APP下载

盐阳离子类型及浓度对土壤持水及干缩开裂的作用效果

2016-12-19邢旭光马孝义康端刚

农业工程学报 2016年9期
关键词:吸力裂隙含水率

邢旭光,马孝义,康端刚

(1. 西北农林科技大学水利与建筑工程学院,杨凌 712100;2. 西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100)

盐阳离子类型及浓度对土壤持水及干缩开裂的作用效果

邢旭光,马孝义※,康端刚

(1. 西北农林科技大学水利与建筑工程学院,杨凌 712100;2. 西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100)

为探索阳性盐离子对土壤持水性能的影响,同时定量分析失水过程所致的土体收缩及裂缝特征,选取陕西粉黏壤土作为供试土壤,分别采用含有K+、Na+、Ca2+和Mg2+4种离子的盐溶液(浓度均为5、30和100 g/L)对土样进行饱和处理,采用离心机法测定土-水曲线,进一步对土壤持水能力进行评价;同时测定土体沉降高度,采用数字图像处理技术获取面积密度和长度密度等裂隙度量指标,对土体收缩和开裂水平进行定量分析。结果发现:1)van Genuchten模型适用于盐溶液浸泡土壤的土-水曲线拟合;2)4种盐离子均基本导致土壤持水能力降低(5 g/L Na+除外),且持水性与离子浓度呈负相关关系;同时使得土壤饱和含水率、残余含水率和进气吸力降低,其中土壤饱和含水率与离子浓度呈负相关关系;3)K+和高浓度Na+有利于减轻土壤轴向收缩度,且土体轴向收缩应变与K+(P<0.01)和Na+(P<0.05)浓度呈负相关关系;在收缩过程中,不同离子对土壤容重的影响程度表现为Mg2+>Ca2+>Na+>K+;4)4种离子均可减轻土壤开裂程度,且裂缝面积密度和长度密度与K+(P<0.01)、Na+(P<0.01)和Ca2+(P<0.05)浓度呈负相关关系,与Mg2+浓度呈正相关关系(P<0.01)。研究可为盐碱土壤持水能力评价、制定灌溉制度提供参考。

土壤;水分;盐分;土壤持水;干缩裂缝;盐离子

0 引言

土壤孔隙大小及其分布特征评价对于分析土壤中水分的保持和运动、植物根系的发育和生长等方面均具有重要作用,土壤持水性和保水性又是确定田间灌溉方式(例如低频多灌、高频少灌)的重要依据[1-2];然而这些均可以从土壤水分特征曲线(以下简述“土-水曲线”)获知,它是研究土壤水分运动和溶质运移特性等问题的基础[3-4]。目前已有较多关于土-水曲线拟合[5-6]、影响因素[7-8]与应用[9]以及水力参数推求与优化[10-11]等方面的研究,但多是基于土壤水为淡水或非盐碱土开展的。然而在极端干旱且地下水埋深较浅地区,地下水矿化度通常较高,可达到(n×10)g/L甚至高达(n×100)g/L[12],关于盐碱土壤的土-水曲线测定和水力参数的研究较少。中国盐碱地面积广阔,盐渍化土中的可溶性盐类常以盐基形式存在,并以K+、Na+、Ca2+、Mg2+最为常见,盐基离子浓度过高对土壤本身及作物均会产生较大危害[13],而有关不同盐离子对土壤土-水曲线和土壤水分特征参数影响的研究鲜有报道。明晰盐离子对土壤持水能力的影响,将有利于根据盐碱地类型同时结合作物生长特性因地制宜地制定灌溉制度以及确定洗盐方式。

农田土壤具有干缩湿胀特性,在极端干旱和降雨分配不均匀地区,常常因为阳光暴晒或土壤干湿交替而导致农田出现裂缝[14]。农田土壤干缩裂缝的产生对土壤结构及入渗性能具有显著影响,极易造成土壤水分和养分迁移特性发生改变,从而导致养分流失以及地下水位升高[15];在盐碱土地区,则更易发生地下水污染和作物根系发育不良等问题[16]。以往的研究中,张卫国等[17]、Lima 等[18]和Pauchard等[19]均展开了土壤盐分对裂缝特征影响的研究,但主要集中于总含盐量的影响,忽略了不同盐离子各自产生的效应。对不同盐离子所致的土壤开裂特征及裂缝形成规律进行研究,对提升盐碱土干缩开裂特性的认知水平具有重要作用,可进一步认识盐碱土的干缩开裂机理并为盐碱地区的农田灌溉和工程实践(例如防治土壤和地下水污染)提供指导。

在已有研究成果基础上,扩展不同阳性盐离子及浓度对土壤持水和收缩特性影响的研究。本研究将分别采用含有K+、Na+、Ca2+、Mg2+的盐溶液对土样进行饱和处理:1)采用离心机法测定土-水曲线,进而对土壤持水能力进行评价;2)利用RETC软件进行水力参数拟合,探讨4种离子对曲线参数的影响;3)采用线缩率和轴向收缩应变对失水过程中土体收缩特征进行定量分析;4)采用土壤裂缝面积密度和裂缝长度密度对土壤开裂水平进行评价。据此探索K+、Na+、Ca2+和Mg2+对土壤持水能力、土壤水力参数、土体收缩特性以及开裂程度的影响。

1 材料与方法

1.1 供试材料

供试土壤取自当地农田耕作层,采集深度为30 cm;土壤经风干、过2 mm筛后,采用激光粒度仪(Mastersizer-2000型,英国)测定土壤颗粒组成:粒径<0.002、≥0.002~0.02和≥0.02~2 mm的土壤颗粒质量分数分别为17.28%、44.32%和38.40%,按国际制土壤分类方法,土壤类型为粉黏壤土;主要黏土矿物为蒙脱石;初始土样分别仅含有K+和Mg2+为9.80和9.28 μg/mL。

