APP下载

三峡库区陡坡根-土复合体抗冲性能

2016-10-25何丙辉练彩霞刘志鹏彭石磊

生态学报 2016年16期
关键词:香根抗冲径级

谌 芸,何丙辉,练彩霞,刘志鹏,彭石磊

西南大学资源环境学院, 三峡库区生态环境教育部重点实验室,重庆 400715



三峡库区陡坡根-土复合体抗冲性能

谌芸,何丙辉*,练彩霞,刘志鹏,彭石磊

西南大学资源环境学院, 三峡库区生态环境教育部重点实验室,重庆400715

以三峡库区已种植4a的紫花苜蓿、百喜草、狗牙根和香根草为对象,并以裸地为对照,采用改进的冲刷水槽、WinRHIZO(Pro.2004c)根系分析系统和应变控制式直剪仪,分析测定5个处理根-土复合体抗冲性能以及根系、土壤参数,以期揭示不同草本植物根系对陡坡地紫色土表土抗冲性能的强化效应。研究结果表明:与对照(裸地)相比,4种草本植物根系均能显著增强紫色土表土的抗冲性能,其中香根草根-土复合体的抗冲性能最强(为对照小区的2.75—3.58倍),而紫花苜蓿复合体的抗冲性能最弱(为对照小区1.96—2.60倍);草本植物根长密度(RLD)和根表面积密度(RSAD)是影响陡坡下紫色土表土抗冲性能的主要因子;0.50 mm

紫色土;草本植物根系;抗冲指数;抗剪强度;粘聚力

土壤的抗冲性是指土壤抵抗径流冲刷破坏的能力,植物的根系则能提高土壤的抗冲性。早于20 世纪50年代,朱显谟先生就指出根系的缠绕和固结作用决定了其对土壤抗冲性的增强效应[1]。此后,众多学者结合多学科,在根系固土抗冲效应及机制方面进行了更为系统全面和细致深入的研究[2- 11]。已有的研究认为草类根系主要是通过提高土壤抗冲力及改善抗冲土体的物理性质而增强土壤抗冲性[12],且不同径级的根系及不同根系指标对土壤抗冲性的影响差异较大,须根(直径≤1 mm)最有利于增强土壤抗冲性[13],而根长密度是衡量土壤抗冲性的共性指标。目前我国根系与土壤抗冲性方面的研究成果虽多,但还存在一些不足:在研究地域上,主要集中在黄土高原,而三峡库区等水土流失严重地区的研究则相对较少;在研究植物种上,黄土高原涉及较广,囊括乔、灌、草[14- 15]并且关注了芒草[16]和柳枝稷[17]等生物质能源,而紫色土区较多的是水土保持先锋物种香根草;在冲刷坡度上,多数冲刷试验采用的是缓坡15°[5,12,18- 21],少有考虑陡坡大坡度[22],而草本植物固土是软措施,抗冲能力有限,其在低缓边坡固土抗冲效果显著,但在陡坡地上的效果却未必;在根系指标上,多数研究选取的是所有根系平均的根重密度、根长密度、根表面积密度等,忽略了不同草本植物根系的径级分布范围和集中度不同,鲜有考虑到径级根系指标。

针对已有研究中存在的上述不足,并考虑到物种的广泛性、适生性和经济性,本实验选取了南方水土保持先锋物种香根草(Vetiveriazizanioides)和百喜草(Paspalumnatatu),“牧草之王”紫花苜蓿(Medicagosativa)和本地野生狗牙根(Cynodondactylon)进行人工栽培,以裸地为对照,测定土壤容重、有机质、抗剪强度、抗冲指数和多个径级的根系指标,分析陡坡下(30°)上述4种草本植物根系对紫色土表土抗冲性能的强化效应及影响因素,尤其是各径级根系指标对土壤抗冲性的影响,以期为三峡库区陡坡地生态治理中草本植物合理选用及根-土复合体抗冲效应预估等提供理论依据。

