APP下载

肌球蛋白高压凝胶机理的研究进展

2016-11-20薛思雯王梦瑶徐幸莲

肉类研究 2016年10期
关键词:肌球蛋白变性凝胶

薛思雯,钱 畅,王梦瑶,徐幸莲*

(南京农业大学肉品加工与质量控制教育部重点实验室,食品安全与营养协同创新中心,江苏省肉类生产与加工质量安全控制协同创新中心,江苏 南京 210095)

肌球蛋白高压凝胶机理的研究进展

薛思雯,钱 畅,王梦瑶,徐幸莲*

(南京农业大学肉品加工与质量控制教育部重点实验室,食品安全与营养协同创新中心,江苏省肉类生产与加工质量安全控制协同创新中心,江苏 南京 210095)

超高压加工技术是一项能够影响肉类凝胶功能特性的非热加工技术,肌球蛋白是肉类凝胶形成过程中起主要作用的蛋白质。虽然人们对于高压处理对肉类凝胶影响的机理研究不断深入,但是在肌肉与肌原纤维蛋白层面的研究常受限于其复杂的体系,因此针对单体蛋白的基础研究有助于对这一体系的进一步探索,从而更好地指导实践生产。该文着重于介绍高压处理对肌球蛋白凝胶形成过程机理的研究进展和存在的技术限制以及对未来的展望。

肌球蛋白;超高压;凝胶机理

薛思雯, 钱畅, 王梦瑶, 等. 肌球蛋白高压凝胶机理的研究进展[J]. 肉类研究, 2016, 30(10): 40-44. DOI:10.15922/j.cnki. rlyj.2016.10.008. http://rlyj.cbpt.cnki.net

XUE Siwen, QIAN Chang, WANG Mengyao, et al. Progress in understanding the mechanism of the high pressure-induced gelation of myosin[J]. Meat Research, 2016, 30(10): 40-44. (in Chinese with English abstract) DOI:10.15922/j.cnki. rlyj.2016.10.008. http://rlyj.cbpt.cnki.net

肌球蛋白,是肌原纤维蛋白在凝胶形成过程中起最主要作用的蛋白质,对肉类凝胶的功能特性如保水性、保油性、乳化特性等都起决定性作用,它在特定条件下会形成多聚体,在生理条件或者低离子强度条件下是不可溶解的,大部分的肌球蛋白分子在0.5 mol/L氯化钾和20 mmol/L磷酸钾缓冲液中呈单体状态(pH 7.0)[1]。

肌球蛋白分子是形如豆芽状的单体蛋白分子(有头部和尾部),由6 条多肽链组成,分别为2 条重链(myosin heavy chain,MHC)和4 条轻链(light chain,LC),经胰蛋白酶水解后会形成重酶解肌球蛋白(heavy meromyosin,HMM)和轻酶解肌球蛋白(light meromyosin,LMM)[2]。在肌球蛋白的头部有Ca-ATPase的活性位点,它会随着加热或者加压逐步失活而导致蛋白构象的变化。有研究认为当有50%的Ca-ATPase失去活性时,肌球蛋白就会聚集形成良好的凝胶网络结构[3]。

超高压加工(high pressure processing,HPP)技术是近几十年来兴起的非热加工技术之一,较传统技术而言,其不仅可以有效灭菌、钝酶,还能通过修饰蛋白来改善产品的质构和保油、保水性;同时又不会破坏小分子及共价键,能最大程度地保持产品的风味与色泽[4-5]。随着相应设备的不断开发,该技术已被广泛运用于商业化生产中[6]。

许多学者针对高压处理对肉制品或肌原纤维蛋白的影响做过相应的研究探讨,发现将肉类蛋白质在合适的参数下进行高压处理能够显著改善其加工特性,起促溶、增强乳化、持水以及凝胶能力的效果;更能在不改变或提高其功能特性的前提下达到减少氯化钠或磷酸盐添加量的目的[7-10],即高压作用会影响盐离子对肌球蛋白分子的修饰作用以及他们之间的相互作用。但同时高压参数的微小变化也会使蛋白质的功能特性呈现出极为显著的变化,对肉类蛋白造成不良的影响从而减弱其功能特性。为最大程度地在肉品加工领域应用超高压技术,需要更深入地研究高压对肌肉或者肌原纤维蛋白体系的作用。而肌球蛋白层面的基础研究有助于对这一复杂体系的深入了解,从而为高压凝胶类肉制品的生产提供理论指导和技术支持。