为研究K+、Na+、Ca2+和Mg2+对土壤水分特征曲线及土壤收缩特性的影响,选取氯化钾、氯化钠、氯化钙和氯化镁4种晶体/粉末分别溶于蒸馏水中,并分别配制成不同浓度盐溶液对土样进行浸泡。

1.2 试验设计与方法

田间实测容重为1.38~1.40 g/cm3,据此设置试验土壤干容重为1.40 g/cm3;将已风干且过筛土壤按设定容重装入环刀内。将4种试剂按照咸水、盐水和卤水标准,各配制成5、30和100 g/L(分别记作Na-5、Na-30、Na-100,其余类似),无溶质添加溶液(浓度≈0,视为淡水)作为对照组(CK)。试验开始前将环刀样品置于配制好的溶液中进行饱和处理48 h;试验结束后置于105℃恒温箱内干燥至恒质量,以计算土壤含水率。各处理均4次重复(离心机每次测4个样品),取其均值作为结果。本试验中土体失水是由离心所致,并非自然蒸发,故无需设置自然风干试验,而以蒸馏水浸泡处理作为对照即可。

将饱和环刀样品置于高速恒温冷冻离心机(CR21GⅡ型,日本)内测定土壤水分特征曲线,离心机内恒温4℃,吸力范围为10~7 000 cm,随着吸力增加,离心过程的时间也随之增加,本试验选定的吸力为10、50、100、300、500、700、1 000、3 000、5 000和7 000 cm,对应的平衡时间分别为10、17、26、42、49、53、58、73、81和85 min,对应的当量孔径d分别为0.3、0.06、0.03、0.01、0.006、0.0043、0.003、0.001、0.0006和0.0004 mm;每达到平衡时间后,用电子天平称取土样质量、用游标卡尺测定环刀内土样沉降高度,进而计算土体形变量以及土壤容重和收缩情况;试验结束时,用数码相机拍摄环刀截面图像。

1.3 分析方法

1.3.1 土-水曲线van Genuchten拟合模型

式中θ为体积含水率,cm3/cm3;θs为饱和体积含水率,cm3/cm3;θr为残余体积含水率,cm3/cm3;s为吸力,cm;α为进气吸力的倒数(即α=1/sa,sa为进气吸力);m和n为形状系数。

1.3.2 土体收缩应变

随着离心机吸力增加,土样持续发生失水现象,并伴随土体高度减小,即发生轴向收缩。采用线缩率和轴向收缩应变2个指标对土壤收缩特征进行定量分析,分别按式(2)、式(3)计算。

式中δsl为土体线缩率,%;δs为土体轴向收缩应变,%;zi为各吸力对应的土壤收缩量,mm;H为土样初始高度,mm;Δh为土壤脱水始末状态高度差,mm。

1.3.3 土体裂缝观测与处理

试验结束时用数码相机拍摄样品截面图像,将相机置于固定支架以保证拍摄高度相同,且拍摄时仅用日光灯照明以排除外界光源或闪光灯对土壤裂缝图像的影响;用MATLAB软件对图像中的裂缝参数进行提取。

在原有的数字图像中,裂缝区域图像较无裂缝区域色彩黑且纯度高,鉴于饱和度分量图可以更明显地凸显土壤裂缝,因此将原有的三原色图像(即RGB图像,R:red,红色;G:green,绿色;B:blue,蓝色)进行彩色空间转换(即HSI转换,H:hue,色彩;S:saturation,饱和度;I:intensity,强度),提取饱和度分量图并采用全局阈值法得到土壤裂缝的二值化图。在此基础上,为了尽量保留原始的短小裂缝,利用膨胀腐蚀方法对短小裂缝进行适当连接,并去除该图像中的孤立单点和杂点。最后根据处理后的土壤裂缝二值化图像提取裂缝面积密度和裂缝长度密度参数。

2 结果与分析

2.1 盐离子对土壤持水能力的影响

不同离子类型及浓度条件土壤水分特征曲线形态一致,在土壤脱水过程中均表现为含水率随吸力增加而减小的趋势,且在较低吸力段(s<1 000 cm)含水率变化显著,而在较高吸力段(s≥1 000~7 000 cm)含水率变化不显著。从图1可以看出,对于各盐离子处理,在相同吸力条件下,土壤含水率均表现为随浓度增加而降低,且基本都较CK小,表明盐溶液浸泡处理的土壤对水分的吸持能力弱于蒸馏水浸泡处理的土壤,且盐溶液浓度越高则土壤持水性越弱。

对于K+溶液浸泡处理:在吸力>10~7 000 cm,即当量孔径>0.0004~0.3 mm范围内,K-5与CK处理土-水曲线基本重合,由此可知,此浓度并未明显改变土壤孔隙结构;K-30和K-100处理土壤含水率比CK分别降低3.39%~9.13%(均值6.84%)和10.82%~29.47%(均值21.42%),土壤持水能力明显减弱。对于Na+溶液浸泡处理:Na-30 和Na-100处理土壤含水率比CK分别降低9.53%~18.28%(均值14.25%)和15.66%~36.97%(均值26.35%),显著降低了土壤持水能力;而对于Na-5处理,当吸力大于100 cm时,土壤持水能力有所增强。对于Ca2+溶液浸泡处理:在吸力>10~7 000 cm,即当量孔径>0.0004~0.3 mm范围内,Ca-5、Ca-30和Ca-100处理土壤含水率比CK分别降低6.05%~11.11%(均值8.15%)、9.30%~16.35%(均值12.81%)和14.46%~44.59%(均值29.26%)。由此可知,此3种Ca2+浓度均易导致土壤中孔隙数量增加或孔隙体积增大,从而使得土壤持水能力减弱。对于Mg2+溶液浸泡处理:3种处理土-水曲线近似重合,Mg-5、Mg-30和Mg-100处理土壤含水率相差不大,比CK分别降低3.07%~7.96%(均值4.65%)、5.38%~10.34%(均值6.71%)和1.90%~8.14%(均值5.85%)。由此可知,此3种Mg2+浓度均易导致土壤持水性减弱,但对土壤孔隙结构的改变不显著,这与其余3种离子不同。

