APP下载

农业源氨排放影响因素研究进展

2016-12-09王文林韩睿明李文静唐晓燕

生态与农村环境学报 2016年6期
关键词:粪肥农田氮肥

王文林,刘 波,韩睿明,王 烨,刘 筱,徐 乔,李文静,唐晓燕

(1.环境保护部南京环境科学研究所,江苏 南京 210042;2.南通大学地理科学学院,江苏 南通 226007;3.南京师范大学环境学院,江苏 南京 210023)



农业源氨排放影响因素研究进展

王文林1,刘 波2①,韩睿明3,王 烨2,刘 筱2,徐 乔2,李文静1,唐晓燕1

(1.环境保护部南京环境科学研究所,江苏 南京 210042;2.南通大学地理科学学院,江苏 南通 226007;3.南京师范大学环境学院,江苏 南京 210023)

氨(NH3)作为大气中碱性气体,在雾霾形成中起着关键性作用,从源头上控制NH3排放,对降低大气二次无机盐及PM2.5浓度水平,控制雾霾污染,大幅提升空气环境质量尤为重要。农业源NH3排放是大气中人为源NH3的主体,其主要来源于农田施肥和畜禽养殖。因此,总结农业源NH3排放国内外研究进展,分析NH3排放影响因素,对于了解其NH3排放过程与特征,进而针对性提出控制措施具有重要意义。为此,就农田施肥和畜禽养殖NH3排放影响因素的国内外研究现状进行了系统总结,结果发现,肥料类型、土壤理化性质、田间气象要素和施肥方式是影响农田施肥NH3排放的主要因素;畜禽饲料性质、禽舍环境和清粪模式是影响畜禽养殖NH3排放的主要因素。目前,农田施肥NH3排放研究主要是从农田氮地球化学循环过程和粮食增产需求角度开展,而畜禽养殖NH3排放研究主要从职业卫生健康角度开展,上述研究缺乏以NH3排放环境暴露风险为目的的考量。因此,开展以环境空气为排放界面的农业源NH3排污系数研究,制定农业源NH3排放清单,并基于环境暴露风险,明确农业源NH3排放优先控制区域,最终可为环境管理部门制定农业源NH3排放分区控制技术体系、策略与路线图以及标准与政策法规提供理论依据。

农业源;氨排放;农田施肥;畜禽养殖;影响因素

近些年来,我国雾霾天气频发,引起社会各界的广泛关注。有研究[1-3]发现,在细颗粒物(PM2.5)形成过程中,气态氨(NH3)扮演着重要角色,对雾霾的形成起着关键性作用。一方面,NH3作为大气中唯一的碱性气体,是大气PM2.5形成的重要前体物,NH3能与二氧化硫(SO2)和氮氧化物(NOx)等反应生成硫酸铵和硝酸铵等细粒子是PM2.5关键性成分[4-6]。另一方面,在NH3参与下细粒子的生成速度明显加快[7-8],当NH3充足时,NH3的气相或者非均相反应会提高气态前体物的转化率和二次无机盐的生成率,引起铵根(NH4+)和硫酸根(SO42-)等细粒子组分大幅度增加[9]。欧美发达国家PM2.5控制实践表明,在SO2和NOx基本得到控制的情况下,通过对NH3排放进行同步削减,可以大幅度降低大气环境中PM2.5浓度,实现环境空气质量的大幅提升[4]。可见,从源头上控制NH3的排放,进而减少NH3与酸性气体(SO2、NOx等)反应,最终减少NH4+浓度,对降低大气二次无机盐及PM2.5浓度水平、控制雾霾污染和提升环境空气质量显得尤为重要。

人为源是大气中NH3的主要来源,人为源主要包括农业源NH3排放、生物质燃烧排放以及其他源排放。农业源NH3排放是大气中人为源NH3的主体,占全球人为源排放总量的90%[10]。农业源NH3排放主要来源于农田施肥和畜禽养殖,其中,农田施肥NH3排放约占农业源NH3排放总量的40%,畜禽养殖约占50%[10-11]。因此,总结农业源NH3排放特别是农田施肥和畜禽养殖NH3排放国内外研究进展,分析NH3排放影响因素,对于了解NH3排放过程与特征,进而针对性提出控制措施具有重要意义。基于此,笔者就主要农业源NH3排放影响因素的国内外研究现状进行系统总结,并提出今后的研究展望。

1 农田施肥

1.1 农田环境因素

1.1.1 土壤理化性质

土壤理化性质对农田的NH3挥发具有重要影响,主要表现在2个方面。一方面,土壤理化性质通过调控吸附-解吸作用影响表层土壤NH3挥发底物液相中NH4+浓度,进而影响表层土壤的NH3挥发过程。研究[12]发现,质地黏重的土壤中NH3挥发小于质地粗松的土壤,表明土壤黏粒对NH4+具有较强的吸附作用,可以有效降低土壤液相中NH4+浓度,从而减少表层土壤NH3挥发[13]。土壤阳离子交换量对土壤NH3挥发有一定的抑制作用,不同阳离子对NH4+吸附-解吸作用的影响存在差异,当有作物吸收时,Ca2+和Na+的存在有利于土壤中矿物吸附的铵氮释放,从而促进表层土壤NH3挥发,而K+则会阻止释放,减少NH3挥发[14]。