1 材料与方法

1.1研究区概况

试验小区位于重庆市北碚区歇马镇西南大学教学科研基地内。该基地位于106°48′54″ E,29°45′08″ N,属丘陵地貌,平均海拔563 m。该地区属亚热带湿润季风气候,年平均气温18.3 ℃;雨量充足,年平均降雨量1 100 mm;日照较少,年平均日照1 270 h[23]。试验小区土壤为灰棕紫色土。

1.2试验设计

紫花苜蓿、百喜草、狗牙根和香根草均为多年生草本植物,根系发达,抗逆性强。试验共设5个处理:对照,即裸地,无任何植被;4个草本区,分别种植紫花苜蓿、百喜草、狗牙根和香根草,每个处理3次重复,共15个小区(长6 m,宽4 m),小区之间挖沟(宽0.3 m,深0.3 m)隔开,避免互相干扰。此外,设置补种区,一旦草本区植株被取样,则立即从补种区移植健康植株补上。所有草本植物均于2011年3月底采用育苗区健壮的实生苗移栽,株距×行距为30 cm×35 cm[23]。栽培期间,各小区进行相同的常规管护,定期人工拔除杂草和灌溉。

1.3样品采集

2014年7月中旬,天气连续放晴时,进行土样采集。采样前3 d以上无拔草和灌溉。每个小区先按“五点法”确定采样点,然后分0—10、10—20、20—30 cm取各自的混合土样约500 g带回实验室,用于土壤有机质测定。

抗冲土样的采样工具为原状土冲刷水槽配套的方形环刀(长×宽×高:20 cm×10 cm×10 cm)。取样前,对照区按S曲线确定采样点;草本区,按S曲线选取健康成体植株,去除植株的地上部分后,以植株为中心确定采样点。先清除表层的枯落物、杂质和部分土层,将环刀刃口向下且水平缓慢地压入10—20 cm土层(因按10 cm分层采样难度较大,故以此代表0—30 cm表土层),小心挖掘出,削平环刀两端,去除四周多余的土和根系。采集的土样,用保鲜膜密封,贴上标签,立即带回附近的实验室。每个小区3个重复,共计45个抗冲土样,则每一处理进行9次冲刷试验。直剪试验的取样方法与此类似,采用ZJ型应变控制式直剪仪配套的环刀(底面积30 cm2,高2 cm)分0—10,10—20和20—30 cm土层取样(本文仅对10—20 cm土层的直剪数据进行分析),每个小区4个重复,共计180个抗剪土样,则每一处理每一土层进行12次直剪试验。取样时,各草本区植被盖度约为90%。

1.4指标测定

土壤容重采用环刀法;有机质采用重铬酸钾-外加热法;抗剪强度采用直剪法;抗冲性采用改进的原状土冲刷水槽法。冲刷水槽长1.80 m,宽0.11 m。冲刷前,土样底部衬以滤纸置于水中浸泡约12 h;饱和后,取出土样静置,除去重力水。冲刷坡度设定为30°以模拟陡坡,出水流量为2 L/min。待水流稳定后,将土样装入土样室,使土样上表面和槽底面齐平,然后放水冲刷。产流后开始取样,前4 min则每1 min收集1次径流泥沙样,此后每3 min收集1次,冲刷时长10 min共取6个样[23]。冲刷完成后,取出环刀内的土样,先置于水中浸泡数小时以利于根、土分离;然后置于0.05 mm的网筛内用适当流量的自来水冲洗,直至洗出所有的根系;最后,采用EPSON LA在400 dpi下进行灰度扫描,WinRHIZO(Pro.2004c)根系分析系统分10个径级(0.0 mm4.5 mm,d为根系直径,单位mm)对根系长度RL、根表面积RA和根体积RV等进行分析。扫描后的根系采用烘干法和1/1 000电子天平获得根干重RW。根重密度RWD、根长密度RLD、根表面积密度RSAD、根体积密度RVD是指单位土体对应的根干重、根长、根表面积、根体积;RLDx、RSADx、 RVDx(x=0.50,1.00,1.50,2.00,2.50,3.00,3.50,4.00,4.50)则表示(x-0.5)mm4.5、RSAD>4.5、 RVD>4.5表示d>4.5 mm径级的根长密度、根表面积密度、根体积密度。