2.2 盐离子对土-水曲线模型参数的影响

采用RETC软件对各处理土-水曲线进行拟合从而获得水力参数,由表1可知,土壤含水率实测值与拟合值相差较小,VG模型拟合决定系数R2均大于0.99。表明各处理的土-水曲线拟合效果良好,均满足精度要求,可知VG模型适用于K+、Na+、Ca2+和Mg2+溶液浸泡土壤的土-水曲线拟合。

图1 不同阳性盐离子浓度下土壤水分特征曲线Fig.1 Soil water characteristic curves for different salt cation treatments

表1 van Genuchten模型水力参数拟合值Table 1 Fitted values of hydraulic parameters based on van Genuchten model

盐溶液浸泡处理过的土样的饱和含水率(θs)基本均低于蒸馏水浸泡处理,可知对土壤进行盐溶液饱和处理在一定程度上可以降低θs,且θs随盐离子浓度增加而整体呈现降低趋势。分析其原因认为,盐离子在一定程度上会破坏土壤结构,进而阻碍土壤团聚体凝聚,造成团聚体数量减小,从而导致土壤饱和含水率降低;随着溶液浓度增加,即盐离子含量升高,土壤团聚体进一步被破坏,数量逐渐减小,使得土壤饱和含水率随盐溶液浓度增加而降低[20]。对于残余含水率(θr)和进气吸力(sa),盐溶液浸泡处理土壤的θr和sa值较蒸馏水浸泡处理(CK)均整体出现降低趋势,但θr和sa与盐离子浓度不存在明显单调增减关系。盐溶液浸泡后,土壤溶液浓度增加,土壤吸着水减少,导致θr降低;从图1可知,盐离子可导致土壤持水能力减弱,即sa降低。

2.3 盐离子对土壤收缩特性的影响

在离心过程中土壤容重显著增加,当离心结束时,K+、Na+、Ca2+和Mg2+溶液浸泡处理土壤干容重分别较预设容重平均增加了0.372、0.417、0.422和0.440 g/cm3。可见4种阳性盐离子对土壤容重变化具有不同程度的影响,具体表现为Mg2+>Ca2+>Na+>K+。各处理土壤线缩率均随吸力增加而呈现对数型增长趋势(R2>0.9),且其增加过程大致可划分为3个阶段,即s>10~100 cm、s>300~1 000 cm和s>3 000~7 000 cm;通过线缩率对吸力的导数可知,线缩率随吸力的变化率分别为0.0220、0.0058和0.0008 cm-1,即土壤收缩度的增加速率逐渐降低。

对于线缩率-吸力曲线(即δsl-s曲线),参数a表示土壤几何收缩量随吸力变化而变化的程度,参数b表示当接近饱和时土壤膨胀或收缩的变化[21]。从表2可以看出,各处理的土壤δsl-s曲线中,参数a大小表现为K-5>K-30>K-100、Na-5>Na-30>Na-100、Ca-5>Ca-100>Ca-30、Mg-100>Mg-30>Mg-5,这与各处理土体收缩应变的变化是一致的;参数b均小于0,表明土壤在接近饱和时发生膨胀,这与土壤干缩湿胀特征吻合。与CK处理相比,不同离子及浓度对土壤收缩程度具有不同程度影响,具体表现为土体轴向收缩应变存在差异。表2显示,K+和高浓度Na+均有利于减小土壤轴向沉降程度,而低浓度Mg2+有这一趋势,这对于保护根系完整和维护地基稳定具有重要作用,然而土壤盐分过多将导致作物发生盐分胁迫,影响作物正常生长,这就需要对盐碱土进行洗盐评价及综合研究[22]。

土体轴向收缩应变与盐离子浓度的相关分析表明,δs与K+和Na+浓度呈现较好的负相关关系,r=−0.924 (P<0.01)和r=−0.657(P<0.05),与Ca2+浓度关系不显著(r=−0.176)、与Mg2+浓度呈现正相关关系(r=0.556),且与二者无显著相关性(表3)。由此可知,增加K+含量在一定程度上可以减轻土壤收缩程度,同时K+作为常规营养元素亦可促进作物生长,因此,在作物可吸收K+浓度范围内可以增加K+含量以缓解土壤收缩,但需防止土壤溶液浓度过大导致根系细胞失水。增加Na+含量虽然也可以适当缓解土壤收缩,但高浓度Na+极易引发土壤次生盐碱化问题,因此,在盐碱土壤地区对于耐盐碱作物而言,在其耐盐阈值内可通过提高Na+浓度使得土壤结构疏松。

表2 不同阳性盐离子浓度下土壤收缩特性Table 2 Soil shrinkage for treatments saturated by different types and concentrations of salt cation

