谷子苗期氮高效品种筛选及相关特性分析
2016-12-01陈二影杨延兵张华文王海莲陈桂玲于淑婷管延安
陈二影,杨延兵,秦 岭,张华文,刘 宾,王海莲,陈桂玲,于淑婷,管延安
(山东省农业科学院作物研究所,济南 250100)
谷子苗期氮高效品种筛选及相关特性分析
陈二影,杨延兵,秦 岭,张华文,刘 宾,王海莲,陈桂玲,于淑婷,管延安
(山东省农业科学院作物研究所,济南 250100)
【目的】评价不同基因型谷子苗期氮素吸收利用差异性,筛选谷子氮高效利用基因型材料,为谷子氮高效利用品种选育和机理研究提供理论依据。【方法】采用沙培盆栽试验,以具有代表性生态类型的79个谷子品种为材料,分析其在低氮(0.2 mmol·L-1)和高氮(6 mmol·L-1)处理下茎叶干物重、含氮量、氮素吸收量、氮素吸收与利用效率的差异及相关性,并划分不同生态类型品种的氮效率类型。【结果】供试谷子品种在2个氮素水平条件下的茎叶干物重(CVN0.235.39%和CVN650.83%)、氮素含量(CVN0.211.52%和CVN611.22%)、氮素吸收量(CVN0.232.82%和CVN648.46%)、氮素吸收效率(CVN0.232.82%和CVN648.45%)、氮素利用效率(CVN0.211.53%和CVN611.27%)和氮效率(CVN0.235.35%和CVN650.61%)均存在较大差异。不同生态类型谷子品种的氮素吸收和利用效率差异显著,西北春谷类型氮素吸收效率的变化(CVN0.239.99%和CVN654.38%)显著高于华北夏谷类型(CVN0.229.31%和CVN645.68%)和东北春谷类型(CVN0.229.49%和CVN640.30%),而氮素利用效率以华北夏谷类型品种间差异最大(CVN0.212.03%和CVN612.70%)。茎叶干物重与氮素吸收和氮素利用效率呈极显著正相关(P<0.01),相关系数分别为R2N0.2=0.1827∗∗和R2
N6=0.1027∗∗及R2N0.2=0.8985∗∗和R2
N6=0.9442∗∗;氮效率与氮素吸收量极显著正相关,与氮含量极显著负相关,相关系数分别为R2N0.2=0.8985∗∗和R2
N6=0.9442∗∗及R2N0.2=0.1962∗∗和R2
N6=0.0998∗∗;氮素利用效率与氮含量极显著负相关,相关系数分别为R2N0.2=0.9924∗∗和R2
N6=0.9910∗∗。氮素吸收效率与氮素含量和氮素利用效率间无显著相关性。以两氮素水平条件下茎叶干物重和氮效率的平均值为标准,将3种生态类型的谷子品种划分为4种氮效率类型,双高效型、双低效型、高氮高效型和低氮高效型。其中,东北春谷双高效型和高氮高效型品种所占比重最高(P东北52.9%>P西北36.0%>P华北29.7%和P东北23.5%>P华北18.9%> P西北4.0%),双低效型比重最低(P东北17.6%<P华北32.4%<P西北36.0%),而低氮高效型在西北春谷类型中所占比重最高(P西北24.0%>P华北18.9%>P东北5.9%)。【结论】不同谷子品种苗期氮效率差异显著,且西北春谷类型品种间氮素吸收效率差异最大,华北夏谷类型品种间氮素利用效率差异最大;氮素吸收效率和利用效率之间无显著相关性,应作为2个独立的氮效率指标进行评价和改良。
谷子;氮素吸收效率;氮素利用效率;生态类型
0 引言
【研究意义】氮是作物生长发育必需的矿质营养元素,施用化肥尤其是氮肥成为提高作物产量的重要途径之一[1-3]。近年来,为了追求作物高产,氮肥的使用量越来越高,产量却增加缓慢。氮肥的利用效率仅为30%—35%,远低于世界40%—60%的平均水平[4-6]。同时,氮肥的低效利用,不仅造成生产成本的增加,而且带来了严重环境污染,阻碍了农业的可持续发展。因此,挖掘作物自身氮素高效利用的潜力,选育具有氮高效利用的品种,是提高作物氮素高效利用的重要手段。【前人研究进展】氮素高效利用的品种资源挖掘是提高氮肥利用效率的重要手段[6-9]。