另一方面,土壤理化性质通过直接或间接调控土壤液相中NH4+与NH3转化反应体系,进而影响土壤NH3挥发过程[15]。其中,土壤pH值是调控此反应体系的主导因子,是影响农田NH3挥发的一个重要因素。随pH值升高,液相中NH4+比例升高,NH3挥发的潜力随之增大,进而增加NH3的排放率[16]171-173。研究发现,尿素的NH3挥发量会随着土壤pH值的升高而增加,与酸性水稻土相比,在含有较多游离碳酸钙的石灰性土壤中尿素的NH3挥发量更大[17]。在pH值为5.4的菜地土壤,NH3挥发损失率小于0.4%,而在pH值为7.7的菜地土壤,高氮施肥条件下NH3挥发损失率达17.1%[18]。土壤有机质对上述NH3挥发的2个作用过程都存在一定影响。有机质对NH4+吸附能力较强,降低NH4+浓度,从而减少NH3挥发[12];但也有研究指出,有机质能阻碍NH4+进入黏土矿物的固定位置,减少NH4+晶穴固定,增加游离态NH4+,进而增加NH3的挥发[19-20];同时,有机质含量高的土壤在矿化过程中,具有释放过多NH4+的潜力,也会增加NH3排放。另外,在土壤腐殖质形成过程中会产生有机酸,降低土壤pH值,进而减小NH3挥发潜力[21]。土壤含水量则会影响肥料在土壤中的转化过程,如碳铵的溶解和尿素的水解等过程,进而影响NH3挥发。过高或过低的含水量都会减少NH3挥发。过高的含水量会降低土壤液相中NH4+浓度,土-气界面浓度梯度减小,NH4+扩散作用减弱,NH3挥发量降低;过低的含水量则削弱碳铵溶解和尿素的水解,进而制约NH3挥发[22]。此外,土壤水分的散失过程也会影响NH3挥发。研究发现土壤水分保持稳定,无水分散失时,NH3挥发量仅占施氮量的1%[22]。

1.1.2 气象因素

影响农田NH3挥发的气象因素主要有风速、温度、降水和日照。在田间,NH3挥发一般随风速增大而增多[16]174。研究发现,在农田NH4+与NH3总浓度以及pH值和温度等各方面的差异不大的情况下,风速差异导致农田NH3挥发量存在显著差异[23]。但是,田间NH3挥发与风速之间的关系不一定呈线性关系[16]174。通过风洞实验发现,当NH3挥发随风速增大到一定数值后,就不再随风速增大而增加[24]。此外,风速受到大气和水体的稳定状态、地面粗糙度的影响,进而会影响NH3挥发速率。例如,良好的植被覆盖可以减缓土壤表层的风速,同时也可能部分地增加对NH3的吸收。

温度是影响农田NH3挥发的一个重要气象因素。研究发现,pH值大致不变情况下,在5~35 ℃范围内,温度每上升10 ℃,NH4+溶解率增加约1倍[25],液相中NH3挥发速率也随温度增大[26]。此外,随着温度的升高,施用尿素的农田土壤中脲酶活性增强,加快了尿素的水解,其同时分解的养分在被作物吸收之前就以NH3形式损失[27]。温度对不同类型氮肥的NH3排放影响还存在差异,碳铵受环境温度变化的影响最大,温度每升高1 ℃,NH3排放增加0.44%;尿素次之,为0.35%,其他含氮化肥受温度变化的影响较小[28]。较高的温度会加速肥料中NH4+溶于土壤水的过程,同时会降低NH3在液相中的溶解度,进而增加NH3挥发[29]。

降雨主要是通过雨水下渗将肥料带入深层土壤,增加NH4+被土壤颗粒吸附或植株吸收的机会和上升到土壤表层的阻力,从而间接减少NH3挥发损失[30-31]。灌溉和降水起到相同作用,会加速肥料下渗并稀释肥料[32]。施肥后,光照通过提高土壤温度可增加NH3挥发量[32-33]。温度、湿度、日照和风速还会影响施用粪肥的蒸发过程,蒸发一方面会促进NH3挥发,另一方面,过度的蒸发会使粪肥干燥而形成一层自然盖膜,会抑制粪肥的NH3挥发过程[34]。

1.2 肥料类型

1.2.1 传统氮肥

广泛使用的氮肥包括尿素、碳铵、硝铵和硫胺等,我国以尿素和碳铵施用最为广泛,分别占氮肥总量的69%和26%。氮肥利用率较低是各国化肥施用中面临的主要问题,氮肥利用率大约为30%~35%,损失率平均达45%[35]。各种氮肥由于自身的理化性质不同,在施用后其NH3排放强度亦存在差异[36]。碳铵是所有氮肥中最易挥发的,超过30%的氮以NH3挥发方式损失,是NH3的一个重要排放源[37]。尿素由于需经过2~3 d脲酶水解作用才能转化为碳酸铵,相对于碳铵氨的挥发损失要小,但要高于其他类型氮肥的NH3挥发率。由于尿素每年的施用量巨大,农田施用尿素造成的NH3排放是农田施肥NH3排放的主要来源[26]。尿素和碳铵施肥NH3排放占农田施肥NH3排放总量的64.3%和26.5%[26]。硫铵和硝铵NH3挥发性更低,往往只有<10%的氮以NH3形式挥发[38-39]。

1.2.2 缓控释肥料

缓控释肥的作用旨在提高化肥利用率,减少因施肥而造成的污染[40-41]。缓控释氮肥按照其溶解性释放特征通常分为包膜缓控释氮肥和非包膜缓控释氮肥2种类型[42]。相比于普通尿素,以物理障碍为控制因素的包膜缓控释氮肥NH3排放削减显著,可减少30%以上NH3排放[15]。包膜缓控释氮肥施入土壤后,包膜材料可阻隔膜内尿素与土壤脲酶的直接接触并阻碍膜内尿素溶出过程所必需的水分运移[43-44],可以显著减少田间的铵氮浓度,尤其是稻田水层中铵氮浓度[45-46],导致参与NH3挥发的底物显著减少,这是降低土壤NH3挥发的最重要因素。另外,包膜缓控释氮肥对脲酶活性的影响时间相对较长,土壤脲酶活性明显低于普通尿素,减少了尿素的水解,可运移铵氮的量随之减少,进而减少田间NH3挥发量[47]。以化学、生物为主要缓控释机理的非包膜缓控释氮肥中含有一小部分无机氮(铵态氮),施入土壤后,这部分无机氮首先释放出来,同时也会存在NH3挥发[48-49],而其余的氮素为多形态的有机氮,需要在土壤微生物的作用下经过一定时间才能被矿化,增加了植物氮肥吸收效率[50],从而减少NH3排放,但与包膜缓控释氮肥相比,其NH3减排作用还有一定差距[15,50]。虽然缓控释肥对NH3排放有一定的削减作用,但是由于其成本过高且包膜材料残留土壤而污染环境,缓控释肥目前并未大规模应用。