2.4 盐离子对土壤裂隙的影响

土壤裂隙的发育表现出随机性,当一级裂隙成熟后,在此基础上逐渐出现长度和宽度各不相同的若干裂隙,最终众多裂隙相交从而停止发育(参见图2)。在饱和度分量图(本文省略)基础上进行短小裂隙拼接和单点去除,从二值化土壤裂隙图像(图2)可以看出,不同离子及浓度浸泡处理土壤裂隙数量、长度和分布特征均存在较大差异,表现出离子类型及浓度对土壤收缩特性具有不同程度的影响;其中,Na+在减少裂隙方面具有较好效果,裂缝面积较小,而Mg2+防止土壤出现裂隙的效果较差,导致土壤出现裂缝的面积和长度均较大,这从表2也可以得到证实。

采用裂隙面积密度和长度密度指标对各处理土壤裂缝特征进行定量评价。从表2、3看出,与CK处理相比,K+和Na+浸泡处理的裂隙评价指标值有所减小,且随K+和Na+浓度增加而减小;Mg2+浸泡处理的评价指标均表现出随Mg2+浓度增加而增大趋势,但随着浓度继续增加,其减少土壤裂隙的效果却减弱;Ca2+浸泡处理土壤裂隙也有所减少,但土壤裂隙评价指标值与Ca2+浓度无明显相关性。通过上述分析可知,各处理土壤裂隙面积密度和长度密度变化特征与土体轴向收缩特征具有较好的一致性。

图2 不同阳性盐离子浓度下脱水结束时土壤裂隙示意图举例Fig.2 Examples of soil cracks after drying for different salt cation treatments

3 讨论

3.1 盐离子对土壤持水能力的影响

影响土壤持水性能的因素主要包括土壤盐分、土壤有机质、土壤结构、土壤总孔隙度及毛管孔隙度等[23]。本研究表明,土壤溶液盐分含量与土壤持水能力呈现负相关关系,这与郭全恩等[24-25]研究结果一致;当盐浓度增加时,往往导致土壤有机质含量降低[26-27],同时使得土壤总孔隙度及毛管孔隙度受到不良影响,可见孔隙度随盐分离子浓度发生变化,进而对土壤持水能力造成影响[25],故当K+、Na+、Ca2+、Mg2+溶液浓度逐渐增加时,土壤持水能力整体出现降低趋势。对于土壤的吸湿性,在盐分的影响下,水汽吸附现象不仅是固―气界面的作用,当吸附量达到一定程度时变为液―气界面的相互作用[28],盐离子导致土壤水分物理性质发生较大变化,盐分对土壤水汽现象的影响说明了盐度对土壤持水能力可能带来的影响。另一方面,钠质土壤中的盐分易导致土壤结构的分散,而土壤结构体所决定的土壤孔隙组成则是通气层积盐的原因之一[28-29],由此一来可溶性盐对土壤结构的影响进入恶性循环,进而对土壤持水性能带来影响。土壤胶体对阳离子的亲和力一般表现为随价态降低而减弱,离子价态对土壤胶体稳定性具有显著影响,聚沉能力随胶体异号离子价数的增高而增大;价态相同时,胶体聚沉能力随水合离子半径的增加而减弱;相关研究表明[30],Ca2+和Mg2+对土壤胶体的聚沉能力相同,但土壤有机质可使得Ca2+对土壤胶体聚沉更加有效。李小刚等[31]研究表明,土壤溶液含盐量增加将导致土壤团聚体的稳定性显著降低,且黏粒的分散性增加,这都将导致土壤持水能力发生改变。这正是导致本研究“浸泡溶液浓度增加使得土壤持水能力降低”的原因之一。另一方面,在土壤溶液中,黏粒表面形成扩散电双层(示意图参见文献[32]),而静电吸力和布朗运动共同决定扩散电双层的厚度,且随溶液浓度、离子价态和介电常数等参数发生变化[33],从而影响土壤团聚体稳定性,进而使得土壤持水能力出现差异。基于上述分析需指出,本研究中,当盐溶液浓度为5 g/L时,Na+在吸力≤100 cm情况下降低土壤持水能力,在吸力>100 cm情况下则利于土壤持水。这可以从土壤团聚体和土壤孔隙体积发生变化2个方面加以解释:1)由于低质量浓度钠盐溶液对形成土壤团聚体具有促进作用,使得土壤有效孔隙增加,降低了颗粒间的斥力,随其浓度继续升高,过多钠离子导致土壤黏粒膨胀,使得土壤有效孔隙减少[34];2)基于含水率变化可知,与CK相比,Na-5处理在吸力≤100 cm和吸力>100 cm情况下分别表现为较大孔隙和中等孔隙体积增加和减小。但同时为消除试验随机误差影响、提高研究可信度,仍需开展低浓度处理试验进行验证。

3.2 干燥脱水过程中土体收缩及裂缝形成机理

土体具有压缩性,即在压力作用下体积缩小的特性;土体发生收缩的内因主要包括固相矿物本身压缩、土中液相水的压缩和土中孔隙的压缩,其中前两项可忽略不计,故土体的压缩变形主要是由于孔隙减小引起的。本研究中环刀土样在离心力作用(外因)下,通过土中孔隙的压缩这一内因发生实际效果。对于初始饱和土体,土壤孔隙被水分充满,在高速离心作用下孔隙中(包括大孔隙和小孔隙)的水分逐渐排出,且土颗粒会相互靠拢、孔径逐渐减小,在宏观上即表现为土体体积的收缩变形,并随吸力增加伴随土壤容重逐渐增大现象,本研究设定的最大吸力为7 000 cm,土中的结合水不易脱离土颗粒表面[35]。故在离心力作用下土体收缩主要是由于土壤孔隙水排出所致,并导致容重增加。

