地源热泵系统运行参数及土壤温度变化特性分析
2017-01-07张占辉王恩宇陈宇朴齐承英
张占辉,王恩宇,耿 磊,陈宇朴,齐承英
(河北工业大学 能源与环境工程学院,天津 300401)
地源热泵系统运行参数及土壤温度变化特性分析
张占辉,王恩宇,耿 磊,陈宇朴,齐承英
(河北工业大学 能源与环境工程学院,天津 300401)
以天津某办公楼地源热泵系统为研究对象,通过采集土壤温度、地源侧取热量、负荷侧供热量、机组耗电量、水泵耗电量等实测的数据,初步分析了热泵设定温度(ST),水泵频率(PF)等因素对于土壤温度、机组性能系数(COP)及系统性能系数的影响.结果表明,在满足室内热负荷的前提下,当热泵设定温度从42℃降低至40℃范围内,每降低1℃,可以减小地下取热量7.80%,系统性能系数提升3.66%;当水泵频率从40Hz降低至30Hz范围内,每降低5Hz,可以减小地下取热量7.72%,系统性能系数提升2.64%.对于热负荷占优的公共建筑,可以通过调节地源热泵机组的设定温度或循环水泵频率,来促使土壤温度向着有利于机组高效运行的方向改变,并保证系统的长期可靠运行.
地源热泵;土壤温度;热泵设定温度;水泵频率;性能系数
0 引言
地源热泵作为一项高效节能、绿色环保型的空调技术,在国内得到了广泛的应用.地下土壤作为取热和排热的场所,其温度场直接影响机组的能耗和系统性能指标,因此地源热泵在实际运行中,地下土壤温度场一直是国内外学者关注的焦点[1-4].地源热泵系统一旦建成,其地埋管形式、地下热湿迁移、土壤的导热系数等对土壤温度场的影响就不能改变.对土壤温度有重要影响的因素主要取决于全年累积冷热负荷[5-6],土壤温度场的平衡在一定程度上取决于地下排热量和取热量的相对平衡[7].为了缓解土壤的热失衡问题,对冷负荷占优的建筑常采用热回收、辅助冷却塔等技术将多余的冷凝热合理利用或者直接排入大气[8-9];而对于热负荷占优的建筑采用太阳能作为辅助热源,既可以弥补地源热泵地下取排热不平衡问题,又可以加大可再生能源在建筑中的利用[10-11].在地源热泵系统实际运行管理中,采用可控间歇运行方式,有利于埋管周围土壤温度快速恢复,有效提高浅层地热能利用率[12-15].但是如何控制系统的间歇运行及运行参数设定与调节问题,鲜有文献给出实验研究结果.本文将对热负荷占优的公共建筑,在地源热泵实际运行中通过调节设定温度和水泵频率来合理的减少地下取热量,实时控制土壤温度的变化,以期获得比较高的系统性能.为保证地源热泵系统高效及长期稳定运行提供指导.
1 项目概况
本项目为河北工业大学北辰校区节能楼,建筑面积为4 953.4m2,建筑高度22m,地上4层,朝向为南北向且偏东21°.该空调系统为太阳能—地源热泵系统,在设计时将第4层的热负荷由太阳能辅助地源热泵系统(SAGSHPS)来承担,1~3层热负荷由地源热泵机组(GSHPS)来承担;而夏季冷负荷全部由地源热泵机组来承担[10].地源热泵系统由一台螺杆式地源热泵机组、地源侧和负荷侧循环水泵、地埋管换热器以及定压装置和水处理装置组成[16].为更加全面地掌握地源热泵系统的运行性能,在地源热泵地源侧和负荷侧各装一块CRL-G型超声热量表.热量表数据通过无线远程传输到空调系统数据采集中心服务器上,数据采集时间间隔为10 m in,数据采集包括:累计热量、累计流量、供/回水温度和瞬时流量.地源侧和末端侧循环水泵均为变频泵,可实现25~50Hz变频.机组耗电量和水泵耗电量由多功能电力仪表测得,电量表数据通过Siemens数据采集模块采集并自动保存到数据采集室的PC机上.