1.2.3 农作物有机肥

农作物有机肥是我国传统农业中极为重要的肥料来源,其中,在我国秸秆还田的施行最为广泛。秸秆还田一般与化肥配合施用,与单施化肥相比,秸秆与氮肥混合施用于稻田(水田)NH3挥发增加18.2%~20.6%[51],在水田中,由于秸秆和作物阻碍了肥料下渗,导致NH3挥发增加[52]。秸秆与氮肥混合施用于玉米田(旱田)NH3挥发却减少0.37%~1.17%[53],一方面,秸秆配施化肥增加了石灰性土壤的尿素水解速率,缩短了尿素的NH3挥发时间,导致旱田NH3排放减少[54],另一方面,秸秆减少了肥料与大气接触面积,降低了地表风速,从而抑制NH3挥发[55]。

1.3 田间施肥

1.3.1 施肥量

NH3挥发与施氮量显著相关,减少施氮量22%~44%可降低NH3挥发损失20.2%~35.3%[48]。我国是世界第1大氮肥消费国,氮肥用量占全球氮肥用量的30%[56]。美国和欧盟农业氮肥施用强度分别为69和124 kg·hm-2,我国农业施氮量平均为150~250 kg·hm-2,远高于国际公认的安全施用上限[57],其中,以中东部和东南部地区施肥强度最大,平均高达350 kg·hm-2[58]。

1.3.2 施肥方式

耕作与施肥模式影响作物对氮素的吸收,从而对NH3挥发过程影响显著。施肥方式主要分为表层撒施和覆土深施2 类。人工表面撒施肥料不仅会造成严重的NH3挥发损失,而且在施氮量上难以控制且很难均匀撒施。如将尿素撒施在地表,常温下需经4~5 d 转化过程才能被作物吸收,大部分氮素在被植物吸收之前已通过NH3挥发损失,利用率只有30%左右,而将铵态氮通过深施置于还原态土壤中能显著降低NH3的挥发损失[56]。我国《化肥使用环境安全技术导则》也指出氮肥覆土深施时,可通过土壤胶粒对铵离子的吸附作用,减少NH3的挥发损失[59]。英国国家NH3减排措施评价体系模型显示,氮肥表面撒施导致NH3排放最大[60]。我国冬小麦表施方式下的尿素NH3挥发损失率最高达46.08%,而深施和表施结合灌溉处理方式下的NH3挥发损失率则分别为6.24%和3.75%,表明氮肥深施是减少农田NH3挥发量、提高淹水稻田氮肥利用率的有效途径[61]。

此外,其他因素,如作物类型、作物生长阶段[62-63]对NH3挥发过程也存在影响。研究发现,水稻、玉米施肥后的NH3挥发损失率分别为 30%~39%和11%~48%[64]。

2 畜禽养殖

2.1 饲料

饲料中50%~70%的氮以粪氮和尿氮方式排出体外,其中,所含尿素可水解为碳铵,并以NH3形式挥发至大气中[65]。畜禽粪便中的含氮物质主要是饲料中蛋白质在动物消化道中通过各种酶的作用分解的氨基酸。可见,饲料蛋白质供给量对NH3的排放影响显著。研究发现,养猪日粮中粗蛋白水平每降低1%,氮排泄量平均可减少8%,NH3排放量可降低10%[66];在猪的不同生长阶段,分别降低日食中粗蛋白质含量和增加基础氨基酸含量,可以减少NH3排放15%~20%[67]。

饲粮中粗纤维比例对粪便中NH3排放也存在影响。研究发现,在饲料中添加适量的粗纤维可以有效地减少粪污中NH3排放[68-69]。在日粮中粗纤维比例由12.1%增加到18.5%,猪场NH3排放可减少40%[70]。但是,若饲料中添加过高的粗纤维则导致猪排泄物增多,并增强粪污的黏性,则会增加NH3排放[71]。饲料中谷物类型也可影响NH3排放[72]。育肥猪饲料中添加部分小麦,可以减少约40%NH3排放[73]。

此外,在饲料中添加酸性添加剂、沸石、益生菌、酶制剂、酸制剂和丝兰提取物等,也可降低畜禽NH3排放。在饲料中添加一定的硫酸钙、苯甲酸和脂肪酸可以有效降低动物尿pH值,分别可减少NH3排放5%、20%和25%[74]。在饲料中加入1%~2%的低比例天然沸石,最多可减少33%NH3排放[75]。在猪饲料中添加0.05%~0.2%的含有枯草杆菌和芽孢杆菌的益生菌添加剂可使NH3排放减少50%[76]。

2.2 禽舍环境

畜禽圈舍是畜禽NH3排放的重要节点,圈舍NH3排放量约占畜禽全周期排放总量的30%~55%[77]。畜禽圈舍结构影响圈舍内的温度、湿度等环境因子,进而影响圈舍的NH3排放。NH3排放量与周围的温度呈正相关。温度可以直接影响NH3排放,较高温度能提高脲酶活性,促进粪便中含氮物质分解释放NH3。此外,温度也间接影响牲畜排泄行为进而影响NH3排放[78]。研究发现,在恒定的通风条件下封闭猪舍内的温度从10 ℃上升到20 ℃,NH3排放量增加2倍[79];当温度从17 ℃上升到28 ℃时,每天每头猪NH3排放量从12.8 g增加到14.6 g[80]。由于NH3水溶解度很高,故湿度与NH3排放量呈反比,但与温度和通风相比,湿度对NH3排放影响并不显著[78]。

增加通风频率可提高禽舍的NH3排放量,降低禽舍内NH3浓度[81-82]。在封闭式育肥猪舍中,当通风频率提高到3倍,由于温度下降,NH3排放量只增加25%,舍内NH3浓度降低3倍[80]。而在非封闭式育肥猪舍,通风频率提高5倍,由于温度几乎没有下降,NH3排放也相应增加5倍[83]。禽舍进风口和出风口的位置对排放影响不大[84]。对于大规模的封闭式管理的养殖场,如猪场、鸡场等,对废气进行收集,若采用酸式洗涤器或生物滴滤器对其进行处理可减少5%~30% NH3排放[85]。