已有研究表明,水稻、小麦、玉米等作物氮素吸收和利用存在较大的基因型差异[3,8,10-11],不同生产效率小麦基因型生物量差异显著[12],不同氮利用效率油菜基因型的农艺性状和氮营养性状对氮肥的敏感性有显著差异[13]。低氮条件下的氮高效小麦品种耐低氮能力强,增产潜力大[14],氮高效水稻品种能够积累更多的氮素,提高氮同化效率[15]。陈明霞等[16]、胡标林等[17]研究表明NH3挥发、穗总粒数和结实率可以作为水稻氮高效材料筛选指标。小麦苗期相对干重是筛选小麦氮高效材料的重要指标[18-19];玉米籽粒吸氮量和吐丝期茎叶总氮量是筛选玉米氮高效的重要指标[20]。赵春波等[21]和黄永兰等[22]分别根据黄瓜苗期干物重和水稻产量在不同氮水平下的差异,划分为4种不同氮素营养类型。【本研究切入点】关于作物氮高效品种的筛选和相关研究已有大量报道,但有关谷子氮高效品种的筛选及相关特性的研究鲜见报道。【拟解决的关键问题】本研究采用沙培盆栽,在低氮和高氮条件下研究3种不同生态类型的谷子品种苗期氮素营养效率的差异及相关性,划分不同氮素营养类型,筛选出谷子氮高效利用基因型材料,为谷子氮高效品种的选育和氮高效机理研究提供依据。
1 材料与方法
1.1 供试品种
试验谷子品种79份,其中华北夏谷品种37份,西北春谷品种25份,东北春谷品种17份。品种名称和相关信息见表1。
1.2 试验设计
表1 供试谷子品种Table 1 The foxtail millet varieties used in the experiment
试验于2015年在山东省农业科学院试验基地温室内进行。采用沙培盆栽试验,沙盒大小为0.8 m长×0.5 m宽×0.4 m高。沙盒每盆装入35 kg细沙,容重为1.28 g·cm-3。沙子使用前用去离子水冲洗去掉粘附的营养元素,晾干备用。5月20日播种,出苗一周后间苗至密度为150株/m2。
在前期不同氮浓度对谷子苗期生长发育的研究基础上(数据未发表),设置低氮(0.2 mmol·L-1)和高氮(6 mmol·L-1)2个氮素水平,每个试验处理重复4次。采用改良Hoagland营养液进行浇灌。每隔2 d浇灌500 mL营养液,每次浇灌前用去离子水进行完全冲洗。同时每天根据水分蒸发情况,采用称重法适量补充水分,使水分含量为最大持水量的70%。适期防治病虫害。
1.3 测定项目与分类方法
出苗后30 d开始取样,用去离子水冲洗植株,吸干表面水分,分地上部和根系取样,105℃杀青、70℃烘箱烘干48 h,地上部用于相关指标的测定。地上部含氮量采用微量凯氏定氮法测定[23]。氮素吸收和利用效率的相关指标按以下公式计算[24-26]。谷子苗期氮素营养类型的划分参考甘蔗[27]、水稻[28]、黄瓜[21]等的分类方法。
氮效率(g·g-1)=植株干物重 /介质中供氮量;
植株氮素吸收量(mg/plant)=植株干物重×含氮量;
氮素吸收效率(%)=植株体内氮素吸收总量/介质中供氮量×100;
氮素利用效率(g·g-1)=植株干物重/植株体内氮素累积量。
1.4 数据统计与分析
采用DPS软件进行数据处理和统计分析,Excel软件进行图表制作。
2 结果
2.1 不同谷子品种氮素吸收和利用的差异
不同谷子品种的干物重、氮吸收量、氮含量、氮素吸收和利用效率均存在显著性差异(表2)。方差分析结果表明,各参数与谷子品种、氮素水平和二者互作相关极显著。随着氮水平的提高,谷子干物重、氮吸收量和氮含量增加,氮效率、氮吸收效率和利用效率降低(表3)。供试谷子品种各参数的变异系数存在明显差异,以干物重和氮效率的变化最高,氮吸收量和氮吸收效率变化次之,氮含量和氮素利用效率的变化最低。表明不同品种间氮效率的差异主要由氮素吸收效率变化引起,氮素利用效率变化的贡献较小。
2.2 不同生态类型谷子品种氮素吸收和利用的差异
表2 不同谷子品种氮效率和相关参数方差分析Table 2 Analysis of variance of F values of nitrogen use efficiency and related parameters in foxtail millet varieties