干燥过程中土体体积收缩实际上包括轴向收缩和径向收缩,分别表现为土样高度减小和直径减小。在测定土壤水分特征曲线时,所说的土体收缩通常是指轴向收缩,即土样高度随吸力增加而减小;同时,由于失水干缩导致表面逐渐出现裂隙的现象极为常见,通常被称作“龟裂”[36]。土样浸泡48 h后达到饱和状态,即准备离心时的初始含水率通常较高,故径向收缩对最终体积收缩的贡献也较大,这在一定程度上解释了自然界中高含水率土体干燥后表面极易出现大量收缩裂隙的现象,因为土体表面裂缝实际上是土体发生径向(横向)收缩所致[37]。对于裂缝形成机理目前仍无定论:有研究者认为是由于土体孔隙中毛细水表面张力和土的基质吸力引起[38-39],而施斌等[35]指出,引起土体龟裂的力学机制还应包括其他粒间作用力(例如化学力、离子静电引力、分子引力和水胶联接力等)。本研究为环刀装填扰动土,经浸泡后出现轻微膨胀现象,则易导致水分分布不均匀;在裂隙发育初期,龟裂开始出现的部位往往为一级裂缝,可能是水分比较集中的部位,这样才导致了该处粒间作用力较为薄弱,在收缩过程中易产生裂缝,还需进一步试验进行验证。孙凯强等[32]认为关于盐分对土体开裂的影响可以从盐分-黏土颗粒相互作用以及盐分影响黏土双电层厚度方面进行分析,即离子在分子热运动力和静电吸力共同作用下将形成固定层和扩散层,而扩散层的薄厚随孔隙水溶液浓度发生变化,对干燥过程中土体体积收缩和裂隙发育具有直接影响[40]。由此可见,土壤干缩开裂受土壤性质(包括黏土矿物类型、含量等)、土壤结构、土壤水分状况和土壤中可溶性盐等多因素影响[41-42],而各自影响机理存在一定差异,仍需进一步展开试验进行深入分析。本文只是将常见盐离子对土壤持水及收缩特征的不同影响进行了初步报道,然而盐离子对土壤物理性质的影响在很大程度上是通过改变土壤化学性质实现的,故欲深入探究其作用机理还需关注土壤化学性质并进一步将土壤物理与土壤化学相结合;另一方面,为提高本研究结果可信度,还需进一步研究阴性盐离子的影响,同时缩小盐溶液浓度梯度。

4 结论

1)K+、Na+、Ca2+和Mg2+可导致土壤持水能力减弱,且土壤持水性表现为随盐溶液浓度增高而降低;van Genuchten模型适合用于K+、Na+、Ca2+和Mg2+溶液浸泡土壤的土-水曲线拟合;4种离子降低土壤饱和含水率、残余含水率和进气吸力,其中土壤饱和含水率随溶液浓度增加而降低。

2)土体线缩率随吸力呈现对数增加趋势;土体轴向收缩应变与K+和Na+浓度均呈负相关关系,且分别存在极显著和显著相关性;K+和高浓度Na+均有利于减轻土壤轴向收缩度,在收缩过程中,4种离子导致土壤容重增加的幅度表现为Mg2+>Ca2+>Na+>K+。

3)K+、Na+、Ca2+和Mg2+可减轻土壤开裂程度,且土壤裂隙面积密度和长度密度与K+、Na+和Ca2+浓度呈负相关、与Mg2+浓度呈正相关关系;其中,与K+、Na+和Mg2+浓度存在极显著相关性(P<0.01),与Ca2+浓度存在显著相关性(P<0.05)。

[1] 冉艳玲,王益权,张润霞,等. 保水剂对土壤持水特性的作用机理研究[J]. 干旱地区农业研究,2015,33(5):101-107. Ran Yanling, Wang Yiquan, Zhang Runxia, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101-107. (in Chinese with English abstract)

[2] 邢旭光,赵文刚,马孝义,等. 土壤水分特征曲线测定过程中土壤收缩特性研究[J]. 水利学报,2015,46(10):1181-1188. Xing Xuguang, Zhao Wen’gang, Ma Xiaoyi, et al. Study on soil shrinkage characteristics during soil water characteristic curve measurement[J]. Journal of Hydraulic Engineering, 2015, 46(10): 1181-1188. (in Chinese with English abstract)

[3] Carrick S, Buchan G D, Almond P, et al. A typical early-time infiltration into a structured soil near field capacity: The dynamic interplay between sorptivity, hydrophobicity, and air encapsulation[J]. Geoderma, 2011, 160(3): 579-589.

[4] Fu Xiaoli, Shao Ming’an, Lu Dianqing, et al. Soil water characteristic curve measurement without bulk density changes and its implications in the estimation of soil hydraulic properties[J]. Geoderma, 2011(167/168): 1-8.

[5] 郑健,王燕,蔡焕杰,等. 植物混掺土壤水分特征曲线及拟合模型分析[J]. 农业机械学报,2014,45(5):107-112. Zheng Jian, Wang Yan, Cai Huanjie, et al. Soil-water characteristic curves of soil with plant additive and analyses of the fitting models [J]. Transactions of the Chinese Society for Agricultural Machinery (Transactions of the CSAM), 2014, 45(5): 107-112. (in Chinese with English abstract)

[6] 付晓莉,邵明安,吕殿青. 土壤持水特征测定中质量含水量、吸力和容重三者间定量关系II.原状土壤[J]. 土壤学报,2008,45(1):50-55. Fu Xiaoli, Shao Ming’an, Lü Dianqing. Quantitative relationship between mass water content, pressure head and bulk density in determination of soil water retention characteristics II. Undisturbed Soils [J]. Acta Pedologica Sinica, 2008, 45(1): 50-55. (in Chinese with English abstract)

[7] Thyagaraj T, Rao S M. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1695-1702.