2.3 粪便清理模式

存积在禽舍内的粪、尿是舍内NH3释放的最主要来源,及时清理可显著降低舍内NH3浓度。根据圈舍地板模式,清粪方式一般设计为干清粪、机械清粪和水冲清粪等。研究发现,水冲清粪模式下冲洗频率、时间以及水压影响NH3排放量[86]。漏缝地板结合水冲清粪的斜坡禽舍,每天多次冲水,可以减少30%的NH3排放量[87]。在实心地面禽舍不断地用水冲洗粪沟,可以减少70%的NH3排放量[88]。在育肥猪舍内,漏缝地板结合水冲清粪的斜坡禽舍若采用“V”型排污沟设计可减少50%的NH3排放量,若使其坡度从1%增加到3%,NH3释放量可减少17%[67]。机械刮板清粪方式对猪场NH3排放量并没有显著影响[89]。刮板清除粪尿时地板表面残留部分粪尿,反而增加了释放NH3的地板面积[86]。在深坑育肥猪舍,与整个育肥阶段粪污清理1次相比,若每2周清粪污1次可有效减少20%的NH3排放量,每周清理可减少35%的NH3排放量,每2~3 d清粪污1次可减少46%的NH3排放量。但是,冲洗后的污水若不及时处理,溶解于水中的NH3还会进行二次释放[82]。

2.4 畜禽粪便还田

畜禽粪便还田方式分直接利用与加工利用2种,直接利用是畜禽粪尿经发酵处理后直接施用,加工利用则是将粪便经脱水除菌后加工为商品有机肥施用,目前在我国直接施用占绝大部分。畜禽粪便还田NH3排放主要受畜禽粪便理化性质的影响,若含水率低、总氮尤其是铵态氮含量高的粪便还田,NH3排放量高。研究发现,相较于肉鸡粪和牛粪,蛋鸡粪干重高,对应有机质和总氮尤其是铵态氮含量也高,若将其施用于农田,NH3排放显著高于前者[90]。较干的粪便在土壤中的下渗率低,特别是在低渗透率的土壤上施用干重高粪肥,NH3排放量占氮流失的比例最大[91]。稀释粪肥则可加快粪肥向土壤下渗进而减少参与NH3排放的铵态氮含量[92],研究表明,与施用未稀释的粪肥相比,施用稀释一定比例的粪肥可以有效减少25%~50%的NH3排放量[93]。但是,过量施用稀释粪肥既会导致土壤含水率饱和,又会降低粪肥在土壤中的下渗速率,这可能抵消稀释粪肥减少的NH3排放[94]。畜禽粪便的pH值对NH3排放影响显著。在10~30 ℃ 之间,当粪肥pH值为7时,只有不到1%的铵态氮以NH3形式释放到空气中,当pH值为10时,超过50%的铵态氮经NH3挥发散失[95]。酸化粪肥是减少NH3排放的一个有效措施。研究发现,将施用的牛粪pH值从7降至5~6.5之间,可以降低NH3排放30%~98%[96],将猪粪pH值降低到6.5和5.5,分别可减少NH3排放49.4% 和92.3%[97]。

此外,畜禽粪便还田的施用方式也会影响NH3排放,目前主要的还田方式包括带状施肥、表面播撒、牵引式软管和地下注射等,后2种方式只适用于液态粪肥[98]。我国粪肥主要还田方式还是表面播撒[99]。由于粪肥在施用后24 h内会出现明显的NH3排放过程,其中,50%的NH3在施用后6 h即排放出来[100]。因而,表面播撒或牵引软管施肥后,及时覆土或翻耕可以有效减少NH3挥发。相比于其他施肥方式,地下注射方式可以减少70%~80%的NH3挥发量,但运行成本较高[101]。

3 总结与展望

总的来看,目前针对农田NH3排放研究主要是基于2个需求开展的。(1)农田氮地球化学循环过程一直是全球变化研究的热点领域。农田NH3挥发过程作为大气氮的一个主要来源及农田氮循环的一个重要环节,已成为科学界关注的一个重要领域。研究者通过野外观测或室内模拟,在定量分析农田NH3挥发量的基础上,探讨农田施肥NH3挥发过程及影响因素,揭示自然过程和人类活动对NH3挥发影响的驱动机制,评估NH3挥发在天气和气候、生物地球化学循环方面的作用。(2)基于粮食增产需要,研究者通过开发各类施肥技术以减少农田NH3挥发来提高氮肥使用效率。而针对畜禽养殖NH3排放研究主要从职业卫生健康角度[91,101-102]开展,大多是基于源防控原理,从饲料、禽舍环境和粪便清理模式等方面开展禽舍内部NH3浓度控制研究。上述研究缺乏以NH3排放环境暴露风险为目的的考量,农田施肥及畜禽养殖生产各个过程均会导致NH3排放,但其排放通量尚不明确,其排放引起的区域环境质量下降风险及环境影响机制尚不清楚,导致无法明确农业NH3排放优先控制区域,给环境管理部门针对性制定分区域的农业源NH3排放控制策略、标准与政策法规带来很大困难。因此急需广泛、全面、深入地开展相关基础调查和研究工作。

2015年,我国修订《大气污染防治法》,基于环境空气质量,第七十四条从最高立法层面,已明确提出控制农业NH3排放。为此,基于农业源氮物质流,以NH3排放全过程控制为原则,就农业源NH3排放的各个节点,开展以环境空气为排放界面的农业源NH3排污系数研究,着重辨析NH3排放关键影响因素,从源头、过程和末端揭示农业源NH3排放特征与规律,调查畜禽养殖NH3排放现状,从有机肥、化肥、缓控释肥配施、精准施肥和覆土深施等方面构建农田NH3排放最佳防控技术体系,从饲喂、畜禽圈舍、粪污存储和粪肥土地利用等方面构建畜禽养殖NH3排放最佳防控技术,并对上述技术进行生态效益和社会效益评价,实现能与现有环境友好型农业生产方式有机结合的全过程综合防控技术体系。通过制定农业源NH3排放清单,开展生态环境风险评估研究,基于环境暴露风险,结合区域环境质量现状,明确农业NH3排放优先控制区域,最终为环境管理部门制定农业源NH3排放分区控制技术体系、策略与路线图以及标准与政策法规提供理论依据。

[1] FENG L,LIAO W J.Legislation,Plans,and Policies for Prevention and Control of Air Pollution in China:Achievements,Challenges,and Improvements[J].Journal of Cleaner Production,2016,112:1549-1558.

[2] HO K F,HO S S H,HUANG R J,etal.Chemical Composition and Bioreactivity of PM2.5During 2013 Haze Events in China[J].Atmospheric Environment,2016,126:162-170.