地埋管换热器由66口120 m深的换热孔组成.根据地质勘查结果,本项目的地埋管热交换器周围的岩土以粉质粘土、粉土和部分细砂为主.热响应测试结果得出,其导热系数为1.46W/m℃,120m范围内土壤的初始平均温度为14.1℃[10].为监测地源热泵系统土壤温度的变化,在地埋管换热器管壁上绑定热电阻传感器,其位置如图1中黑色圆点所示.热电阻传感器型号为Pt1000,测温精度为0.1℃.由于在土壤中热量的传递是持续而缓慢的,为了获得土壤温度的真实变化规律,减少换热过程对温度的影响,此外还布置了2个测温孔,如图1中M 1#、M 2#所示[7].由于钻孔的困难,测温孔相邻管群间距拉大到6m.
图1 地埋管热交换器的换热孔和测温孔相对布置图Fig.1 Distribution of bores forheatexchangeand thermometerof ground heatexchanger
2 热泵设定温度的影响分析
为了研究热泵设定温度(ST)对土壤温度以及系统性能系数的影响.试验测试时尽量选取了室外环境相近、水泵频率、供热前土壤温度一定的情况下,具体参数设置如表1,其中室外温度指运行时间段内的平均温度,辐照量是指全天的总辐照量.
表1 热泵设定温度试验时的参数设置及室外环境Tab.1 Operation parametersand outdoorenvironment in various setting temperaturesexperiments
2.1 性能变化
从图2可以看出,随着热泵设定温度的升高,室内供热量、地下取热量均随之增多.这是由于在末端侧水泵频率不变的情况下,热泵设定温度升高,冷凝器出口水温升高,导致末端风机盘管的进水温度升高,风机盘管的换热水管与室内换热空气的温差t增大.由于室内的供热量Q与温差t成正比,即
由图2也可以看出,随着热泵设定温度的升高,系统总的能耗增大.在地源泵、末端泵频率(30Hz)均不变的情况下,起决定性作用的是机组的耗电量,机组的耗电量随着热泵设定温度的升高而增大.这是由于热泵设定温度升高,冷媒的冷凝温度升高,由逆卡诺循环可知,压缩机的耗电量增大.机组耗电占系统总耗电的百分比会随着热泵设定温度的不同而不同.当不考虑末端风机盘管的耗电时,系统总耗电等于地源泵耗电、末端泵耗电和机组耗电3项之和.试验测试结果分析得出,在3种设定温度下机组耗电占系统总耗电的百分比分别为 91.95%、92.74%、93.12%.可见,机组耗电所占的比重是很大的,机组耗电对系统耗电的影响至关重要.试验测试结果表明,热泵设定温度为40℃、41℃和42℃时,系统总耗电分别为471.5 kW h、547.7 kW h和603.5 kW h.热泵设定温度从42℃变为40℃的过程中,每降低1℃,可以降低13.17%的耗电量.
图2 不同热泵设定温度下取热量、供热量和耗电量比较Fig.2 Comparison of heatextraction,heatsupply and power consumption under differentST
由图3可知,在相同的热泵设定温度下,由于持续向地下取热,换热区域土壤温度逐渐下降,导致机组(或系统)COP降低;总的看来,随着热泵设定温度的升高,机组(或系统)COP减小,对应设定温度为40℃、41℃和42℃,机组COP分别为3.85、3.68和3.55;系统COP分别为3.54、3.41 和3.30.由此可见,随着设定温度的提高,机组耗电量的增加幅度要比供热量增加的幅度要大.试验工况下,热泵设定温度每降低1℃,机组性能系数提升4.48%,系统性能系数提升3.66%.
