antioxidant activity of Magnolia officinalis. Zhongguo Youzhi 30:37-40.

Liou KT, Shen YC, Chen CF, Taso CM, Tsai SK (2003)e anti-inf l ammatory ef f ect of honokiol on neutriprils: mechanism in the inhibition of reactive oxygen species production. Eur J Pharmacol 47:19-27.

Lo YC, Teng CM, Chen CF, Chen CC, Hong CY (1994) Mgnolol and honokiol form Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem Pharmacol 47:549-553.

Lyle N, Bhattacharyya D, Sur T, Munshi S, Paul S, Chatterjee S, Gomes A (2009) Stress modulating antioxidant ef f ect of Nardostachys jatamansi. Indian J Biochem Biophys 46:93-98.

Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays 33:74-81.

Maeda A, Tanimoto S, Abe T, Kazama S, Tanizawa H, Nomura M (2008) Chemical constituents of Myristica fragrans Houttuyn seed and their physiological activities. Yakugaku Zasshi 128:129-133.

Mahajan K, Kumar D, Kumar S (2015) Antiamnesic activity of extracts and fraction of Desmodium gangeticum. J Pharm Technol Res Manag 3:67-77.

Mahdy K, Shaker O, Wafay H (2012) Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur Rev Med Pharmacol Sci 16:31-42.

Malhotra S, Singh AP (2003) Medicinal properties of ginger (Zingiber of fi cinale Rosc.). Nat Prod Rad 2:296-301.

Malik J, Karan M, Vashist K (2011) Nootropic, anixolytic and CNS depressant studies on different plant sources of shankhpushpi. Pharm Biol 49:1234-1242.

Malve H, Raut S, Marathe P, Rege N (2014) Effect of combination of Phyllanthus emblica, Tinospora cordifolia and Ocimum sanctum on spatial learning and memory in rats. J Ayurveda Integr Med 5:209-215.

Mani V, Milind P (2007) Memory enhancing activity of Emblica of fi cinalis Gaertn: An ayurvedic preparation. Physiol Behav 91:46-54.

Masuda T, Jitoe A, Takeda Y (1997) Synthesis of cassumunin A, a potent anti-inflammatory, antioxidant from a medicinal ginger. Nat Prod Lett 39:342-348.

Mishra S, Palanivelu K (2008)e ef f ect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann Indian Acad Neurol 11:13-19.

Misra S, Medhi B (2013) Role of probiotics as memory enhancer. Indian J Pharmacol 45:311-312.

Mohan M, Kaul N, Punekar A, Girnar R, Junnare P, Patil L (2005) Nootropic activity of Moringa oleifera leaves. J Nat Remed 5:59-62.

Montejo P, Montenegro M, Fernandez M, Maestu F (2011) Subjective memory complaints in the elderly: Prevalence and influence of temporal orientation, depression and quality of life in a population-based study in the city of Madrid. Aging Ment Health 15:85-96.

Muzzafera P (1997) Mate drinking, caf f eine and phenolic acid intake. Food Chem 60:67-71.

Nahata A, Patil UK, Dixit VK (2008) Ef f ect of Convolvulus pluricaulis choisy on learning behavior and memory enhancement activity in rodents. Nat Prod Res 22:1472-1482.

Nahata A, Patil UK, Dixit VK (2010) Effect of Evolvulus alsinoides Linn. on learning behavior and memory enhancement activity in rodents. Phytother Res 24:486-493.

Nalini K, Aroor A, Karanth K, Rao A (1992) Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia 63:232-233.

Narasimhan B, Dhake S (2006) Antibacterial principles from Myristica fragrans seeds. J Med Food 9:395-399.

Obulesu M, Rao D (2011) Ef f ect of plant extracts on Alzheimer’s disease: An insight into therapeutic avenues. J Neurosci Rural Pract 2:56-61.