1 超高压作用于肌球蛋白分子的主要方式

高压对肌球蛋白分子的影响与热处理不同。加热是一个时间较长的过程,在20世纪末,Yamamoto[11]、Sharp[12]等分别利用金属投影透射电镜和负染法透射电镜观察,发现在加热过程中肌球蛋白的头部与头部、尾部与尾部、头部与尾部之间相互作用交联,在非共价键(疏水相互作用、范德华力等)和共价键(二硫键等)作用下形成相互交联的凝胶网络结构。Sharp等[12]更发现温度越高,参与的肌球蛋白分子越多,肌球蛋白形成的聚合体越大,随着温度进一步升高到50 ℃以上,尾部开始变得模糊,形成交联,研究强调肌球蛋白头-头之间的交联形成了球状聚合物,而尾部之间的交联可能才是形成链之间交联和凝胶网络的重要作用。

高压处理是瞬时、均一的作用过程,整个反应体系没有显著的压力梯度变化。当压力作用于蛋白质时,产生的最大影响是蛋白质的体积会被压缩,分子形态会变化以及凝胶形成过程中分子间会形成相互作用,从而发生可逆或不可逆的改变;而这一过程也离不开温度的作用,在升压过程中,压力使得腔体的体积变小,引起腔体内的温度升高;而降压时温度也会随之下降,且温度高低、变化快慢都与升压/降压速率密切相关[13]。因此前人关于肌球蛋白热凝胶的研究也是今后探究高压对肌球蛋白成胶机理的重要基础。但与热变性成胶不同的是,肌球蛋白的高压变性聚集和之后的凝胶形成没有一个统一的模式且高压参数的影响很大;更有许多学者研究指出高压作用下的凝胶和热凝胶机制不同,头部极有可能是关键区域[14-15]。

超高压技术在肉制品中的应用根据参数和与热处理的结合主要分4 种,而其中对肌球蛋白凝胶特性有显著影响的主要是非变性温度下高压处理后热加工以及变性温度下高压处理直接形成凝胶,这2 种工艺分别称为高压辅助凝胶和高压凝胶,两者使蛋白变性以及成胶的影响也不同。Fernández-Martín等[16]的研究便发现非变性温度下高压处理会使肌球蛋白稳定性降低,有利于其进一步变性;而变性温度下高压处理,高压作用反而会保护肌球蛋白分子中的某些天然构象,延迟其变性,继而导致整个体系的变性温度升高,过程减缓。故形成的高压凝胶与单纯的热诱导凝胶相比,保水保油性有较大改善,但凝胶的质构特性有所下降。同时由于高压凝胶所要求的压力水平较高,对设备的要求也更为苛刻,因此从企业效益出发,高压辅助凝胶技术更受青睐,该技术不仅能够有效地改善蛋白质的功能特性(例如可以改善鸡肉中的类PSE肉的功能特性[17]),还能达到减盐、减脂的目的[18],更能大幅度提高肉制品的安全性,在肉制品加工行业有广阔的应用前景[19]。

2 高压对肌球蛋白分子的影响

2.1 高压对肌球蛋白分子形态的影响

由于高压辅助凝胶技术能显著地改善肉制品蛋白凝胶的功能特性,且所施加的压力水平一般低于400 MPa,在现有的高压工艺肉制品加工中应用较多,高压作用对于蛋白分子最直观的影响是使其分子形态产生变化。Yamamoto[11]发现,当压力达到140 MPa以上时,溶解于0.5 mol/L KCl、pH 6.0溶液中的肌球蛋白分子开始聚集,而当压力进一步加大到210 MPa时,溶液中大量肌球蛋白分子头部发生聚集,尾部向外分散,形成菊花轮状的分子簇结构;且有部分肌球蛋白分子经高压处理后会丢失一个头部结构。Sikes等[20]发现对牛肉加热前高压处理可以增加肌球蛋白的溶解性促进黏结,同时使分子部分解折叠;这有助于在后续的加热过程中形成良好的蛋白凝胶,从而降低生产过程中食盐和磷酸盐的添加量,这和Crehan等[21]的研究结果一致。Iwasaki等[22]发现200 MPa以上压力处理会压缩肌球蛋白分子的体积,从而使凝胶强度和表面弹性下降。Simonin[14]、Sun[15]等研究发现,高压辅助凝胶工艺会改变肌球蛋白的变性机制。在非变性温度下高压处理,肌球蛋白分子会先解聚,这不仅可增加肌球蛋白的溶解,还会破坏其头部肌动蛋白和ATP结合位点的天然构象,这些变化在很大程度上都会影响其热凝胶的性质。