图3 不同热泵设定温度下逐时COP变化曲线Fig.3 Curvesof hourly COPunder differentST
2.2 土壤温度场分析
换热孔管壁处的温度传感器所测的温度波动大,在实际运行中换热区域(地埋管换热器管壁周围)的温度变化与GSHPS的运行工况有直接的联系,土壤温度随着流体的换热而迅速降低,换热结束后又迅速升高,主要反映短期的土壤温度变化.由于土壤中热量的传递是持续而缓慢的,测温孔的土壤温度没有大的波动,与孔间距和热导率等因素有关,主要反映了中长期土壤温度的变化情况.
从图4可以看出,3种设定温度工况下,供热前换热区域土壤温度几乎相同,土壤温度变化趋势相同,但设定温度越高,GSHPS换热区域温度在每1天的变化幅度越大.在热泵设定温度40℃时,取热结束时土壤温度下降1.59℃.在热泵设定温度41℃时,换热区域土壤温度下降1.65℃,比前1天幅度增加0.06℃;在热泵设定温度42℃时,换热区域土壤温度下降1.68℃,比前1天幅度增加0.03℃.该结果与前面所述随设定温度增大土壤取热量增加的结果一致.从房间温度来看,当设定温度为40℃时,空调房间温度能维持在20℃左右,设定温度超过40℃时,房间温度可达到更高.因此在能满足室内热负荷的前提下,在地源热泵实际运行时,管理者合理的降低热泵设定温度,可以减少向地下的取热量,减缓土壤温度的下降幅度,并能提高机组和系统的运行能效.
图4 不同热泵设定温度下GSHPS逐时土壤温度、房间温度变化曲线Fig.4 Curvesof hourly soil temperatureand room temperatureof GSHPSunder differentST
3 水泵频率的影响分析
在进行水泵频率(PF)对土壤温度以及系统性能系数的影响研究时,尽量选取了室外环境相近、机组启停比、热泵设定温度、供热前土壤温度一定的情况,具体参数设置如表2.
表2 水泵频率试验时的参数设置及室外环境Tab.2 Operation parametersand outdoorenvironment in various pump frequency experiments
3.1 性能变化
由图5可知,随着水泵频率的升高,向室内供热量、地下取热量均随之增多.水泵流量与频率成正比关系,所以,水泵频率越高,流量越大.在热泵设定温度(40℃)不变的情况下,末端循环流量增大,末端风机盘管与室内空气的传热系数K增大.室内的换热量Q与传热系数K成正比,即
式中:F为末端风机盘管换热面积,m2;tm为风机盘管内热水与室内空气换热的平均温差,℃.所以,室内换热量随着末端泵频率的增大而增加.同样地,蒸发器侧向地下取热量也随着地源泵频率的增大而增加.水泵频率分别为40 Hz、35 Hz和30Hz时,取热量分别为1 450 kW h、1 320 kW h和1 250 kW h.水泵频率每降低5Hz,可以减小向地下取热7.72%.
由图5可知,随着水泵频率的升高,系统总的能耗增大.由水泵的相似定律可知,水泵流量与耗电功率成三次方关系,所以随着水泵频率的升高,耗电功率急剧升高.水泵的耗电量占比分别为8.56%、13.12%、19.42%,水泵的耗电量随着水泵的频率升高而所占的比重明显增大.系统总的能耗分别为522.7 kW h、559.6 kW h、627.2 kW h.水泵频率每降低5Hz,可以降低9.58%的耗电量.
图5 不同水泵频率下取热量、供热量和耗电量比较Fig.5 Comparison ofheatextraction,heatsupply and powerconsumption under differentPF
由图6可以看出,在相同的水泵频率下,由于持续向地下取热,换热区域土壤温度逐渐下降,导致机组(或系统)COP降低;总的看来,随着水泵频率的升高,机组COP增大,而系统COP减小.这是由于在热泵设定温度不变的情况下,机组的耗电量相对变化不大,末端供热量随着水泵频率的升高而增大,所以导致机组COP增大;但是水泵的耗电量随着水泵频率的升高而急剧增大,导致系统COP减小.当水泵频率为40Hz、35Hz和30Hz时,机组COP分别为3.64、3.55和3.49,系统 COP分别为3.04、3.13和3.21.水泵频率每降低5 Hz,机组COP降低2.12%,但是系统COP提升2.64%.