表3 谷子品种间氮效率和相关参数的差异Table 3 Variation of nitrogen use efficiency and related parameters in foxtail millet varieties
随着供氮水平的提高,3种生态类型的谷子品种干物重的均值和变异系数均增加,但增幅存在差异,均值增加以东北春谷类型(0.12 g/plant)>华北夏谷类型(0.11 g/plant)>西北春谷类型(0.06 g/plant),变异系数增加以华北夏谷类型(16.40%)>东北春谷类型(13.76%)>西北春谷类型(13.50%)(表4)。在低氮条件下3种生态类型谷子品种干物重均值无显著差异,高氮条件下华北夏谷类型和东北春谷类型干物重均值显著高于西北春谷类型(P<0.05)。西北春谷类型品种的变异系数在高低供氮条件下均显著高于华北夏谷类型品种和东北春谷类型品种。
3种生态类型的谷子品种氮吸收量均值和变异系数随着氮水平的增加而提高,均值的增幅以东北春谷类型品种最高(4.25 mg/plant),大于华北夏谷类型(4.15 mg/plant)和西北春谷类型(3.04 mg/plant),变异系数的增幅以华北夏谷类型(16.36%)>西北春谷类型(14.41%)>东北春谷类型(10.83%)。在高低供氮条件下,3种生态类型谷子品种氮吸收量的均值以东北春谷类型最高,显著高于华北夏谷类型和西北春谷类型品种(P<0.05),但变异系数以西北春谷类型最高,显著高于华北夏谷类型和东北春谷类型品种(P<0.05)。在低氮水平下,3种生态类型谷子品种氮含量均值和变异系数均无显著差异;在高氮水平下,华北夏谷类型和西北春谷类型品种氮含量的均值显著高于东北春谷类型品种(P<0.05),变异系数则以华北夏谷类型品种最高,显著高于东北春谷类型和西北春谷类型品种(P<0.05)。氮水平和生态类型对各农艺参数均存在显著的交互作用。
随着供氮水平的提高,3种生态类型谷子品种氮效率和氮吸收效率变异系数显著提高(表5),增幅以华北夏谷类型(15.86%和16.37%)>西北春谷类型(13.19%和14.39%)>东北春谷类型(11.71%和10.81%);华北夏谷类型品种氮利用效率的变异系数随着氮水平的提高略有提高,东北春谷类型和西北春谷类型氮利用效率的变异系数则降低。在高低氮水平下,3种生态类型谷子品种氮效率和氮吸收效率均值均以东北春谷类型品种最高,高于西北春谷类型和华北夏谷类型品种,而变异系数以西北春谷类型最高,显著高于华北夏谷类型和东北春谷类型(P<0.05)。在低氮水平下,氮利用效率的均值在3种生态类型谷子品种间无显著差异;在高氮水平下,均值以东北春谷类型品种最高,显著高于西北春谷类型和华北夏谷类型品种(P<0.05)。3种生态类型谷子品种氮利用效率的变异系数在高低供氮水平下均以华北夏谷类型最高,显著高于西北春谷类型和东北春谷类型(P<0.05)。氮水平、生态类型及其交互作用对氮效率和氮吸收效率的相关参数均有显著作用(P<0.01;P<0.05),但生态类型及其与氮水平的交互作用对氮利用效率的均值无显著影响。
表4 不同生态类型谷子品种干物重、氮吸收量和氮含量的差异Table 4 Variation of dry weight, N content and N concentration in different ecological foxtail millet types
2.3 谷子品种干物重、氮吸收量、氮含量及氮效率的相关分析
两氮素水平下氮效率与氮吸收量呈极显著正相关(P<0.01;R2低氮=0.8985**,R2高氮=0.9442**),而与氮含量呈极显著负相关(P<0.01;R2低氮=0.1962**,R2高氮=0.0998**)(图1)。在高低氮水平下,氮效率和干物重与氮吸收效率及氮利用效率均呈极显著正相关(图2,图3),但与氮素吸收效率的相关性高于氮素利用效率(R2吸收(低氮)=0.8985**>R2利用(低氮)=0.1827**;R2吸收(高氮)=0.9442**>R2利用(高氮)=0.1027**)。氮利用效率在高低氮水平下与氮含量呈极显著负相关(图4),相关系数分别为R2低氮=0.9924**和R2高氮=0.9910**,但与氮吸收量之间无显著相关性。表明谷子苗期植株较高的氮含量不利于氮素的利用。在两氮水平下,氮吸收效率与氮含量和氮利用效率均无显著的相关性(图5),说明氮素吸收效率和氮素利用效率是2个独立的性状指标。