2.2 高压对肌球蛋白间化学作用力的影响

Hsu等[23]的研究发现,在高压处理的过程中,蛋白质的流变特性和热动力特性逐步转变;高压下蛋白质分子的聚集和胶凝现象主要是活性巯基被氧化后形成分子间和分子内二硫键,蛋白发生变性形成交联引起的,这与Yamamoto[11]的研究结果一致。通过比较,Ko等[24]认为肌球蛋白经150 MPa高压处理后加热可以形成有强度和弹性的凝胶网络结构,而其中发挥主要作用的是分子间疏水作用力和二硫键。但同时也有研究指出,非变性温度下高压处理会保护或增强氢键,从而稳定肌球蛋白分子内部一部分天然构象[25]。

Cao等[26]将兔肌球蛋白溶液在100~400 MPa、20 ℃条件下保压10 min,通过测定高压处理后蛋白溶液的表面疏水性、巯基含量、动态流变等指标,并结合活性电泳图谱分析,发现在100~200 MPa条件下,肌球蛋白溶液的表面疏水性和活性巯基含量略有升高,但是当压力到达300~400 MPa时,这两者含量显著增加,动态流变结构显示肌球蛋白溶液(20 mg/mL)在400 MPa压力作用下会形成凝胶。他们认为高压诱导肌球蛋白变性成胶的机制可主要概括为压力作用下肌球蛋白解折叠,暴露出疏水基团和包埋的巯基基团,当压力进一步升高时,压力、温度和氧化剂的共同作用使巯基氧化成二硫键以及疏水相互作用形成,肌球蛋白分子进一步变性、聚集,最终连结成凝胶网络结构。

多位学者的研究结果还表明,不同物种来源的肌球蛋白对高压的敏感性也有差异,如鱼类的肌球蛋白一般在150 MPa的压力作用下就能发生变性,而畜禽类的肌球蛋白分子需要在200 MPa以上的压力作用下才能观察到其对凝胶形成的影响[17,27-31]。但到目前为止,大部分研究都认为,高压作用主要通过影响肌球蛋白分子的表面疏水性及二硫键(凝胶形成过程中最重要的2 种化学作用力)的形成,进而抑制或促进蛋白凝胶网络的形成。

2.3 高压对肌球蛋白形成的凝胶网络结构的影响

肌球蛋白凝胶的功能特性受其所处的环境(离子浓度、溶液体系中的添加物等)以及成胶处理(加热或加压)影响。高压处理通过外部施加的作用力使肌球蛋白分子发生变性与聚集,而聚集的蛋白簇进一步相互交联形成凝胶网络。和热处理相似,高压处理也需要达到一定的压强才能使肌球蛋白充分变性、聚集、交联[32-34]。因此,不同高压参数下处理后肌球蛋白间的相互作用以及凝胶结构是存在差异的。

Yamamoto[11]对兔骨骼肌肌球蛋白进行210 MPa高压处理后,利用旋转阴影透射电镜观察发现虽然肌球蛋白头部形成聚集,但是无凝胶网络结构形成,需要进一步加热,且加热后的凝胶微结构与未经高压诱导的凝胶网络微结构没有显著差异。也有研究发现,在低离子浓度条件下,将肌球蛋白先高压处理再线性升温所形成凝胶的强度较未经高压处理组的更大,且与肌球蛋白纤丝的长度呈正相关关系[35-36]。