[8] 邵明申,李最雄. PS对非饱和重塑黏土的土-水特征曲线的影响[J]. 中南大学学报:自然科学版,2011,42(5):1432-1436. Shao Mingshen, Li Zuixiong. Effect of PS on soil-water characteristic curve of remolded unsaturated clay [J]. Journal of Central South University: Science and Technology, 2011, 42(5): 1432-1436. (in Chinese with English abstract)

[9] 张季如,胡泳,余红玲,等. 黏性土粒径分布的多重分形特性及土-水特征曲线的预测研究[J]. 水利学报,2015,46(6):650-657. Zhang Jiru, Hu Yong, Yu Hongling, et al. Predicting soil-water characteristic curve from multi-fractal particle-size distribution of clay[J]. Journal of Hydraulic Engineering, 2015, 46(6): 650-657. (in Chinese with English abstract)

[10] 李峰,缴锡云,李盼盼,等. 田间土壤水分特征曲线参数反演[J]. 河海大学学报:自然科学版,2009,37(4):373-377. Li Feng, Jiao Xiyun, Li Panpan, et al. Parametric inversion of soil water characteristic curves of farmland[J]. Journal of Hohai University: Natural Sciences, 2009, 37(4): 373-377. (in Chinese with English abstract)

[11] 王志超,李仙岳,史海滨,等. 农膜残留对土壤水动力参数及土壤结构的影响[J]. 农业机械学报,2015,46(5):101-106,140. Wang Zhichao, Li Xianyue, Shi Haibin, et al. Effects of residual plastic film on soil hydrodynamic parameters and soil structure[J]. Transactions of the Chinese Society for Agricultural Machinery (Transactions of the CSAM), 2015, 46(5): 101-106, 140. (in Chinese with English abstract)

[12] 栗现文,周金龙,靳孟贵,等. 高矿化度土壤水分特征曲线及拟合模型适宜性[J]. 农业工程学报,2012,28(13):135-141. Li Xianwen, Zhou Jinlong, Jin Menggui, et al. Soil-water characteristic curves of high-TDS and suitability of fitting models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 135-141. (in Chinese with English abstract)

[13] 代希君,张艳丽,彭杰,等. 土壤水溶性盐基离子的高光谱反演模型及验证[J]. 农业工程学报,2015,31(22):139-145. Dai Xijun, Zhang Yanli, Peng Jie, et al. Prediction and validation of water-soluble salt ions content using hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 139-145. (in Chinese with English abstract)

[14] 张展羽,朱文渊,朱磊,等. 根系及盐分含量对农田土壤干缩裂缝发育规律的影响[J]. 农业工程学报,2014,30(20):83-89. Zhang Zhanyu, Zhu Wenyuan, Zhu Lei, et al. Effects of roots and salinity on law of development for farmland soil desiccation crack[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 83-89. (in Chinese with English abstract)

[15] 梁爱民,邵龙潭. 土壤中空气对土结构和入渗过程的影响[J].水科学进展,2009,20(4):502-506. Liang Aimin, Shao Longtan. Experimental study of the air entrapment effects on soil structure and infiltration[J]. Advances in Water Science, 2009, 20(4): 502-506. (in Chinese with English abstract)

[16] 李晓洁,赵凯,任建华,等.吉林西部盐渍土电导率、可溶性钠与裂纹相关性测量[J].土壤与作物,2012,1(1):49-54. Li Xiaojie, Zhao Kai, Ren Jianhua, et al. Correlation between conductivity, soluble sodium and crack of saline soil in west Jilin province[J]. Soil and Plant, 2012, 1(1): 49-54. (in Chinese with English abstract)

[17] 张卫国. 盐渍土地区工程质量常见病分析[J]. 科技情报开发与经济,2004,14(1):131-132. Zhang Weiguo. Analysis on common engineering quality diseases in salty soil areas[J]. Sci/Tech Information Development & Economy, 2004, 14(1): 131-132. (in Chinese with English abstract)

[18] Lima L A, Grismer M E. Soil crack morphology and soil salinity[J]. Soil Science, 1992, 153(2): 149-153.

[19] Pauchard L, Parisse F, Allain C. Influence of salt content on crack patterns formed through colloidal suspension desiccation[J]. Physical Review E, 1999, 59(3): 3737.

[20] 徐爽. 化学物质对土壤团聚体稳定性及其它物理性状的影响[D]. 杨凌:西北农林科技大学,2015. Xu Shuang. Effects of Chemicals on Soil Aggregates Stability and Their Other Physical Characters[D]. Yangling: Northwest A&F University, 2015. (in Chinese with English abstract)

[21] 吕殿青,王宏,王玲. 离心机法测定持水特征中的土壤收缩变化研究[J]. 水土保持学报,2010,24(3):209-212,216. Lü Dianqing, Wang Hong, Wang Ling. Soil shrinking change during measuring retention characteristics by centrifugal method [J]. Journal of Soil and Water Conservation, 2010, 24(3): 209-212, 216. (in Chinese with English abstract)

[22] 栗现文,靳孟贵,袁晶晶,等. 微咸水膜下滴灌棉田漫灌洗盐评价[J]. 水利学报,2014,45(9):1091-1098,1105. Li Xianwen, Jin Menggui, Yuan Jingjing, et al. Evaluation of soil salts leaching in cotton field after mulched drip irrigation with brackish water by freshwater flooding [J]. Journal of Hydraulic Engineering, 2014, 45(9): 1091-1098, 1105. (in Chinese with English abstract)