表5 不同生态类型谷子品种氮效率的差异Table 5 Variation of nitrogen use efficiency in different ecological foxtail millet types
图1 不同氮水平下谷子氮效率和氮含量及氮吸收量的相关性Fig. 1 Relationship between NUE with N concentration and N content amongst foxtail millet cultivars under low and high N level
图2 不同氮水平下谷子氮效率和氮吸收效率及氮利用效率的相关性Fig. 2 Relationship between NUE with NupE and NutE amongst foxtail millet cultivars under low and high N level
图3 不同氮水平下干物重和氮吸收效率及氮利用效率的相关性Fig. 3 Relationship between shoot biomass with NupE and NutE amongst foxtail millet cultivars under low and high N level
图4 不同氮水平下氮利用效率和氮含量及氮吸收量的相关性Fig. 4 Relationship between NutE with N concentration and N content amongst foxtail millet cultivars under low and high N level
2.4 不同生态类型谷子品种氮效率的评价与分类
3种生态类型谷子品种干物重和氮效率在两氮水平下表现出相同的趋势(图6)。以2个氮素水平下的干物重和氮效率平均值为标准,对谷子品种的干物重和氮效率进行分类,大于平均值的为高效型,低于平均值的为低效型。分别将3种生态类型的谷子品种划分为4种类型,即双高效型、高氮高效型、低氮高效型和双低效型。4种类型谷子品种在不同生态类型间的分布存在差异。双高效型、高氮高效型、低氮高效型和双低效型在华北夏谷类型、东北春谷类型和西北春谷类型中所占的比例分别为29.7%、18.9%、18.9%和32.4%;52.9%、23.5%、5.9%和17.6%;36.0%、4.0%、24.0%和36.0%(电子附表1—电子附表3)。结果表明,双高效型和高氮高效型品种在东北春谷类型中所占比例最高;低氮高效型品种在西北春谷类型中比例最高,在东北春谷类型中比例最低。
图5 不同氮水平下氮吸收效率和氮含量及氮利用效率的相关性Fig. 5 Relationship between NupE with N concentration and NutE amongst foxtail millet cultivars under low and high N level
图6 不同生态类型谷子品种干物重和氮效率分类Fig. 6 Classification of shoot biomass and NUE of three ecological variety types
3 讨论
3.1 谷子苗期氮效率差异