Cao等[26]通过分析扫描电镜结果发现,在200 MPa以下的压力作用下形成的凝胶呈纤丝结构并有许多小的空洞,当压力达到300 MPa时,凝胶开始形成球形聚集并伴随有大的空洞出现,再升高压力到400 MPa时形成的空洞变大,球状聚积物出现,肌球蛋白分子之间的交联减少,活性电泳的结果表明肌球蛋白在400 MPa压力下已经发生变性。但目前的研究中鲜有关于更高压力(>500 MPa)作用下肌球蛋白形成的凝胶网络微结构的研究。

2.4 高压对肌球蛋白分子结构的影响

拉曼光谱法、傅里叶变换红外光谱法、圆二色谱法、荧光探针法都是研究蛋白二级、三级结构的常用方法。Huppertz等[37]发现在整个高压处理过程中,蛋白质的空间结构都会受到不同程度的影响,如150 MPa高压处理会破坏蛋白多聚体之间的非共价键,影响蛋白质的高级结构;压力大于200 MPa时,维持蛋白三级结构的疏水作用力和离子键遭破坏,这些均会导致蛋白的三维凝胶网络结构在进一步的加热过程中改变,进而引起蛋白凝胶的功能特性变化。这与Yamamoto等[38]的发现一致。King等[39]将鸡骨骼肌肌球蛋白进行酶解,以其杆状部分和杆状纤丝部分为研究对象,利用荧光探针法和圆二色谱法研究发现43~49 MPa的压力可以使杆状纤丝部分(0.4 mg/mL)发生中等程度的分解,但是杆状部位的2 条螺旋链则要在更高的压力条件(约130 MPa)下才会解离,杆状部位的2 条α螺旋链的分子内相互作用比杆状纤丝部分的分子间相互作用更稳定。

Iwasaki等[40]利用ANS荧光探针法研究肌球蛋白以及其次结构(S-1和杆状部位)在高压作用下分子结构的变化。实验发现,在400 MPa下肌球蛋白的内荧光光谱会发生4 nm的红移,且ANS荧光强度随着压力的增加而变大;肌球蛋白及其次结构的内荧光光谱的变化经量化后表达为质谱中心,该质谱中心与压力的大小呈线性正相关关系;但ANS标记的杆状部分的荧光强度却没有随压力水平的变化而改变;压力大于300 MPa时S-1部分的质谱中心出现滞后现象,在压力高于350 MPa时该现象更加明显。在高于350 MPa的压缩过程中,质谱中心并没有减小,表明S-1部分在高于350 MPa时部分变性且保持稳定;直到400 MPa时,S-1部分相应荧光强度的变化仍能检测到,并且会随着压力的增加而增加,但在压力释放后却没有改变。ANS荧光强度在恒定压力下增加意味着压力诱导的肌球蛋白的变性在升压过程中加速。内荧光和ANS分子荧光强度的检测结果表明,肌球蛋白的头部和尾部对高压的敏感程度不同,在肌球蛋白头部,色氨酸残基的极性增加,疏水内芯暴露到分子表面,相比之下尾部的多肽链结构只有部分发生变性。故对高压最敏感的部分是肌球蛋白的头部,这些也符合Ko等[24]将肌球蛋白酶解为头部S-1和尾部Rod,再经高压处理后发现S-1解聚交联并成胶。而Rod并无太大变化的结果[20]。

这些研究结果均表明,较低压力水平(<100 MPa)下的高压处理主要影响肌球蛋白分子的空间构象(三级、四级结构),随着压力水平的加大,高压处理会逐渐引起肌球蛋白的α-螺旋解折叠,β-折叠和β-转角等含量增加,从而促进形成更好的凝胶网络结构。

3 结 语

肌球蛋白形成高压凝胶是一个复杂的动力学过程,包括蛋白构象、化学作用力、分子形态等各个方面的综合作用。另外,肌球蛋白的高压辅助凝胶和高压凝胶的成胶机制不尽相同,形成凝胶的作用力也有所差异,而今受研究设备和方法的局限,高压凝胶过程的肌球蛋白变化还没有得到充分彻底的研究。虽然超高压技术目前已经日趋成熟,在肉类工业中的应用也日渐广泛,但仍需从理论角度去诠释肌球蛋白在超高压作用下变化的动力学过程,才能更深入地研究高压作用对肌肉、肉糜以及肌原纤维蛋白等复杂体系的影响,真正使科学基础研究造福肉类工业,减少生产浪费,提高产品品质,研发新型肉制品。因此,如何在现有技术的基础上研究不同高压条件处理下肌球蛋白的变化将是相关科研人员的挑战。

[1] LIU M N, FOEGEDING E A. Thermally induced gelation of chicken myosin isoforms[J]. Journal of Agricultural and Food Chemistry,1996, 44(6): 1441-1446. DOI:10.1021/jf950341.