1.5数据处理

土壤的抗冲能力用抗冲指数AS表示,即冲失1 g干土所需水量,计算如下:

(1)

式中,ASt为t时刻的抗冲指数(L/g);Q为冲刷流量(L/min);t为冲刷历时,t=1,2,3,4,7,10 min;WLDSt为t时刻冲失干土重(g)。抗冲指数AS值越大,则表示土壤抗冲能力越强;反之,则越弱。

土壤内摩擦角φ和粘聚力c根据库伦定律,利用土样在竖直荷载为100、200、300、400 kPa下测得的抗剪强度τf线性回归确定。

采用Microsoft Excel 2007作图,SPSS 17.0进行差异显著性检验(Duncan法,P<0.05)、Pearson相关分析(双侧,P<0.05,P<0.01)。

2 结果与分析

2.1不同草本区复合体的抗冲性能

图1 试验小区土壤抗冲指数动态变化Fig.1 Dynamic changes of AS in experimental plots

由图1可知,0—10 min内各试验小区土壤的抗冲指数AS均随时间而增长:0—4 min,AS增长较快,最大增幅达18.88%出现在香根草区t=2 min时;4—7 min,AS增长渐趋缓慢;7—10 min,AS增长更加缓慢,尤其是对照小区。各试验小区土壤抗冲指数AS随时间t的动态变化均可用方程AS=at2+bt+c或AS=alnt+b(a、b、c为常数,t=0—10 min)进行很好地拟合(R2=0.9284—0.9691),其中对照小区和狗牙根区用二次多项式方程拟合较好,而其它3个小区则用对数方程拟合较好。

试验小区的AS在所有测定时刻(t=1,2,3,4,7,10 min)均体现出显著性差异,草本区的AS均显著大于对照小区的。t=1 min时香根草区与百喜草区的AS无显著性差异,排序为:香根草区/百喜草区>狗牙根区>紫花苜蓿区>对照小区;t=2、3 min时紫花苜蓿区与狗牙根区的AS无显著性差异,排序为:香根草区>百喜草区>狗牙根区/紫花苜蓿区>对照小区;t=4、7、10 min时小区间的AS均存在显著性差异且排序均为:香根草区>百喜草区>狗牙根区>紫花苜蓿区>对照小区。所有观测时刻香根草区的AS值均最大,为对照小区的2.75—3.58倍,为百喜草区的1.01—1.12倍;而紫花苜蓿区的AS值在草本区中最小,亦为对照小区的1.96—2.60倍。

2.2抗冲土样所含根系的根系指标

表1中,4种草本植物抗冲土样的根重密度RWD存在显著性差异,表现为:紫花苜蓿>香根草>百喜草>狗牙根,紫花苜蓿的RWD最大(164.16 mg/cm3)为狗牙根的3.91倍;根长密度RLD则表现为香根草、百喜草和狗牙根之间无显著性差异,却显著大于紫花苜蓿,前3种草本的RLD分别为紫花苜蓿的3.77、3.62和2.56倍;根表面积密度RSAD表现为香根草的显著大于紫花苜蓿的,百喜草(狗牙根)与香根草(紫花苜蓿)均无显著性差异,香根草的RSAD为紫花苜蓿的1.47倍;根体积密度RVD的显著性差异则表现为:紫花苜蓿>百喜草>香根草、狗牙根。总体上,抗冲土样中紫花苜蓿的RWD和RVD最大,而香根草的RLD和RSAD最大。

表1 草本区抗冲土样中根系的总体参数

表中数据为平均值±标准误差(n=9);同列数据标有不同小写字母表示草类之间存在显著差异(Duncan法,P<0.05)