苗期是作物生长发育的重要阶段,也是氮素供给和作物需求矛盾的主要时期[29-30],苗期作物氮素需求量低,土壤中的氮素以渗漏方式大量流失[31],挖掘苗期具有氮素高效吸收和利用的种质资源是解决苗期氮肥供需矛盾的重要途径[32]。本研究表明,谷子品种苗期氮素营养性状方面存在较大的遗传差异,与水稻[33]、小麦[30,32,34]、黄瓜[21]等苗期研究结果基本一致。同时研究结果表明谷子茎叶干物重、氮效率、氮吸收量和氮吸收效率的变异系数随着施氮量的提高而提高,表明高氮水平有利于增加谷子苗期生长发育和氮效率的品种间差异。关于作物苗期氮高效评价指标体系和氮高效评价指标的选用研究不一,裴雪霞等[18]认为小麦相对干重作为小麦苗期氮高效评价指标;杜保见等[19]选择茎叶N累积量和叶面积作为小麦苗期氮高效评价指标;赵春波等[21]指出植株干物重可作同一供氮水平下黄瓜苗期N效率评价的首选指标,茎叶N累积量和N素利用指数可作为次级指标。本研究表明两氮素水平下茎叶干物重(CV低氮35.39%和CV高氮50.83%)、氮效率(CV低氮35.35%和CV高氮50.61%)、氮吸收量(CV低氮32.82%和CV高氮48.46%)和氮吸收效率(CV低氮32.82%和CV高氮48.45%)品种间差异较大,因此,干物重和氮吸收量可以作为谷子苗期氮效率评价的首选指标。
3.2 谷子苗期氮效率参数间的相关性
作物的氮效率由氮素吸收和氮素利用效率两部分组成。本研究表明,在高低供氮水平下谷子苗期氮效率与氮素吸收和利用效率均呈极显著正相关(P<0.01),但与氮吸收效率的相关系数(R2低氮=0.8985**,R2高氮=0.9442**)高于与氮素利用效率的相关系数(R2低氮=0.1827**,R2高氮=0.1027**),表明谷子苗期氮素吸收效率对氮效率的贡献起主导作用,这与在其他作物上的研究结果相似[35-37]。同时本研究表明,谷子苗期氮效率在两氮水平下与氮素吸收量呈极显著正相关,与氮含量呈极显著负相关,表明谷子苗期高氮效率品种应具有高氮素积累量和低氮素含量。研究结果还表明在高低氮水平下,谷子苗期氮素吸收效率和氮素利用效率之间无显著相关性,因此,在筛选和改良谷子苗期氮高效品种时,氮素吸收效率和氮素利用效率应作为2个独立的性状指标进行选择和改良。
3.3 不同生态类型谷子品种氮效率差异与氮效率类型的划分
中国谷子的种植区域可划分为东北春谷类型、西北春谷类型和华北夏谷类型等3种生态类型。本研究表明,在高低供氮水平下,3种生态类型谷子品种间与氮效率的相关性状指标均存在显著差异。3种生态类型间比较,东北春谷类型的茎叶干物重、氮吸收量、氮效率和氮吸收效率的均值最高,但各参数品种间的变异系数以西北春谷类型最高。表明3种生态类型的谷子品种以东北春谷类型苗期生长发育和氮效率最高,但各类型品种间的差异以西北春谷类型最大。借鉴其他作物关于氮效率类型的划分[23-24],根据茎叶干物重和氮效率均值将3种生态类型的谷子品种划分为4种类型:在低氮和高氮水平下均高效的品种,为双高效型,代表性的品种为龙谷32、晋谷45和豫谷17等(附表1—附表3);在高氮条件下高效的品种,为高氮高效型,代表性的品种为公矮6号、内小香玉和鲁谷5号等;在低氮条件下高效的品种,为低氮高效型,代表性的品种为公谷65、秦谷3号和冀谷26等;在低氮和高氮水平下均低效的品种,为双低效型,代表性的品种为龙谷31、长谷4号和聊农1号等。其中华北夏谷类型以双低效型品种的比例最高,东北春谷类型以双高效型品种比例最高,西北春谷类型以低氮高效型品种比例最高。上述结果表明,不同生态类型谷子品种苗期生长发育和氮效率存在差异,且4种氮效率类型在3种生态类型的谷子品种间分布不均匀,存在生态类型的差异,这可能与不同类型的生态环境和苗期土壤供氮水平有关,仍需进一步研究,以期明确不同生态类型谷子品种苗期氮效率的特征和改良的方向。
4 结论
谷子苗期氮素吸收和利用效率存在显著差异,且随供氮水平的提高差异增大。谷子苗期干物重和氮素吸收量可以作为谷子苗期氮效率评价的重要指标。谷子苗期氮吸收效率和氮利用效率之间无显著相关性,在谷子苗期氮高效品种筛选和评价时,应作为2个独立的性状指标进行选择和改良。根据茎叶干物重和氮效率的均值将79个谷子品种划分为4种氮效率类型,且在3种生态类型间分布不均匀,存在生态类型的差异。
[1] CASSMAN K G, DOBERMANN A, WALLERS D T, YANG H S. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resource, 2003, 28: 315-358.