[23] 苏杨,朱健,王平,等. 土壤持水能力研究进展[J].中国农学通报,2013,29(14):140-145. Su Yang, Zhu Jian, Wang Ping, et al. Research progress on soil water holding capacity[J]. Chinese Agricultural Science Bulletin, 2013, 29(14): 140-145. (in Chinese with English abstract)

[24] 郭全恩,王益权,车宗贤,等. 温度及矿化度对土壤持水性能的影响[J]. 灌溉排水学报,2012,31(6):52-55. Guo Quanen, Wang Yiquan, Che Zongxian, et al. Effect of temperature and degree of mineralization on the water-retention properties of soil[J]. Journal of Irrigation and Drainage, 2012, 31(6): 52-55. (in Chinese with English abstract)

[25] 郭全恩,王益权,南丽丽,等. 溶质类型与矿化度对半干旱盐渍化地区果园土壤水分有效性的影响[J]. 中国生态农业学报,2013,21(8):973-978. Guo Quanen, Wang Yiquan, Nan Lili, et al. Effects of solute type and salinity on soil water availability in orchards in saline semiarid regions[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 973-978. (in Chinese with English abstract)

[26] 谢承陶,李志杰,章友生,等. 有机质与土壤盐分的相关作用及其原理[J]. 土壤肥料,1993(1):19-22.

[27] 阿米娜·阿布力克木,迪丽努尔·阿吉,玉素甫江·买买提.阿图什市盐渍化土壤中有机质现状及有机质与盐分之间的相关性分析-以格达良乡为例[J].信阳师范学院学报:自然科学版,2010,23(4):550-552,557. Amina·Ablikim, Dilnur·Aji, Yusupjan·Mamat. Organic matter of salinity soil and correlation analysis between organic matter and soil contents in Atux City-A case study in the Gedaliang Village [J]. Journal of Xinyang Normal University: Natural Science Edition, 2010, 23(4): 550-552, 557. (in Chinese with English abstract)

[28] 李小刚,曹靖,李凤民. 盐化及钠质化对土壤物理性质的影响[J]. 土壤通报,2004,35(1):64-72. Li Xiaogang, Cao Jing, Li Fengmin. Influence of salinity, sodicity and organic matter on some physical properties of salt-affected soils[J]. Chinese Journal of Soil Science, 2004, 35(1): 64-72. (in Chinese with English abstract)

[29] Drozhzhina T M, Vasil’chikova S I. Effect of differential porosity on the nature of moisture migration and salt accumulation in soil (as exemplified by newly developed soils of Tadzhikistan)[J]. Soviet Soil Science, 1984, 16: 109-115.

[30] 胡琼英,兰叶青,薛家骅. 土壤胶体稳定性影响因素[J].土壤,1996(6):290-294,315.

[31] 李小刚,崔志军,王玲英,等. 盐化和有机质对土壤结构稳定性及阿特伯格极限的影响[J]. 土壤学报,2002,39(4):550-559. Li Xiaogang, Cui Zhijun, Wang Lingying, et al. Effects of salinization and organic matter on soil structural stability and atterberg limits [J]. Acta Pedologica Sinica, 2002, 39(4): 550-559. (in Chinese with English abstract)

[32] 孙凯强,唐朝生,王鹏,等. 盐分对土体干缩开裂的影响[J].工程地质学报,2015,23(增刊):77-83. Sun Kaiqiang, Tang Chaosheng, Wang Peng, et al. Effect of salt content on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2015, 23(Supp.): 77-83. (in Chinese with English abstract)

[33] 李法虎,郭锦蓉. 土壤水蚀中关于化学因素的研究现状和展望[J]. 农业工程学报,2004,20(5):32-37. Li Fahu, Guo Jinrong. Research status and future development of effects of chemical factors on soil water erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 32-37. (in Chinese with English abstract)

[34] 胡传旺,王辉,张真,等. 钠盐离子对黏性红壤水力特征的影响及其模拟[J]. 灌溉排水学报,2015,34(8):49-52. Hu Chuanwang, Wang Hui, Zhang Zhen, et al. Simulation and influence of sodium ion concentration on hydraulic characteristics of red clay soil [J]. Journal of Irrigation and Drainage, 2015, 34(8): 49-52. (in Chinese with English abstract)

[35] 施斌,唐朝生,王宝军,等. 粘性土在不同温度下龟裂的发展及其机理讨论[J]. 高校地质学报,2009,15(2):192-198. Shi Bin, Tang Chaosheng, Wang Baojun, et al. Development and mechanism of desiccation cracking of clayed soil under different temperatures[J]. Geological Journal of China Universities, 2009, 15(2): 192-198. (in Chinese with English abstract)

[36] 唐朝生,施斌,刘春,等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报,2007,38(10):1186-1193. Tang Chaosheng, Shi Bin, Liu Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193. (in Chinese with English abstract)

[37] 唐朝生,崔玉军,Tang A M,等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报,2011,33(8):1271-1279. Tang Chaosheng, Cui Yujun, Tang A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese with English abstract)

[38] Yesiller N, Miller C J, Inci G, et al. Desiccation and cracking behavior of three compacted landfill liner soils [J]. Engineering Geology, 2000, 57(1): 105-121.

[39] Morris P H, Graham J, Williams D J. Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.

[40] Sridharan A, Rao G V. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 2015, 23(3): 359-382.

[41] Ren Jianhua, Li Xiaojie, Zhao Kai, et al. Study of an on-line measurement method for the salt parameters of soda-saline soils based on the texture features of cracks[J]. Geoderma, 2016, 263(2): 60-69.