[2] SMYTH A B, SMITH D M, O’NEILL E. Disulfide bonds influence the heat-induced gel properties of chicken breast muscle myosin[J]. Journal of Food Science, 1998, 63(4): 584-587. DOI:10.1111/j.1365-2621.1998.tb15790.x.

[3] JAO C L, HWANG J S, KO W C, et al. A kinetic study on inactivation of tilapia myosin Ca-ATPase induced by high hydrostatic pressure[J]. Food Chemistry, 2007, 101(1): 65-69. DOI:10.1016/ j.foodchem.2005.11.051.

[4] HEINZ V, BUCKOW R. Food preservation by high pressure[J]. Journal Für Verbraucherschutz und Lebensmittelsicherheit, 2010, 5(1):73-81. DOI:10.1007/s00003-009-0311-x.

[5] GIMÉNEZ B, GRAIVER N, CALIFANO A, et al. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure[J]. Meat Science,2015, 100: 179-188. DOI:10.1016/j.meatsci.2014.10.017.

[6] CHAMORRO A, MIRANDA F J, RUBIO S, et al. Innovations and trends in meat consumption: an application of the delphi method in Spain[J]. Meat Science, 2012, 92(4): 816-822. DOI:10.1016/ j.meatsci.2012.07.007.

[7] KAUR B P, KAUSHIK N, RAO P S, et al. Effect of highpressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (Penaeus monodon)[J]. Food and Bioprocess Technology, 2013, 6(6): 1390-1400. DOI:10.1007/s11947-012-0870-1.

[8] MARCHETTI L, ARGEL N, ANDRÉS S C, et al. Sodium-reduced lean sausages with fish oil optimized by a mixture design approach[J]. Meat Science, 2015, 10(4): 67-77. DOI:10.1016/j.meatsci.2015.02.005.

[9] O’FLYNN C C, CRUZ-ROMERO M C, TROY D J, et al. The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages[J]. Meat Science, 2014, 96(3):1266-1274. DOI:10.1016/j.meatsci.2013.11.010.

[10] O’FLYNN C C, CRUZ-ROMERO M C, TROY D J, et al. The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages[J]. Meat Science, 2014, 96(1):633-639. DOI:10.1016/j.meatsci.2013.08.028.

[11] YAMAMOTO K. Electron microscopy of thermal aggregation of myosin[J]. Journal of Biochemistry, 1990, 108(6): 896-898. [12] SHARP A, OFFER G. The mechanism of formation of gels from myosin molecules[J]. Journal of the Science of Food and Agriculture,1992, 58(1): 63-73. DOI:10.1002/jsfa.2740580112.

[13] YALDAGARD M, MORTAZAVI S A, TABATABAIEF. The principles of ultra-high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects[J]. African Journal of Biotechnology, 2008, 7(16): 2739-2767.

[14] SIMONIN H, DURANTON F, LAMBALLERIE M D. New insights into the high-pressure processing of meat and meat products[J]. Comprehensive Reviews in Food Science and Food Safety, 2012,11(3): 285-306. DOI:10.1111/j.1541-4337.2012.00184.x.

[15] SUN X D, HOLLEY R A. High hydrostatic pressure effects on the texture of meat and meat products[J]. Journal of Food Science, 2010,75(1): R17-R23. DOI:10.1111/j.1750-3841.2009.01449.x.

[16] FERNÁNDEZ-MARTÍN F, FERNÁNDEZ P, CARBALLO J, et al. Pressure/heat combinations on pork meat batters: protein thermal behavior and product rheological properties[J]. Journal of Agricultural and Food Chemistry, 1997, 45(11): 4440-4445. DOI:10.1021/ jf9702297.