[2] PENG S, BURESH R J, HUANG J, ZHONG X, ZOU Y, YANG J, WANG G, LIU Y, TANG Q, CUI K, ZHANG F, DOBERMANN A. Improving nitrogen fertilization in rice by site-specific N management: A review. Agronomy for Sustainable Development, 2010, 30: 649-656.
[3] CHENG X J, ROLAND J, BURESH R J, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015, 175: 47-55.
[4] PENG S, BURESH R J, HUANG J, YANG, J, ZOU Y, ZHONG X, WANG G, ZHANG F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96: 37-47.
[5] PENG S, TANG Q, ZOU Y. Current status and challenges of rice production in China. Plant Production Science, 2009, 12: 3-8.
[6] CHEN X P, CUI Z L, FAN M S, VJITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X, GAO Q, ZHANG Q, GUO S, REN J, LI S, YE Y, WANG Z, HUANG J, TANG Q, SUN Y, PENG X, ZHANG J, HE M, ZHU Y, XUE J, WANG G, WU L, AN N, WU L, MA L, ZHANG W, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-491.
[7] LADHA J K, KIRK G J D, BENNETT J, PENG S, REDDY C K, REDDY P M, SINGH U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field CropsResearch, 1998, 56: 41-71.
[8] KANT S, BI Y M, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 2011, 62: 1490-1509.
[9] HAEGELE J W, COOK K A, NICHOLS D M, BELOW F E. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Science, 2013, 53: 1256-1268.
[10] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 天昊, 张燕, 袁秋梅,王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011, 44(22): 4570-4582. DONG G C, WANG Y, YU X F, ZHOU J, PENG B, LI Q J, TIAN H, ZHANG Y, YUAN Q M, WANG Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Scientia Agricultura Sinica, 2011, 44(22): 4570-4582. (in Chinese)
[11] GAJU O, ALLARD V, MARTRE P, SNAPE J W, HEUMEZ E, LEGOUIS J, MOREAU D, BOGARD M, GRIFFITHS S, ORFORD S, HUBBART S, FOULKES M J. Identification of traits to improve the nitrogen use efficiency of wheat genotypes. Field Crops Research, 2011, 123: 139-152.
[12] 张锡州, 阳显斌, 李廷轩, 余海英. 小麦氮素利用效率的基因型差异. 应用生态学报, 2011, 22(2): 369-375. ZHANG X Z, YANG X B, LI T X, YU H Y. Genotype difference in nitrogen utilization efficiency of wheat. Chinese Journal of Applied Ecology, 2011, 22(2): 369-375. (in Chinese)
[13] 杨睿, 伍晓明, 安蓉, 李亚军, 张玉莹, 陈碧云, 高亚军. 不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系.植物营养与肥料学报, 2013, 19(3): 586-596. YANG R, WU X M , AN R, LI Y J, ZHANG Y Y, CHEN B Y, GAO Y J. Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 586-596. (in Chinese)
[14] 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪. 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015, 48(13): 2569-2579. WANG X C, WANG X H, XIONG S P, MA X M, DING S J, WU K Y, GUO J B. Differences in Nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels. Scientia Agricultura Sinica, 2015, 48(13): 2569-2579. (in Chinese)
[15] 冯洋, 陈海飞, 胡孝明, 周卫, 徐芳森, 蔡红梅. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014, 20(5): 1051-1062. FENG Y, CHEN H F, HU X M, ZHOU W, XU F S, CAI H M. Nitrogen efficiency screening of rice cultivars popularized in south China. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051-1062. (in Chinese)
[16] 陈明霞, 黄见良, 崔克辉, 聂立孝, 彭少兵. 不同氮效率基因型水稻植株氨挥发速率及其与氮效率的关系. 作物学报, 2010, 36(5): 879-884. CHEN M X, HUANG J L, CUI K H, NIE L X, PENG S B. Genotypic variation in ammonia volatilization rate of rice shoots and its relationship with nitrogen use efficiency. Acta Agronomic Sinica, 2010, 36(5): 879-884. (in Chinese)
[17] 胡标林, 李霞, 万勇, 邱在辉, 聂元元, 谢建坤. 东乡野生稻BILs群体耐低氮性表型性状指标筛选及其综合评价. 应用生态学报, 2015, 26(8): 2346-2352. HU B L, LI X, WAN Y, QIU Z H, NIE Y Y, XIE J K. Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from dongxiang wild rice (Oryza rufipogon Griff.). Chinese Journal of Applied Ecology, 2015, 26(8): 2346-2352. (in Chinese)