从表2径级根系指标的显著性分析可以看出:1)草本间相同径级的根长密度、根表面积密度和根体积密度的显著性具有一致或非常相似的排序,如0.00 mm百喜草>紫花苜蓿;2)d=2.00 mm是一个分界线,当0.00 mm2.00 mm时,则是紫花苜蓿的各项根系指标显著优于香根草;3)1.50 mm

Pearson相关分析(表4)表明:1)RLD与AS4、AS7、AS10显著正相关;2)RSAD与所有时刻的AS显著正相关;3)1.00 mm

2.3不同草本区土壤的理化性质

表3中所有草本区的土壤容重均显著小于对照小区,而草本区之间则无显著性差异。数值上,土壤容重的排序为:对照小区>狗牙根区>百喜草区>香根草区>紫花苜蓿区,较之对照,紫花苜蓿区的土壤容重减幅高达11.25%,而狗牙根区的减幅最小亦为6.25%。除百喜草区的土壤有机质含量与对照小区无显著性差异外,其余草本区的土壤有机质含量均显著大于对照小区。其中紫花苜蓿区的土壤有机质含量最高为13.68 g/kg,显著大于其它草本区;狗牙根区与香根草区之间则无显著性差异。

表3 试验小区10—20 cm土层土壤理化性质和抗剪强度指标

表中数据为平均值±标准误差(n=3);同列数据标有不同小写字母表示试验小区之间存在显著差异(Duncan法,P<0.05);直剪试验时,同一小区每组试样之间的密度差值不大于0.03g/cm3,含水率差值不大于2%

2.4不同草本区土壤的抗剪性能

表3中所有草本区10—20 cm土层的土壤内摩擦角φ均显著高于对照小区,排序为:香根草>狗牙根>百喜草/紫花苜蓿>对照,香根草区的φ为其它小区的1.23—2.97倍。香根草在该土层的土壤粘聚力c高达82.60 kPa,亦显著大于其它小区;狗牙根区的c显著高于对照,但与百喜草区、紫花苜蓿区之间无显著性差异;百喜草区、紫花苜蓿区的c与对照小区的无显著性差异,但在数值上大于对照小区。Pearson相关分析(表4)表明各时刻的AS与φ无显著相关,但与c显著或极显著正相关,最大相关系数为0.715。

AS:抗冲指数 anti-scourability;ASt(t=1,2,3,4,7,10min):t时刻的土壤抗冲指数;RLD:根长密度 root length density;RSAD:根表面积密度 root surface area density;RVD:根体积密度 root volume density;RLDx/RSADx/ RVDx(x=1.00,1.50,3.00,3.50)分别表示0.50 mm

3 讨论

3.1根系指标对复合体陡坡下抗冲性能的影响

根系的缠绕和网络固结作用,阻止了土颗粒分散,有利于提高土壤的抗冲性能[24- 25]。本试验中紫花苜蓿、百喜草、狗牙根和香根草的根系都显著增强了紫色土表土层的抗冲性,尤其是香根草,这与其它已有植物根系的研究结论一致[23,26]。本研究充分考虑了根径的影响,将根系指标分为总体指标和径级指标。草本间相同径级的根系指标的显著性差异具有一致或非常相似的排序,而草本间总体指标的显著性差异却不具有此规律。