[17] CHAN J T Y, OMANA D A, BETTI M. Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat[J]. Innovative Food Science and Emerging Technologies, 2011, 3(12): 216-225. DOI:10.1016/ j.ifset.2011.03.004.

[18] OMANA D A, PLASTOW G, BETTI M. The use of β-glucan as a partial salt replacer in high pressure processed chicken breast meat[J]. Food Chemistry, 2011, 129(3): 768-776. DOI:10.1016/ j.foodchem.2011.05.018.

[19] HUGAS M, GARRIGA M, MONFORT J M. New mild technologies in meat processing: high pressure as a model technology[J]. Meat Science, 2002, 62(3): 359-371. DOI:10.1016/S0309-1740(02)00122-5. [20] SIKES A K, TUME R K. Effect of processing temperature on tenderness, colour and yield of beef steaks subjected to highhydrostatic pressure[J]. Meat Science, 2014, 97(2): 244-248. DOI:10.1016/j.meatsci.2013.12.007.

[21] CREHAN C M, TROY D J, BUCKLEY D J. Effects of salt level and high hydrostatic pressure processing on frankfurters formulated with 1.5 and 2.5% salt[J]. Meat Science, 2000, 55(1): 123-130. DOI:10.1016/S0309-1740(99)00134-5.

[22] IWASAKI T, NOSHIROYA K, SAITOH N, et al. Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty[J]. Food Chemistry, 2006, 95(3): 474-483. DOI:10.1016/j.foodchem.2005.01.024.

[23] HSU K C, KO W C. Effect of hydrostatic pressure on aggregation and viscoelastic properties of tilapia (Orechromis niloticus) myosin[J]. Journal of Food Science, 2001, 66(8): 1158-1162. DOI:10.1111/ j.1365-2621.2001.tb16098.x.

[24] KO W C, JAO C L, HSU K C. Effect of hydrostatic pressure on molecular conformation of tilapia (Orechromis niloticus) myosin[J]. Journal of Food Science, 2003, 68(4): 1192-1195. DOI:10.1111/ j.1365-2621.2003.tb09623.x.

[25] CARBALLO J, COFRADES S, SOLAS M T, et al. High pressure/ thermal treatment of meat batters prepared from freeze-thawed pork[J]. Meat Science, 2000, 54(4): 357-364. DOI:10.1016/S0309-1740(99)00110-2.

[26] CAO Y, XIA T, ZHOU G, et al. The mechanism of high pressureinduced gels of rabbit myosin[J]. Innovative Food Science and Emerging Technologies, 2012, 12(3):1641-46. DOI:10.1016/ j.ifset.2012.04.005.

[27] ZHU Z, LANIER T C, FARKAS B E, et al. Transglutaminase and high pressure effects on heat-induced gelation of Alaska pollock (Theragra chalcogramma) surimi[J]. Journal of Food Engineering,2014, 13(1): 154-160. DOI:10.1016/j.jfoodeng.2014.01.022.

[28] ZHOU A, LIN L, LIANG Y, et al. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure[J]. Food Chemistry, 2014, 15(6): 402-407. DOI:10.1016/j.foodchem.2014.02.013.

[29] PAZOS M, MÉNDEZ L, GALLARDO J M, et al. Selective-targeted effect of high-pressure processing on proteins related to quality: a proteomics evidence in Atlantic Mackerel (Scomber scombrus)[J]. Food and Bioprocess Technology, 2014, 7(8): 2342-2353. DOI:10.1007/s11947-013-1250-1.

[30] MARCOS B, MULLEN A M. High pressure induced changes in beef muscle proteome: correlation with quality parameters[J]. Meat Science, 2014, 97(1): 11-20. DOI:10.1016/j.meatsci.2013.12.008

[31] BOLUMAR T, ANDERSEN M L, ORLIEN V. Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants[J]. Food Chemistry, 2014, 15(6): 422-428. DOI:10.1016/ j.foodchem.2013.10.161.

[32] CHEN X, CHEN C, ZHOU Y, et al. Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan[J]. Food Hydrocolloids, 2014, 40(2): 262-272. DOI:10.1016/j.foodhyd.2014.03.018.