[3] YANG F,TAN J,ZHAO Q,etal.Characteristics of PM2.5Speciation in Representative Megacities and Across China[J].Atmospheric Chemistry and Physics,2011,11(11):5207-5219.

[4] DEDOUSSI I C,BARRETT S R H.Air Pollution and Early Deaths in the United States.Part II:Attribution of PM2.5Exposure to Emissions Species,Time,Location and Sector[J].Atmospheric Environment,2014,99:610-617.

[5] WEI L F,DUAN J C,TAN J H,etal.Gas-to-Particle Conversion of Atmospheric Ammonia and Sampling Artifacts of Ammonium in Spring of Beijing[J].Science China:Earth Sciences,2015,58(3):345-355.

[6] 韦莲芳,谭吉华,马永亮,等.北京春季大气中氨的气粒相转化及颗粒态铵采样偏差研究[J].中国科学:地球科学,2015,45(2):216-226.

[7] CUI H Y,CHEN W H,DAI W,etal.Source Apportionment of PM2.5in Guangzhou Combining Observation Data Analysis and Chemical Transport Model Simulation[J].Atmospheric Environment,2015,116:262-271.

[8] WANG J D,WANG S X,VOORHEES A S,etal.Assessment of Short-Term PM2.5-Related Mortality Due to Different Emission Sources in the Yangtze River Delta,China[J].Atmospheric Environment,2015,123:440-448.

[10]GALLOWAY J N,DENTENER F J,CAPONE D G,etal.Nitrogen Cycles:Past,Present,and Future[J].Biogeochemistry,2004,70(2):153-226.

[11]GAO Z L,MA W Q,ZHU G D,etal.Estimating Farm-Gate Ammonia Emissions From Major Animal Production Systems in China[J].Atmospheric Environment,2013,79:20-28.

[12]FAN X H,LI Y C,ALVA A K.Effects of Temperature and Soil Type on Ammonia Volatilization From Slow-Release Nitrogen Fertilizers[J].Communications in Soil Science and Plant Analysis,2011,42(10):1111-1122.

[13]DUAN Z H,XIAO H L.Effects of Soil Properties on Ammonia Volatilization[J].Soil Science and Plant Nutrition,2000,46(4):845-852.

[14]张庆利,张民,杨越超,等.碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究[J].土壤通报,2002,33(1):32-34.

[15]SHAN L N,HE Y F,CHEN J,etal.Ammonia Volatilization From a Chinese Cabbage Field Under Different Nitrogen Treatments in the Taihu Lake Basin,China[J].Journal of Environmental Sciences,2015,38:14-23.

[16]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.

[17]朱兆良,SIMPSON J R,张绍林,等.石灰性稻田土壤上化肥氮损失的研究[J].土壤学报,1989,26(4):337-343.

[18]贺发云,尹斌,金雪霞,等.南京两种菜地土壤氨挥发的研究[J].土壤学报,2005,42(2):253-259.

[19]STEVENSON F J,DHARIWAL A P S.Distribution of Fixed Ammonium in Soils[J].Soil Science Society of America Journal,1959,23(2):121-125.

[20]ZHANG Y Z,HUANG S H,WAN D J,etal.Fixed Ammonium Content and Maximum Capacity of Ammonium Fixation in Major Types of Tillage Soils in Hunan Province,China[J].Agricultural Sciences in China,2007,6(4):466-474.

[21]AL-KANANI T,MACKENZIE A F,BLENKHORN H.Volatilization of Ammonia From Urea-Ammonium Nitrate Solutions as Influenced by Organic and Inorganic Additives[J].Fertilizer Research,1990,23(2):113-119.

[22]高鹏程,张一平.氨挥发与土壤水分散失关系的研究[J].西北农林科技大学学报(自然科学版),2001,29(6):22-26.

[23]SHARPE R R,HARPER L A.Soil,Plant and Atmospheric Conditions as They Relate to Ammonia Volatilization[C]∥AHMAD N.Nitrogen Economy in Tropical Soils:Proceedings of the International Symposium on Nitrogen Economy in Tropical Soils,Held in Trinidad,W.I.,January 9-14,1994.Dordrecht,Netherlands:Springer,1996:149-158.

[24]BOUWMEESTER R J B,VLEK P L G.Rate Control of Ammonia Volatilization From Rice Paddies[J].Atmospheric Environment,1981,15(2):131-140.

[25]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240-244.

[26]ZHANG Y S,LUAN S J,CHEN L L,etal.Estimating the Volatilization of Ammonia From Synthetic Nitrogenous Fertilizers Used in China[J].Journal of Environmental Management,2011,92(3):480-493.

[27]环境保护部.化肥使用环境安全技术导则[R].北京:中国环境科学出版社,2015.

[28]石学勇,张彦旭.硫酸脲氨化法生产尿基复合肥工艺技术及应用[J].化肥工业,2011,38(4):13-15,31.

[29]SOMMER S G,OLESEN J E,CHRISTENSEN B T.Effects of Temperature,Wind Speed and Air Humidity on Ammonia Volatilization From Surface Applied Cattle Slurry[J].The Journal of Agricultural Science,1991,117(1):91-100.

[30]杨杉,吴胜军,王雨,等.三峡库区农田氨挥发及其消减措施研究进展[J].土壤,2014,46(5):773-779.

[31]NICHOLSON F A,BHOGAL A,CHADWICK D,etal.An Enhanced Software Tool to Support Better Use of Manure Nutrients:MANNER-NPK[J].Soil Use and Management,2013,29(4):473-484.

[32]SOMMER S G,HUTCHINGS N J.Ammonia Emission From Field Applied Manure and Its Reduction[J].European Journal of Agronomy,2001,15(1):1-15.

[33]SOMMER S G,MISSELBROOK T H.A Review of Ammonia Emission Measured Using Wind Tunnels Compared With Micrometeorological Techniques[J].Soil Use and Management,2016,32(Suppl.1):101-108.

[34]BRUNKE R,ALVO P,SCHUEPP P,etal.Effect of Meteorological Parameters on Ammonia Loss From Manure in the Field[J].Journal of Environmental Quality,1988,17(3):431-436.