[42] Ren Jianhua, Li Xiaojie, Zhao Kai. Quantitative analysis of relationships between crack characteristics and properties of soda-saline soils in Songnen plain, China [J]. Chinese Geographical Science, 2015, 25(5): 591-601.

Impacts of type and concentration of salt cations on soil water retention and desiccation cracking

Xing Xuguang, Ma Xiaoyi※, Kang Duangang
(1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China; 2. Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 712100, China)

The soil water characteristic curve (SWCC) defines the relationship between soil suction and volumetric water content, and is commonly used to evaluate the size and distribution of soil pores and the soil water availability and holding capacity for investigating the functions of unsaturated soil with various properties and for modeling the transport of soil water and solutes. Besides, the SWCC is usually effectively used to evaluate soil water retention, which is always considered as a basic factor for determining reasonable irrigation schemes. The SWCC can be obtained via centrifuge method; however, soil samples often shrink and crack during the SWCC measurement. Of various influencing factors on water retention, salt ions with different types and concentrations have various effects on water-holding capacity. The present study therefore aims to explore the differences in the characteristics of the soil water retention and the shrinkage and cracking during drying process resulting from 4 types of salt cations with different concentrations. In order to achieve the objectives, silty clay loam from Shaanxi Province was selected as experimental soil. Four replicates of the samples were air dried, sieved through a 2-mm mesh, and then compacted into cutting rings at a bulk density of 1.40 g/cm3. Four powder reagents, namely potassium chloride (KCl), sodium chloride (NaCl), calcium chloride (CaCl2) and magnesium chloride (MgCl2), which included 4 kinds of salt cations (i.e., K+, Na+, Ca2+and Mg2+), were dissolved in distilled water at the concentration of 5, 30 and 100 g/L respectively. Distilled water was used as the control (CK). And all soil samples were first saturated in the solutions for 48 h before the experiment. The SWCCs were then constructed using a centrifugal method and used to quantitatively assess soil water holding capacity. At the same time, the deposit height of soil samples for each tested soil suction was measured using a vernier caliper, which was used to calculate linear shrinkage ratio and axial shrinkage strain for quantitatively evaluating soil shrinkage during the drying process. Cracks gradually occurred with soil water decreasing and were obtained using digital image processing technique in this paper, which were used to quantitatively evaluate the desiccation cracking based on crack area density and length density. The experimental results showed that first of all, salt cations had no effects on the SWCC shape, and the van Genuchten model was suitable for fitting SWCC saturated by saline solution with the R2of high than 0.99. Furthermore, the 4 kinds of salt cations could weaken soil water retention, and water-holding capacity was correlated negatively with the concentration of salt cation. According to the fitting results by the van Genuchten model, the 4 kinds of salt cations could also weaken saturated water content, residual water content and air suction, and water-holding capacity was correlated negatively with saturated water content. Besides, K+, Na+with high concentration and Mg2+with low concentration were helpful to decrease soil axial shrinkage. And the axial shrinkage strain was correlated negatively with the concentration of K+(P<0.01), Na+(P<0.05) and Ca2+and positively with Mg2+concentration. Shrink of soils during the drying process was accompanied with the increasing of soil bulk density, and the effect of salt cations ranked in the order of Mg2+>Ca2+>Na+>K+. Finally, the 4 kinds of salt cations were helpful to weaken cracking based on the quantitative analysis of crack area density and length density. And these 2 crack indicators were significantly negatively correlated with the concentration of K+, Na+and Ca2+and positively with Mg2+concentration. These findings are helpful to provide the theoretical and practical guidance for the evaluation of water retention and the determination of irrigation scheme, and to provide some references for developing the engineering practice on saline soils. The further study should add focuses on the effects of salt anions and smaller concentration gradient on soil water retention and desiccation cracking.

soils; moisture; salts; water retention; desiccation cracking; salt ion

10.11975/j.issn.1002-6819.2016.09.016

S152.7

A

1002-6819(2016)-09-0115-08

邢旭光,马孝义,康端刚. 盐阳离子类型及浓度对土壤持水及干缩开裂的作用效果[J]. 农业工程学报,2016,32(9):115-122.

10.11975/j.issn.1002-6819.2016.09.016 http://www.tcsae.org

Xing Xuguang, Ma Xiaoyi, Kang Duangang. Impacts of type and concentration of salt cations on soil water retention and desiccation cracking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 115-122. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.016 http://www.tcsae.org

2016-01-08

2016-03-18

国家自然科学基金资助项目(51279167);国家科技支撑基金资助项目(2012BAD08B01);公益性行业(农业)科研专项(201503124)。

邢旭光,男,博士生,辽宁沈阳人,主要从事土壤水-盐-热迁移监测与模拟研究。杨凌 西北农林科技大学水利与建筑工程学院旱区农业水土工程教育部重点实验室,712100。Email:xingxg86@163.com

※通信作者:马孝义,男,陕西凤翔人,教授,主要从事农业水土及电气化研究。杨凌 西北农林科技大学水利与建筑工程学院旱区农业水土工程教育部重点实验室,712100。Email:xiaoyima@vip.sina.com

猜你喜欢

吸力裂隙含水率
深水大型吸力锚测试技术
630MW机组石膏高含水率原因分析及处理
ROV在海上吸力桩安装场景的应用及安装精度和风险控制
昆明森林可燃物燃烧机理研究
裂隙脑室综合征的诊断治疗新进展
深水吸力桩施工技术研究
基于孔、裂隙理论评价致密气层
弱膨胀土增湿变形量试验及路堤填筑分析
裂隙灯检查的个性化应用(下)
原油含水率在线测量技术研究