抗冲土样中紫花苜蓿的RWD显著大于其它草本,表明其根系对10—20 cm土层的土壤水分、养分和微量元素等的吸收能力较强,因此同体积的土样中其干物质量较大。此外,其RVD亦显著大于其它草本,占了抗冲土样体积的0.50%,这表明其土样中可供冲刷的土壤应显著少于其它草本的。但其在各测定时刻的AS却小于其它草本,即其总体抗冲性能弱于其它草本。而RWD和RVD显著小于紫花苜蓿的香根草却在各时刻的抗冲性能均最好。可见,本实验中RWD和RVD不是影响根-土复合体抗冲性能的主要因子,Pearson相关分析亦表明无显著相关。香根草的RLD和RSAD数值最大,相关分析中此二者与所有(部分)时刻的AS显著相关。紫花苜蓿的这两项根系指标最差,而抗冲性能居中的百喜草和狗牙根的此两项根系指标亦居中。RLD反映了根系在土壤中的穿插和缠绕能力;RSAD则能充分反映根-土之间的接触情况,其值越大表明根-土接触面积越大且耦合得越好。这从一方面解释了为何紫花苜蓿生长茂密、根系发达,其AS却较小。综上可知,RLD和RSAD是影响陡坡下紫色土根-土复合体抗冲性能的主要因子,这与已有的研究结论一致[27]。香根草与狗牙根相比,仅RWD具有显著优越性,且仅次于紫花苜蓿,可抗冲性能却显著优于狗牙根,可见RWD亦对复合体的抗冲性能产生有效影响,是次要因子。香根草的根系指标中影响土壤抗冲性的主要因子最优,次要因子居中,决定了其复合体具有好于其它3种草本的抗冲性。

已有的研究认为细根在提高土壤抗侵蚀方面具有非常重要的作用,因为其在土体中穿插范围广,与土壤颗粒结合较紧密,网络固持土颗粒的能力强,且受拉/剪时具有较好的弹性,而粗根对固土则没有明显贡献[25]。较多的研究中将细根的直径确定为≤1 mm即须根,认为这一径级的根系是固土的关键,如郑子成等[28]在紫色土区玉米地的试验研究发现0.00 mm

3.2土壤指标对复合体陡坡下抗冲性能的影响

草本区土壤容重的有效降低与根系密切相关,活根穿插土壤、死根萎缩腐解等均能增加土壤孔隙度,进而降低土壤容重。紫花苜蓿区的土壤容重值最小与其RWD、RVD最大有密切关系,相关分析中土壤容重与RWD极显著负相关(相关系数为-0.737)。虽然百喜草区与对照小区的土壤有机质含量无显著性差异,但所有草本区的有机质含量在数值上均大于对照小区,这表明总体上草本植物是有利于土壤有机质积累的,分析原因:一方面可能是植被覆盖地表,为枯落物和死根等腐殖物质的分解和转化提供了有利的温度和湿度,另一方面活根系的分泌物增加了土壤有机质含量,再一方面根系提高土壤微生物数量和活性,亦可提高土壤有机质含量。相关分析中,土壤有机质含量与2.00 mm

所有草本区10—20 cm土层的土壤内摩擦角φ均显著高于对照小区,可见草本植物根系能有效提高根-土复合体的内摩擦力。相关分析中φ与RLD极显著正相关(相关系数为0.740),此外与0.00 mm

4 结论

(1)陡坡(30°)下,紫花苜蓿、百喜草、狗牙根和香根草等4种草本植物根系均能显著增强紫色土表土的抗冲性能,且香根草根-土复合体的抗冲性能最强,而紫花苜蓿复合体的抗冲性能则最弱;所有试验小区的土壤抗冲指数AS动态变化均能用对数或二次多项式方程进行良好的拟合,R2=0.9284—0.9691。

(2)抗冲土样中紫花苜蓿的根重密度RWD和根体积密度RVD最大,香根草的根长密度RLD和根表面积RSAD最大;RLD和RSAD是影响陡坡下紫色土根-土复合体抗冲性能的主要因子,RWD则是次要因子;0.50 mm

(3)这4种草本植物均有利于降低土壤容重,提高土壤有机质含量和增强土壤抗剪性能;香根草复合体的抗剪强度指标(土壤内摩擦角φ和粘聚力c)显著大于其它小区;c是影响陡坡下紫色土根-土复合体抗冲性能的主要因子,而0.00 mm

[1]朱显谟. 黄土地区植被因素对于水土流失的影响. 土壤学报, 1960, 8(2): 110- 120.

[2]Gyssels G, Poesen J. The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Processes and Landforms, 2003, 28(4): 371- 384.