[35]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题:我国化肥面临的突出问题及建议[C].南昌:江西科学技术出版社,1997:3-5.

[36]SOMMER S G,SCHJOERRING J K,DENMEAD O T.Ammonia Emission From Mineral Fertilizers and Fertilized Crops[M]∥Advances in Agronomy.Salt Lake City,USA:Academic Press,2004:557-622.

[37]ZHU Z L,CAI G X,SIMPSON J R,etal.Processes of Nitrogen Loss From Fertilizers Applied to Flooded Rice Fields on a Calcareous Soil in North-Central China[J].Fertilizer Research,1988,18(2):101-115.

[38]LI D J.Emissions of NO and NH3From a Typical Vegetable-Land Soil After the Application of Chemical N Fertilizers in the Pearl River Delta[J].PlosOne,2013,8(3):e59360.doi:10.1371/journal.pone.0059360.

[39]VAN DER HOEK K W.Estimating Ammonia Emission Factors in Europe:Summary of the Work of the UNECE Ammonia Expert Panel[J].Atmospheric Environment,1998,32(3):315-316.

[40]SHI Y L,WU Z J,CHEN L J,etal.Development and Application of Slow Release Fertilizer[J].Agricultural Sciences in China,2009,8(6):i.

[41]赵秉强,张福锁,廖宗文,等.我国新型肥料发展战略研究[J].植物营养与肥料学报,2004,10(5):536-545.

[42]SHAVIV A,MIKKELSEN R L.Controlled-Release Fertilizers to Increase Efficiency of Nutrient Use and Minimize Environmental Degradation:A Review[J].Fertilizer Research,1993,35(1/2):1-12.

[43]DOU H,ALVA A K.Nitrogen Uptake and Growth of Two Citrus Rootstock Seedlings in a Sandy Soil Receiving Different Controlled-Release Fertilizer Sources[J].Biology and Fertility of Soils,1998,26(3):169-172.

[44]ROCHETTE P,ANGERS D A,CHANTIGNY M H,etal.Ammonia Volatilization Following Surface Application of Urea to Tilled and No-Till Soils:A Laboratory Comparison[J].Soil and Tillage Research,2009,103(2):310-315.

[45]CHAUHAN H S,MISHRA B.Ammonia Volatilization From a Flooded Rice Field Fertilized With Amended Urea Materials[J].Fertilizer Research,1989,19(1):57-63.

[46]TIMILSENA Y P,ADHIKARI R,CASEY P,etal.Enhanced Efficiency Fertilisers:A Review of Formulation and Nutrient Release Patterns[J].Journal of the Science of Food and Agriculture,2015,95(6):1131-1142.

[47]CHU H Y,HOSEN Y,YAGI K,etal.Soil Microbial Biomass and Activities in a Japanese Andisol as Affected by Controlled Release and Application Depth of Urea[J].Biology and Fertility of Soils,2005,42(2):89-96.

[48]孙克君,毛小云,卢其明,等.几种控释氮肥减少氨挥发的效果及影响因素研究[J].应用生态学报,2004,15(12):2347-2350.

[49]王崇力,韩桂琪,徐卫红,等.专用缓释肥的土壤氨挥发特性及其对辣椒氮磷钾吸收利用的影响[J].中国生态农业学报,2014,22 (2):143-150.

[50]LI Q,YANG A,WANG Z,etal.Effect of a New Urease Inhibitor on Ammonia Volatilization and Nitrogen Utilization in Wheat in North and Northwest China[J].Field Crops Research,2015,175:96-105.

[51]WANG J,WAND D J,ZHANG G,etal.Effect of Wheat Straw Application on Ammonia Volatilization From Urea Applied to a Paddy Field[J].Nutrient Cycling in Agroecosystems,2012,94(1):73-84.

[52]DE RUIJTER F J,HUIJSMANS J F M,RUTGERS B.Ammonia Volatilization From Crop Residues and Frozen Green Manure Crops[J].Atmospheric Environment,2010,44(28):3362-3368.

[53]李宗新,王庆成,刘开昌,等.不同施肥模式下夏玉米田间土壤氨挥发规律[J].生态学报,2009,29(1):307-314.

[54]周怀平,关春林,李红梅,等.旱地玉米秸秆还田秋施肥与土壤氨挥发[C]∥第九届中国青年土壤科学工作者学术讨论会暨第四届中国青年植物营养与肥料科学工作者学术讨论会.成都:《西南农业学报》编辑部,2004.

[55]ROCHETTE P,CHANTIGNY M H,ANGERS D A,etal.Ammonia Volatilization and Soil Nitrogen Dynamics Following Fall Application of Pig Slurry on Canola Crop Residues[J].Canadian Journal of Soil Science,2001,81(4):515-523.

[56]栾江,仇焕广,井月,等.我国化肥施用量持续增长的原因分解及趋势预测[J].自然资源学报,2013,28(11):1869-1878.

[57]巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795.

[58]张福锁,陈新平,陈清.中国主要作物施肥指南[M].北京:中国农业大学出版社,2009:27-48.

[59]国家环境保护总局,南京环境科学研究所.化肥使用环境安全技术导则(征求意见稿) 编制说明[R].[出版地不详]:[出版者不详],2008.

[60]盛婧,孙国峰,郑建初.典型粪污处理模式下规模养猪场农牧结合规模配置研究Ⅰ:固液分离-液体厌氧发酵模式[J].中国生态农业学报,2015,23(2):199-206.

[61]曹兵,李新慧,张琳,等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报,2001,16(2):83-86.

[62]LIN Z C,DAI Q G,YE S C,etal.Effects of Nitrogen Application Levels on Ammonia Volatilization and Nitrogen Utilization During Rice Growing Season[J].Rice Science,2012,19(2):125-134.

[63]XU J Z,LIAO L X,TAN J Y,etal.Ammonia Volatilization in Gemmiparous and Early Seedling Stages From Direct Seeding Rice Fields With Different Nitrogen Management Strategies:A Pots Experiment[J].Soil and Tillage Research,2013,126:169-176.

[64]CAI G X,CHEN D L,DING H,etal.Nitrogen Losses From Fertilizers Applied to Maize,Wheat and Rice in the North China Plain[J].Nutrient Cycling in Agroecosystems,2002,63(2):187-195.