[18] 裴雪霞, 王姣爱, 党建友, 张定一. 耐低氮小麦基因型筛选指标的研究. 植物营养与肥料学报, 2007, 13(1): 93-98. PEI X X, WANG J A, DANG J Y, ZHANG D Y. An approach to the screening index for low nitrogen tolerant wheat genotype. Journal of Plant Nutrition and Fertilizer, 2007, 13(1): 93-98. (in Chinese)
[19] 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20(6): 1349-1357. DU B J, GAO H J, CHANG J, ZHANG L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1349-1357. (in Chinese)
[20] 崔文芳, 高聚林, 于晓芳, 胡树平, 苏治军, 王志刚, 孙继颖, 谢岷.氮高效玉米自交系的筛选指标及其子粒氮素营养特性分析. 植物营养与肥料学报, 2014, 20(2): 290-297. CUI W F, GAO J L, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. The index for the screening of N-efficient inbred lines of maize and their N nutrition peculiarity in seed production. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 290-297. (in Chinese)
[21] 赵春波, 宋述尧, 赵靖, 张雪梅, 张越, 张松婷. 北方地区不同黄瓜品种氮素吸收与利用效率的差异. 中国农业科学, 2015, 48(8): 1569-1578. ZHAO C B, SONG S Y, ZHAO J, ZHANG X M, ZHANG Y, ZHANG S T. Variation in nitrogen uptake and utilization efficiency ofdifferent cucumber varieties in northern China. Scientia Agricultura Sinica, 2015, 48(8):1569-1578. (in Chinese)
[22] 黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015, 16(1): 87-93. HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015, 16(1): 87-93. (in Chinese)
[23] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2003: 25-268. BAO S D. Soil Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agricultural Press, 2003: 25-268. (in Chinese)
[24] MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562-564.
[25] ALLEN G G, ASHOK K S, DOUGLAS G M. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 2004, 9: 597-605.
[26] SVEČNJAK Z, RENGEL Z. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Research, 2006, 97(2): 221-226.
[27] ROBINSON N, FLETCHER A, WHAN A, CRITCHLEY C, VONWIRÉN N, LAKSHMANAN P, SCHMINDT S. Sugarcane genotypes differ in internal nitrogen use efficiency. Functional Plant Biology, 2007, 34: 1122-1129.
[28] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45(2): 265-273. ZHANG Y L, FAN J B, DUAN Y H, WANG D S, YE L T, SHEN Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedologica Sinica, 2008, 45(2): 265-273. (in Chinese)
[29] FILLERY I R, MCINNES K J. Components of the fertiliser nitrogen balance for wheat production on duplex soils. Australian Journal of Experimental Agriculture, 1992, 32: 887-899.
[30] LIAO M T, FILLERY I R P, PALTA J A. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 2004, 31: 121-129.
[31] ANDERSON G C, FILLERY I R P, DUNIN F X, DOLLING P J, ASSENG S. Nitrogen and water flows under pasture-wheat and lupin-wheat rotations in deep sands in Western Australia-2. Drainage and nitrate leaching. Australian Journal of Agricultural Research, 1998, 49: 345-361.
[32] PANG J Y, PALTA J A, REBETZKE G J, MILROY S P. Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Functional Plant Biology, 2014, 41: 215-222.
[33] 阮新民, 施伏芝, 罗志祥, 佘德红. 水稻苗期氮高效品种评价与筛选的初步研究. 中国稻米, 2010, 16(2): 22-25. RUAN X M, SHI F Z, LUO Z X, SHE D H. Studies on screening and evaluating nitrogen efficiency varieties rice at seedling stage. China Rice, 2010, 16(2): 22-25. (in Chinese)
[34] LIAO M T, PALTA J A, FILLERY I R P. Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research, 2006, 57: 1097-1107.
[35] MUURINEN S, SLAFER G A, PELTONEN-SAINIO P. Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Science, 2006, 46: 561-568.