3.2 土壤温度场分析
水泵频率试验的典型土壤温度变化与热泵设定温度试验的结果相类似,其结果如图7所示.3个试验工况下,开始试验时的换热区域土壤温度基本相同,约为13.55℃.这是由于地源热泵系统的运行不是连续的,当天21:30至转天7:30期间,热泵机组不运行,由于土壤具有的温度恢复能力,当前1天的取热量比地温恢复能力小时,土壤温度可以恢复到原来的水平上[17].
图6 不同泵频下逐时COP变化曲线Fig.6 Curvesof hourly COPunder differentPF
换热区域土壤温度在1 d内的变化幅度随着水泵频率设定值的增大而增大.GSHPS水泵频率为30Hz时,经过取热后土壤温度下降1.53℃;当GSHPS水泵频率升高到35Hz时,地源侧流量增大,地下取热量增大,经过取热后土壤温度下降1.58℃;比前1天幅度增大0.05℃;当GSHPS水泵频率升高到40Hz时,土壤温度下降更加严重,最终换热区域温度下降1.67℃,比前1天幅度扩大0.09℃.可见水泵频率越大,土壤温度下降幅度越大.
从图7同时看出,在水泵频率为30Hz时,室内温度可以达到20℃左右,随着水泵频率设定值的增大,室内温度可达到更高水平.所以在满足室内负荷的情况下,在地源热泵实际运行时,管理者合理的降低水泵频率,可以减少向地下的取热量,减缓土壤温度的下降幅度,并能提高系统运行性能系数.从试验测试结果来看,水泵频率从40 Hz变为30 Hz的工况下,每降低5 Hz,可以减小向地下取热7.72%,降低9.58%的耗电量,系统性能系数提升2.64%.
图7 不同泵频下GSHPS逐时土壤温度、房间温度变化曲线Fig.7 Curvesof hourly soil temperatureand room temperatureof GSHPSunder differentPF
4 结论
通过进行设定温度和水泵频率试验测试,获得了热泵设定温度及水泵频率对土壤温度场及机组(或系统)COP的影响关系,得出结论如下:
1)在满足室内热负荷的前提下,合理降低热泵的设定温度,有助于土壤温度的下降幅度减缓,系统性能系数升高.对本文所研究的系统来说,当热泵设定温度从42℃降低至40℃范围内,每降低1℃可以减小从地下取热7.80%,降低13.17%的耗电量,机组性能系数提升4.48%,系统性能系数提升3.66%.
2)随着水泵频率的升高,土壤温度下降幅度增大.在满足室内热负荷的情况下,应该尽量降低水泵频率,减缓土壤温度的下降幅度;水泵频率降低会使机组性能系数降低,但是系统性能系数会升高,因此应在兼顾土壤温度和机组性能系数的条件下,选择合适的水泵频率.对本文所研究的系统来说,水泵频率从40 Hz变为30 Hz的工况下,每降低5 Hz,可以减小地下取热7.72%,降低9.58%的耗电量,系统性能系数提升2.64%.
3)本文所述的地源热泵系统,在试验环境条件下,设定热泵设定温度为40℃,末端和地源侧水泵频率为30Hz时,可以达到室内温度要求,系统运行性能系数可达到3.2以上.
[1]K jellsson E,Hellström G,PerersB.Optimizationofsystemsw ith thecombinationofground-sourceheatpump and solarcollectorsin dwellings[J].Energy,2010,35(6):2667-2673.
[2]LiX,Chen Z,Zhao J.Simulation and experimenton the thermalperformanceof U-verticalground coupled heatexchanger[J].Applied Thermal Engineering,2006,26(S14-15):1564-1571.
[3]Stevens JW.Coupled conductionand interm ittentconvectiveheattransfer from aburied pipe[J].HeatTransferEngineering,2002,23(4):342-343.
[4]李钰楠,杜震宇,姜振涛.寒冷地区埋管式地源热泵系统热平衡分析 [J].可再生能源,2015,33(11):1679-1684.