[65]周元军.畜禽粪便对环境的污染及治理对策[J].医学动物防制,2003,19(6):350-354.

[66]王建彬,田林春,王倩倩,等.谈利用营养调控减少猪粪尿中氮、磷对环境的污染[J].猪业科学,2009,26(2):62-64.

[67]PHILIPPE F X,CABARAUX J F,NICKS B.Ammonia Emissions From Pig Houses:Influencing Factors and Mitigation Techniques[J].Agriculture,Ecosystems & Environment,2011,141(3/4):245-260.

[68]LOW A G.4-Role of Dietary Fibre in Pig Diets[M]∥Recent Advances in Animal Nutrition.Oxford,UK:Butterworth-Heinemann,1985:87-112.

[69]WEBB J,BROOMFIELD M,JONES S,etal.Ammonia and Odour Emissions From UK Pig Farms and Nitrogen Leaching From Outdoor Pig Production:A Review[J].Science of the Total Environment,2014,470/471:865-875.

[70]O′SHEA C J,LYNCH B,LYNCH M B,etal.Ammonia Emissions and Dry Matter of Separated Pig Manure Fractions as Affected by Crude Protein Concentration and Sugar Beet Pulp Inclusion of Finishing Pig Diets[J].Agriculture,Ecosystems & Environment,2009,131(3/4):154-160.

[71]PHILIPPE F X,REMIENCE V,DOURMAD J Y,etal.Food Fibers in Gestating Sows:Effects on Nutrition,Behaviour,Performances and Waste in the Environment[J].INRA Productions Animales,2008,21(3):277-290.

[72]LEEK A B G,CALLAN J J,REILLY P,etal.Apparent Component Digestibility and Manure Ammonia Emission in Finishing Pigs Fed Diets Based on Barley,Maize or Wheat Prepared Without or With Exogenous Non-Starch Polysaccharide Enzymes[J].Animal Feed Science and Technology,2007,135(1/2):86-99.

[73]GARRY B P,FOGARTY M,CURRAN T P,etal.The Effect of Cereal Type and Enzyme Addition on Pig Performance,Intestinal Microflora,and Ammonia and Odour Emissions[J].Animal,2007,1(5):751-757.

[74]VELTHOF G L,NELEMANS J A,OENEMA O,etal.Gaseous Nitrogen and Carbon Losses From Pig Manure Derived From Different Diets[J].Journal of Environmental Quality,2005,34(2):698-706.

[75]TIWARI J,BARRINGTON S,ZHAO X.Effect on Manure Characteristics of Supplementing Grower Hog Ration With Clinoptilolite[J].Microporous and Mesoporous Materials,2009,118(1/2/3):93-99.

[76]WANG Y,CHO J H,CHEN Y J,etal.The Effect of Probiotic BioPlus 2B®on Growth Performance,Dry Matter and Nitrogen Digestibility and Slurry Noxious Gas Emission in Growing Pigs[J].Livestock Science,2009,120(1/2):35-42.

[77]BEUSEN A H W,BOUWMAN A F,HEUBERGER P S C,etal.Bottom-Up Uncertainty Estimates of Global Ammonia Emissions From Global Agricultural Production Systems[J].Atmospheric Environment,2008,42(24):6067-6077.

[78]CORTUS E L,LEMAY S P,BARBER E M,etal.A Dynamic Model of Ammonia Emission From Urine Puddles[J].Biosystems Engineering,2008,99(3):390-402.

[79]朱科峰,曹静,梁万杰,等.物联网猪舍氨气浓度与环境数据的关系研究[J].江苏农业科学,2015(12):462-464.

[80]GRANIER R,GUINGAND N,MASSABIE P.Influence of Hygrometry,Temperature and Air Flow Rate on the Evolution of Ammonia Levels[J].Journée de la Recherche Porcine,1996,28(12):209-216.

[81]BLANES-VIDAL V,HANSEN M N,PEDERSEN S,etal.Emissions of Ammonia,Methane and Nitrous Oxide From Pig Houses and Slurry:Effects of Rooting Material,Animal Activity and Ventilation Flow[J].Agriculture,Ecosystems & Environment,2008,124(3/4):237-244.

[82]YE Z,ZHANG G,SEO I H,etal.Airflow Characteristics at the Surface of Manure in a Storage Pit Affected by Ventilation Rate,Floor Slat Opening,and Headspace Height[J].Biosystems Engineering,2009,104(1):97-105.

[83]JEPPSSON K H.Diurnal Variation in Ammonia,Carbon Dioxide and Water Vapour Emission From an Uninsulated,Deep Litter Building for Growing/Finishing Pigs[J].Biosystems Engineering,2002,81(2):213-223.

[84]AARNINK A J A,WAGEMANS M J M.Ammonia Volatilization and Dust Concentration as Affected by Ventilation Systems in Houses for Fattening Pigs[J].Transactions of the American Society of Agricultural Engineers,1997,40(4):1161-1170.

[85]YASUDA T,KURODA K,FUKUMOTO Y,etal.Evaluation of Full-Scale Biofilter With Rockwool Mixture Treating Ammonia Gas From Livestock Manure Composting[J].Bioresource Technology,2009,100(4):1568-1572.

[86]PHILIPPE F X,CABARAUX J F,NICKS B.Ammonia Emissions From Pig Houses:Influencing Factors and Mitigation Techniques[J].Agriculture,Ecosystems and Environment,2011,141(3/4):245-260.

[87]AARNINK A J A,VAN DEN BERG A J,KEEN A,etal.Effect of Slatted Floor Area on Ammonia Emission and on the Excretory and Lying Behaviour of Growing Pigs[J].Journal of Agricultural Engineering Research,1996,64(4):299-310.

[88]HARTUNG J,PHILLIPS V R.Control of Gaseous Emissions From Livestock Buildings and Manure Stores[J].Journal of Agricultural Engineering Research,1994,57(3):173-189.

[89]KIM K Y,KO H J,KIM H T,etal.Quantification of Ammonia and Hydrogen Sulfide Emitted From Pig Buildings in Korea[J].Journal of Environmental Management,2008,88(2):195-202.

[90]PARAMASIVAM S,JAYARAMAN K,WILSON T C,etal.Ammonia Volatilization Loss From Surface Applied Livestock Manure[J].Journal of Environmental Science and Health Part B,2009,44(3):317-324.