Ozarowski M, Mikolajczak PL, Bogacz A, Gryszczynska A, Kujawska M, Jodynis-Liebert J, Piasecka A, Napieczynska H, Szulc M, Kujawski R, Bartkowiak-Wieczorek J, Cichocka J, Bobkiewicz-Kozlowska T, Czerny B, Mrozikiewicz PM (2013) Rosmarinus of fi cinalis L. leaf extract improves memory impairment and af f ects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 91:261-271.

Pakade V, Cukrowska E, Chimuka L (2013) Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. S Afr J Sci 109:1-5.

Parle M, Dhingra D, Kulkarni S (2004) Improvement of mouse memory by Myristica fragrans seeds. J Med Food 7:157-1661.

Pimplikar S (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261-1268.

Pramodinee D, Mahesh M, Niranjan D, Sankpala S (2011) Memory enhancing activity of Cissampelos papiera in mice. Int J Pharm Sci 3:206-211.

Raja S, Hoyer G (2004) Statins, much more than just a lipid lowering therapy. Indian Heart J 56:204-209.

Ramachandran S, Sanjay S, Dhanaraju M (2013) Antiamnesic ef f ect of Piracetam potentiated with Emblica of fi cinalis and Curcuma longa in aluminium induced neurotoxicity of Alzheimer’s disease. Inter J Adv Res 1:185-196.

Rao MK, Rao MS, Rao GS (2007) Treatment with Centalla asiatica (Linn) fresh leaf extract enhances learning ability and memory retention power in Wistar rats. Neurosciences (Riyadh) 12:236-241.

Reddy N, Rajasekhar R (2015) Tinospora cordifolia chemical constituents and medicinal properties: a review. Sch Acad J Pharm 4:364-369.

Reinke A, Gestwicki J (2007) Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: inf l uence of linker length and fl exibility. Chem Biol Drug Des 70:206-215.

Rekha S, Parvathi A (2012) Evaluation of phytochemical constituents of the roots of Licorice, Indian ginseng, Indian madder and Indian Sarasaparilla. Biochemistry 3:357-361.

Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J (2002) Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 27:279-281.

Rubio J, Qiong W, Liu X, Jiang Z, Dang H, Chen S, Gonzales F (2011) Aqueous extract of black maca (Lepidium meyenii) on memory impairment induced by ovariectomy in mice. Evid Based Complement Alternat Med 2:1-5.

Rui S, Marcelo S, Sandro W (2008) Ef f ects of acute administration of hydroalcoholic extract of mate tea leaves (Ilex Paraguariensis) in animal models of learning and memory. J Ethnopharmacol 120:465-473.

Russo A, Borrelli F (2005) Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 12:305-317.

Saxena V, Ahmad H, Gupta R (2013) Memory enhancing ef f ects of Ficus carica leaves in hexane extract on interoceptive behavioral models. Asian J Pharm Clin Res 6:109-113.

Schliebs R, Liebmann A, Bhattacharya S, Kumar A, Ghosal S (1997) Systemic administration of def i ned extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially af f ects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 30:181-190.

Schneider L (2000) A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer’s disease. Dialogues Clin Neurosci 2:111-128.

Sethiya NK, Nahata A, Mishra SH, Dixit VK (2009) An update on Shankhpushpi, a cognitive boosting Ayurvedic medicine. Zhong Xi Yi Jie He Xue Bao 7:1001-1022.

Sharma K, Bhatnagar M, Kulkarni SK (2010) Effect of Convolvulus pluricaulis choisy and Asparagus racemosus willd on learning and memory in young and old mice: a comparative evaluation. Indian J Exp Biol 48:479-485.

Shi C, Liu J, Wu F, Yew D (2010) Ginkgo biloba extract in Alzheimer’s disease: From action mechanisms to medical practice. Int J Mol Sci 11:107-123.