[36] SYLVESTER-BRADLEY R, KINDRED D R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 2009, 60: 1939-1951.
[37] BINGHAM I J, KARLEY A J, WHITE P J, THOMAS W T B, RUSSELL J R. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. European Journal of Agronomy, 2012, 42: 49-58.
(责任编辑 李莉)
Evaluation of Nitrogen Efficient Cultivars of Foxtail Millet and Analysis of the Related Characters at Seedling Stage
CHEN Er-ying, YANG Yan-bing, QIN Ling, ZHANG Hua-wen, LIU Bin, WANG Hai-lian, CHEN Gui-ling, YU Shu-ting, GUAN Yan-an
(Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100)
【Objective】The objective of this experiment was to probe genetic variation of nitrogen uptake efficiency (NupE) and nitrogen utilization efficiency (NutE) of foxtail millet cultivars at seedling stage and screen N efficient cultivars, which could provide a theoretical basis for the development of new N efficient varieties and N efficient mechanism study. 【Method】In this study, a sand culture pot experiment was conducted with 79 foxtail millet cultivars from three typically ecological types, shoot biomass, nitrogenconcentration, nitrogen content, NutE and NupE were assessed under low nitrogen (0.2 mmol·L-1) and high nitrogen (6 mmol·L-1) supply, nitrogen use efficiency (NUE) types were also classified. 【Result】Large genetic variation was observed in shoot biomass, shoot N concentration, shoot N content, NupE, NutE and NUE at seedling stage. Among the three ecological types, northwest spring foxtail millet cultivars had the highest genetic variation of NupE, followed by north summer and northeast spring foxtail millet cultivars, while the genotypic variation of NutE in north summer type was more than that in northwest and northeast spring foxtail millet cultivars. Shoot biomass was significantly and positively correlated with NupE and NutE (P<0.01), and correlation coefficients were R2N0.2=0.1827∗∗and R2N6=0.1027∗∗, R2N0.2=0.8985∗∗and R2N6=0.9442∗∗, respectively. NUE was significantly and positively correlated with nitrogen content and negatively correlated with nitrogen concentration, and correlation coefficients were R2N0.2=0.8985∗∗and R2N6=0.9442∗∗, R2N0.2=0.1962∗∗and R2N6=0.0998∗∗, respectively. NupE was negatively correlated with nitrogen concentration, and the correlation coefficients were R2N0.2=0.9924∗∗and R2N6=0.9910∗∗. There was no significant correlation between NupE and nitrogen concentration, and between NupE and NutE. According to means of shoot biomass and NUE of 79 foxtail millet cultivars, foxtail millet cultivars from three ecological regions were classified into four types, respectively, both higher than the average under low nitrogen and high nitrogen level (HLHH), both lower than the average under low nitrogen and high nitrogen level (LLLH), higher than the average under low nitrogen and lower than the average under high nitrogen level (HLLH), and lower than the average under low nitrogen and higher than the average under high nitrogen level (LLHH). HLHH and LLHH types were dominant cultivar types in northeast spring foxtail millet, and the percentage of LLLH types was the lowest in northeast spring foxtail millet (PNW17.6%<PNS32.4%<PNE36.0%). However, HLLH types were the main cultivar types in northwest spring foxtail millet (PNW24.0%>PNS18.9%>PNE5.9%). 【Conclusion】There was a significant NUE genetic variation of seedlings in different foxtail millet cultivars. Genetic variation of NupE was the highest in northwest spring foxtail millet cultivars, and north summer foxtail millet cultivars had the highest genetic variation of NutE. There was no significant correlation between NupE and NutE, indicating that the evaluation and improvement of N uptake and utilization should be undertaken independently.
foxtail millet; nitrogen uptake efficiency (NupE); nitrogen utilization efficiency (NutE); ecological types
2016-04-08;接受日期:2016-06-01
国家现代农业产业技术体系建设专项(CARS -07 -12.5 -A11)、国家科技支撑计划子课题(2014BAD07B01-02)、山东省重大技术专项(2015ZDJ03001-2)、山东省农业科学院青年科研基金(2016YQN03)
联系方式:陈二影,Tel:0531-83178115;E-mail:chenerying_001@163.com。通信作者管延安,Tel:0531-83178115;E-mail:Yguan65@163.com