[3]Zhou Z C, Shangguan Z P. Soil Anti-Scouribility Enhanced by Plant Roots. Journal of Integrative Plant Biology, 2005, 47(6): 676- 682.

[4]De Baets S, Poesen J, Gyssels G, Knapen A. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 2006, 76(1/2): 54- 67.

[5]周正朝, 上官周平. 子午岭次生林植被演替过程的土壤抗冲性. 生态学报, 2006, 26(10): 3270- 3275.

[6]De Baets S, Poesen J, Knapen A, Galindo P. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surface Processes and Landforms, 2007, 32(9): 1323- 1345.

[7]De Baets S, Poesen J, Knapen A, Barberá G G, Navarro J A. Root characteristics of representative mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant and Soil, 2007, 294(1/2): 169- 183.

[8]Yu Y C, Zhang G H, Geng R, Sun L. Temporal variation in soil detachment capacity by overland flow under four typical crops in the Loess Plateau of China. Biosystems Engineering, 2014, 122: 139- 148.

[9]蒲玉琳, 谢德体, 倪九派, 魏朝富, 林超文. 紫色土区植物篱模式对坡耕地土壤抗剪强度与抗冲性的影响. 中国农业科学, 2014, 47(5): 934- 945.

[10]Wang B, Zhang G H, Shi Y Y, Zhang X C. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena, 2014, 116: 51- 59.

[11]De Baets S, Quine T A, Poesen J. Root strategies for rill and gully erosion control // Morte A, Varma A, eds. Root Engineering. Berlin Heidelberg: Springer, 2014: 297- 323.

[12]史东梅, 陈晏. 紫色丘陵区农林混作模式的土壤抗冲性影响因素. 中国农业科学, 2008, 41(5): 1400- 1409.

[13]Zhang C B, Chen L H, Jiang J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology, 2014, 206: 196- 202.

[14]田风霞, 刘刚, 郑世清, 马春艳, 张琼. 草本植物对土质路面径流水动力学特征及水沙过程的影响. 农业工程学报, 2009, 25(10): 25- 29.

[15]张超波. 林木根系固土护坡力学基础研究[D]. 北京: 北京林业大学, 2011.

[16]韩凤朋, 郑纪勇, 张兴昌. 黄土退耕坡地植物根系分布特征及其对土壤养分的影响. 农业工程学报, 2009, 25(2): 50- 55.

[17]Zhang G H, Tang K, Ren Z, Zhang X C. Impact of grass root mass density on soil detachment capacity by concentrated flow on steep slopes. Transactions of the American Society of Agricultural and Biological Engineers, 2013, 56(3): 927- 934.

[18]陈晏, 史东梅, 文卓立, 张兵. 紫色土丘陵区不同土地利用类型土壤抗冲性特征研究. 水土保持学报, 2007, 21(2): 24- 27.

[19]陈安强, 张丹, 熊东红, 刘刚才. 元谋干热河谷坡面表层土壤力学特性对其抗冲性的影响. 农业工程学报, 2012, 28(5): 108- 113.

[20]李强, 刘国彬, 许明祥, 张正, 孙会. 黄土丘陵区撂荒地土壤抗冲性及相关理化性质. 农业工程学报, 2013, 29(10): 153- 159.

[21]李强, 刘国彬, 许明祥, 孙会, 张正, 高丽倩. 黄土丘陵区冻融对土壤抗冲性及相关物理性质的影响. 农业工程学报, 2013, 29(17): 105- 112.

[22]Xu W, Wang X, Zhang Y, Liu Y. A comparison among root soil-conservation effects for nine herbs at the cold region highway in north-eastern China. Eurasian Soil Science, 2014, 47(12): 1274- 1282.

[23]谌芸. 植物篱对紫色土水土特性的效应及作用机理[D]. 重庆: 西南大学, 2012.