[5]于玮,樊玉杰,方肇洪.负荷特性对地埋管换热器性能的影响 [J].暖通空调,2008,38(8):73-77.
[6]王勇,付祥钊.影响地源热泵系统性能的负荷特性与特征参数 [J].暖通空调,2008,38(5):48-51.
[7]陆游,王恩宇,杨久顺,等.地源热泵系统土壤温度变化的影响因素分析 [J].河北工业大学学报,2015,44(1):66-72.
[8]杨燕,翟晓强,余鑫,等.地源热泵空调系统热平衡及土壤温度分布实验研究 [J].工程热物理学报,2011,32(11):1819-1822.
[9]李恺渊,王景刚.冷却塔辅助冷却地源热泵技术经济分析 [J].建筑节能,2017,35(191):58-61.
[10]Wang E,Fung A S,QiC,etal.Performancepredictionofahybrid solarground-sourceheatpump system[J].Energy and Building,2012,47:600-611.
[11]Ozgener O,HepbasliA.A review on theenergy and exergy analysisof solar assisted heatpump systems[J].Renewable and Sustainable Energy Reviews,2007,11(5):482-496.
[12]尚妍,李素芬,代兰花.地源热泵间歇运行地温变化特性及恢复特性研究 [J].大连理工大学学报,2012,52(3):350-357.
[13]董艳芳,王磊,曾召田,等.连续与间歇运行工况下地埋管换热器的换热特性研究 [J].可再生能源,2014,32(11):1687-1693.
[14]茅靳丰,李超峰,李永,等.地埋管换热系统中土壤温度恢复特性分析 [J].暖通空调,2015,45(11):86-90.
[15]杨卫波,施明恒,陈振乾.非连续运行工况下垂直地埋管换热器的换热特性 [J].东南大学学报,2013,43(2):328-333.
[16]王玉凤.一种太阳能—地源热泵联合供热空调系统的性能测试及长期运行预测 [D].天津:河北工业大学,2012.
[17]王恩宇,齐承英,杨华,等.太阳能跨季节储热供热系统试验分析 [J].太阳能学报,2010,31(3):357-361.
[责任编辑 田 丰]
Analysison operation parametersand soil temperature variation characteristicsofground-sourceheatpump system
ZHANG Zhanhui,WANG Enyu,GENG Lei,CHEN Yupu,QIChengying
(Schoolof Energy and Environmental Engineering,HebeiUniversity of Technology,Tianjin 300401,China)
This paper analyzes themeasured data such as soil temperature,heatextraction of ground source side,heat supply of load side,powerconsumption ofheatpump unitand powerconsumptionofpumpsofaground-sourceheatpump system(GSHPS)for a business building in Tianjin.The influence of setting temperature(ST)and pump frequency (PF)on the soil temperatureand coefficientof performance(COP)ofheatpump unitorsystem are studied.The results show that theheatextraction ofground source side reduces7.80%w ith 1℃reduction of ST in the caseofmeeting the indoor heat load as ST changes from 42℃to 40℃,and the COPof system increases 3.66%at the same time.Sim ilarly, the heatextraction of ground source side reduces 7.72%w ith 5 Hz of PF,as PF changes from 40 Hz to 30 Hz;and the COP of GSHPS increases 2.64%simultaneously.For the heating-dom inated building,a suitable operation strategy to adjust ST of the ground source heatpump unitand PF of the circulating pump canmake the soil temperature vary in the direction ofhigh efficiency and ensure long-term reliable operation of the system.
ground-sourceheatpump;soil temperature;setting temperatureofheatpump;pump frequency;coefficient of performance
TK51;TK52
A
1007-2373(2016)04-0068-07
10.14081/j.cnki.hgdxb.2016.04.011
2016-05-30
河北省自然科学基金(E2013202122);教育部留学回国人员科研启动基金(2013);天津市科技计划项目(14TXGCCX00010)
张占辉(1988-),男(汉族),硕士生.
王恩宇(1970-),男(汉族),教授,博士,wey@hebut.edu.cn.