[91]HUIJSMANS J F M,HOL J M G,HENDRIKS M M W B.Effect of Application Technique,Manure Characteristics,Weather and Field Conditions on Ammonia Volatilization From Manure Applied to Grassland[J].NJAS:Wageningen Journal of Life Sciences,2001,49(4):323-342.

[92]VANDER ZAAG A,AMON B,BITTMAN S,etal.Ammonia Abatement With Manure Storage and Processing Techniques[M]∥REIS S,HOWARD C,SUTTON A M.Costs of Ammonia Abatement and the Climate Co-Benefits.Dordrecht,Netherlands:Springer,2015:75-112.

[93]STEVENS R J,LAUGHLIN R J,FROST J P.Effects of Separation,Dilution,Washing and Acidification on Ammonia Volatilization From Surface-Applied Cattle Slurry[J].The Journal of Agricultural Science,1992,119(3):383-389.

[94]WEBB J,MENZI H,PAIN B F,etal.Managing Ammonia Emissions From Livestock Production in Europe[J].Environmental Pollution,2005,135(3):399-406.

[95]FANGUEIRO D,HJORTH M,GIOELLI F.Acidification of Animal Slurry:A Review[J].Journal of Environmental Management,2015,149:46-56.

[96]PAIN B F,MISSELBROOK T H,REES Y J.Effects of Nitrification Inhibitor and Acid Addition to Cattle Slurry on Nitrogen Losses and Herbage Yields[J].Grass and Forage Science,1994,49(2):209-215.

[97]PARK S H,LEE B R,KIM T H.Effects of Cattle Manure and Swine Slurry Acidification on Ammonia Emission as Estimated by an Acid Trap System[J].Journal of the Korean Society of Grassland and Forage Science,2015,35(3):212-216.

[98]SMITH K A,JACKSON D R,MISSELBROOK T H,etal.PA—Precision Agriculture:Reduction of Ammonia Emission by Slurry Application Techniques[J].Journal of Agricultural Engineering Research,2000,77(3):277-287.

[99]GUTSER R,EBERTSEDER T,WEBER A,etal.Short-Term and Residual Availability of Nitrogen After Long-Term Application of Organic Fertilizers on Arable Land[J].Journal of Plant Nutrition and Soil Science,2005,168(4):439-446.

[100]VAN DER STELT B,TEMMINGHOFF E J M,VAN VLIET P C J,etal.Volatilization of Ammonia From Manure as Affected by Manure Additives,Temperature and Mixing[J].Bioresource Technology,2007,98(18):3449-3455.

[101]WEBB J,PAIN B,BITTMAN S,etal.The Impacts of Manure Application Methods on Emissions of Ammonia,Nitrous Oxide and on Crop Response:A Review[J].Agriculture,Ecosystems & Environment,2010,137(1/2):39-46.

[102]KRISTENSEN H H,WATHES C M.Ammonia and Poultry Welfare:A Review[J].World′s Poultry Science Journal,2000,56(3):235-245.

(责任编辑: 李祥敏)

Review of Researches on Factors Affecting Emission of Ammonia From Agriculture.

WANG Wen-lin1, LIU Bo2, HAN Rui-ming3, WANG Ye2, LIU Xiao2, XU Qiao2, LI Wen-jing1, TANG Xiao-yan1

(1.Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;2.School of Geography Science, Nantong University, Nantong 226007, China;2.School of Environment, Nanjing Normal University, Nanjing 210023, China)

Ammonia (NH3) as an alkaline gas in the atmosphere plays a key role in the formation of haze. Control of NH3emission at source is hence particularly important to reduction of the concentrations of secondary inorganic salts and PM2.5in the atmosphere, control of haze pollution, and improvement of air environment quality. Agriculture is a major source of anthropogenic NH3emitted into the atmosphere, and farmland fertilization and livestock and poultry breeding are the two major sources in agriculture. Therefore, the review summarized the researches at home and abroad on NH3emissions from agriculture and analyzed factors affecting NH3emissions, which is of fundamental significance to the understanding of the process and characteristics of NH3emission and designing corresponding control measures. It has been found that fertilizer type, soil physic-chemical properties, field meteorological elements and fertilization practice are the main factors affecting NH3emission from farmland fertilization. Nature of feed, barn environment and dung disposal mode are the main factors affecting NH3emission from livestock and poultry breeding. However, currently the researches on NH3emission from farmland fertilization proceed from the aspects of geochemical recycling of N in farmlands and N demand for higher grain yield, while the researches on NH3emission from livestock and poultry breeding do from the aspects of occupation alhygiene and health, both lacking the concerns about the target of controlling the risk of environmental exposure of NH3emission. Hence, it is proposed to unfold studies on emission coefficient of NH3from agricultural sources with the ambient air as emission interface, determination of priority control zones of NH3emissions from agricultural sources, and in the end provision of theoretical basis for formulation of a technical system, strategies, route maps and standards for sub-zonal control of agricultural NH3emission, and formation of relevant policies and regulations for environmental management authorities.

agriculture source; ammonia emission; farmland fertilization; livestock and poultry breeding; influencing factor

2016-06-29

环保公益性行业科研专项(201509038);江苏省自然科学基金(SBK201321353);国家重大科学研究计划(973)(2014CB953800);中央级公益性科研院所基本科研业务专项;大学生创新训练计划(201610304038Z,201610304069)

X501

A

1673-4831(2016)06-0870-09

10.11934/j.issn.1673-4831.2016.06.002

王文林(1981—),男,江苏南京人,副研究员,博士,主要研究方向为流域面源污染控制。E-mail: wangwenlin-jjl@126.com

① 通信作者E-mail: lb@ntu.edu.cn

猜你喜欢

粪肥农田氮肥
畜禽粪肥还田最远运输距离及其影响因素
粪肥是个宝,随意用不好
达尔顿老伯的农田
氮肥供应充足 春耕生产有保障
基于种养结合的种植户粪肥支付意愿研究*
江淮小氮肥 耕耘六十年——纪念安徽小氮肥诞生六十周年
抓住机遇 主动作为 努力推进我国氮肥市场稳步前行
试论粪肥的合理利用及阻控流失措施
2017春季各地氮肥市场掠影
农田创意秀