Shytle RD, Bickford PC, Rezai-zadeh K, Hou L, Zeng J, Tan J, Sanberg PR, Sanberg CD, Roschek B Jr, Fink RC, Alberte RS (2009) Optimized turmeric extracts have potent anti-amyloidogenic ef f ects. Curr Alzheimer Res 6:564-571.

Siddiqui B, Aslam H, Ali ST, Khan S, Begum S (2007) Chemical constituents of Centella asiatica. J Asian Nat Prod Res 9:407-414.

Singh S (2012) Phytochemical analysis of leaf callus of Bacopa monnieri L. Int J Sci Res Pub 2:1-3.

Soni KB, Kuttan R (1992) Ef f ect of oral curcumin administration on serum peroxides and cholesterol in human volunteers. Indian J Physiol 36:273-275.

Squire R (1992) Memory and the hippocampus: a synthesis from fi ndings with rats, monkeys, and humans. Psychol Rev 99:195-231.

Taiwo A, Leite F, Lucena G, Barros M, Silveira D, Silva M, Ferreira V (2012) Anxiolytic and antidepressant-like ef f ects of Melissa of fi cinalis (lemon balm) extract in rats: Inf l uence of administration and gender. Indian J Pharmacol 44:189-192.

Tan M, Yu J, Tan C, Wang H, Meng X, Wang C, Jiang T, Zhu X, Tan L (2015) Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis 43:589-603.

Tang Y (2003) Genetic studies in Alzheimer’s disease. Dialogues Clin Neurosci 5:17-26.

Tokuda T, Calero M, Matsubara E, Vidal R, Kumar A, Permanne B (2000) Lipidation of apolipoprotein E inf l uences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem J 14:359-365.

Tomoharu K, Chihiro T, Katsuko K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A, B. J Pharmacol 144:961-971.

Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K (2010) Cognitive enhancement and neuroprotective ef f ects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 127:26-31.

Vasudevan M, Milind P (2009) Memory enhancing activity of Coriandrum sativum in rats. J Pharmacol 2:827-839.

Veerendra K, Gupta Y (2003) Ef f ect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 30:336-342.

Walesiuk A, Braszko JJ (2009) Preventive action of Ginkgo biloba in stress- and corticosterone-induced impairment of spatial memory in rats. Phytomedicine 16:40-46.

Wang JP, Ho TF, Chang LC, Chen CC (1995) Anti-inf l ammatory and analgesic ef f ects of magnolol, isolated from Magnolia of ficinalis, on A23187 induced pleuricy in mice. J Pharm Pharmacol 47:857-860.

Wang JP, Hsu MF, Raung SL, Chen CC, Kuo JS, Teng CM (1992) Anti-inf l ammatory and analgesic ef f ects of magnolol. Naunyn-Schmiedebergs Arch Pharmacol 346:707-712.

Wang R, Yan H, Tang X (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 1:1-26.

Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW (1994) Hepatotoxic ef f ects of tacrine administration in patients with Alzheimer’s disease. J Am Med Assoc 271:992-998.

Wesnes K, Ward T, McGinty A (2000)e memory enhancing ef f ects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. J Psychopharmacol 152:353-361.

Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J (2004) Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 21:453-478.

Xu H, Liu Z, Liu Y (2009) Administration of midazolam in infancy does not af f ect learning and memory of adult mice. Clin Exp Pharmacol Physiol 36:1144-1148.

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS (2005) Curcumin inhibits formation of amyloid beta oligomers and fi brils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892-5901.

Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease.er Adv Neurol Disord 6:19-33.

Copyedited by Li CH, Song LP, Zhao M

*< class="emphasis_italic">Correspondence to: Muhammad Akram, M.D., Ph.D., makram_0451@yahoo.com; makram_0451@hotmail.com.

Muhammad Akram, M.D., Ph.D., makram_0451@yahoo.com; makram_0451@hotmail.com.

#Tese authors contributed equally to this study.

orcid: 0000-0001-7863-8803 (Muhammad Akram)

10.4103/1673-5374.205108

Accepted: 2017-03-29