[33] TINTCHEV F, BINDRICH U, TOEPFL S, et al. High hydrostatic pressure/temperature modeling of frankfurter batters[J]. Meat Science,2013, 94(3): 376-387. DOI:10.1016/j.meatsci.2013.02.012.

[34] BUCKOW R, SIKES A, TUME R. Effect of high pressure on physicochemical properties of meat[J]. Critical Reviews in Food Science and Nutrition, 2013, 53(7): 770-786. DOI:10.1080/10408398. 2011.560296.

[35] ISHIOROSHI M, JIMAK S, YASUI T. Heat-induced gelation of myosin: factors of pH and salt concentrations[J]. Journal of Food Science, 1979, 44(5): 1280-1284. DOI:10.1111/j.1365-2621.1979. tb06419.x.

[36] YAMAMOTO K, SAMEJIMA K, YASUII T. Heat-induced gelation of myosin filaments[J]. Agricultural and Biological Chemistry, 1988,52(7): 1803-1811. DOI:10.1271/bbb1961.52.1803.

[37] HUPPERTZ T, FOX P F, KELLY A L. High pressure treatment of bovine milk: effects on casein micelles and whey proteins[J]. Journal of Dairy Research, 2004, 71(1): 97-106. DOI:10.1017/ S002202990300640X.

[38] YAMAMOTO K, HAYASHI S, YASUI T. Hydrostatic pressureinduced aggregation of myosin molecules in 0.5 M KCl at pH 6.0[J]. Bioscience Biotechnology and Biochemistry, 1993, 57(3): 383-389. DOI:10.1271/bbb.57.383.

[39] KING L, LIU C C, LEE R F. Pressure effects and thermal stability of myosin rods and rod minifilaments: fluorescence and circular dichroism studies[J]. Biochemistry, 1994, 33(18): 5570-5580. DOI:10.1021/bi00184a028.

[40] IWASAKI T, YAMAMOTO K. Changes in rabbit skeletal myosin and its subfragments under high hydrostatic pressure[J]. International Journal of Biological Macromolecules, 2003, 33(4): 215-220. DOI:10.1016/j.ijbiomac.2003.08.005.

Progress in Understanding the Mechanism of the High Pressure-Induced Gelation of Myosin

XUE Siwen, QIAN Chang, WANG Mengyao, XU Xinglian*
(Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China)

High pressure processing (HPP) technology is a non-thermal processing technology that could affect functional properties of meat gel. Myosin, one of the myofibrillar proteins, contributes dominantly to the meat gelation process. Although the effect and underlying mechanism of high pressure processing on meat gelation have been elaborately investigated, knowledge is still lacking as to the complex system consisting of muscle and myofibrillar proteins. Studies focused on the alterations of myosin under high pressure environment might provide us an opportunity to drill down to the details of this complex system and in turn provide a better guidance for practical production. This paper is centered on a review of the progress which has been made in understanding the mechanism of the high pressure induced gelation of myosin as well as technical restrictions for relevant studies. Future prospects are also discussed. Key words: myosin; high pressure processing; gelation mechanism

10.15922/j.cnki.rlyj.2016.10.008

TS251.1

A

1001-8123(2016)10-0040-05

2016-04-25

国家自然科学基金面上项目(31471601);江苏高校优势学科建设工程项目(PAPD)

薛思雯(1993—),女,硕士研究生,研究方向为肌球蛋白高压凝胶形成机制。E-mail:vic_xsw0911@163.com

徐幸莲(1962—),女,教授,博士,研究方向为肉品加工和品质形成机制。E-mail:xlxus@njau.edu.cn

引文格式:

猜你喜欢

肌球蛋白变性凝胶
凉粉草多糖对鱼肌球蛋白理化性质和结构特征的影响
晋州市大成变性淀粉有限公司
纤维素气凝胶的制备与应用研究进展
超轻航天材料——气凝胶
征兵“惊艳”
变性淀粉在酸奶中的应用
高糖对体外培养人脐静脉内皮细胞通透性及肌球蛋白轻链磷酸化的影响
心脏型肌球蛋白结合蛋白与射血分数保留的心力衰竭
不同条件下兔骨骼肌肌球蛋白流变特性的研究