[24]程洪, 颜传盛, 李建庆, 刘爱平, 杨小洁. 草本植物根系网的固土机制模式与力学试验研究. 水土保持研究, 2006, 13(1): 62- 65.

[25]熊燕梅, 夏汉平, 李志安, 蔡锡安. 植物根系固坡抗蚀的效应与机理研究进展. 应用生态学报, 2007, 18(4): 895- 904.

[26]宋坤, 潘晓星, 穆立蔷. 6 种草本植物根系土壤抗冲性. 国土与自然资源研究, 2013, (3): 82- 83.

[27]Shit P K, Maiti R. Effect of plant roots on soil anti-scouribility of topsoil during concentrated flow. International Journal of Engineering, 2012, 1(4): 1- 7.

[28]郑子成, 张锡洲, 李廷轩, 金伟, 林超文. 玉米季土壤抗冲性变化特征及其影响因素分析. 农业机械学报, 2014, 45(9): 180- 186.

[29]李建兴, 何丙辉, 谌芸, 黄茹, 陶俊, 田太强. 不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响. 农业工程学报, 2013, 29(10): 144- 152.

[30]张兴玲, 胡夏嵩, 李国荣, 朱海丽, 毛小青, 袁晓伟. 青藏高原东北部黄土区灌木幼林根系护坡的时间效应. 农业工程学报, 2012, 28(4): 136- 141.

Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area

CHEN Yun, HE Binghui*, LIAN Caixia, LIU Zhipeng, PENG Shilei

CollegeofResourcesandEnvironment/KeyLaboratoryofEco-environmentsinThreeGorgesReservoirRegion(MinistryofEducation),SouthwestUniversity,Chongqing400715,China

Grass roots can improve the soil′s anti-scourability. The aim of this study was to determine the effects of the roots of different grasses on anti-scourability on steep slopes of purple soil in the Three Gorges Reservoir Area.Medicagosativa,Paspalumnatatu,Cynodondactylon, andVetiveriazizanioidesplants were planted 4 years prior to the experiment, and bare control plots were selected for soil sampling. The soil anti-scourability, root parameters (root dry weight, root length, root surface area, and root volume), soil shear strength (soil internal friction angle and cohesion), and soil chemical-physical characters (bulk density and organic matter) were measured using an improved flume scouring experiment, a root analysis system (WinRHIZO (Pro.2004c)), a direct shear test experiment, the ring method, and potassium dichromate external heating method, respectively. The results show that four species of grass roots could significantly enhance soil anti-scourability.Vetiveriazizanioidesroots had the greatest effect on soil anti-scourability, as soils planted with this species exhibited anti-scourability values 2.75—3.58 times that of the control; whileMedicagosativaroots had the weakest effect on soil anti-scourability, as soils planted with this species exhibited anti-scourability values 1.96—2.60 times that of the control. In the scouring experiments lasting 0—10 min, the soil anti-scourability of each plot increased over time, and these dynamic change processes can be fitted well (R2= 0.9284—0.9691) using two polynomial (the control andCynodondactylonplots) and logarithmic equations (theVetiveriazizanioides,Paspalumnatatu, andMedicagosativaplots). Root length density and root surface area density were the main factors affecting soil anti-scourability, and both were significantly correlated with anti-scourability (P< 0.05), especially the root surface area density. Root length density and root surface area density ofVetiveriazizanioidesroots were the highest among the different species. A dividing line was set at 2.00 mm, and when 0.00 mm 2.00 mm, allMedicagosativaroot parameters were higher than those ofVetiveriazizanioides. Roots whose diameters were 0.50 mm

purple soil; grass roots; anti-scourability; soil shear strength; soil cohesion

国家自然科学基金项目(41271291, 41501288);中央高校基本科研业务费专项项目(SWU113013, XDJK2014C103, XDJK2015C170);国家科技支撑计划项目(2011BAD31B03);西南大学教育教学改革研究项目(2013JY052)

2015- 01- 27; 网络出版日期:2015- 12- 02

Corresponding author.E-mail: hebinghui@swu.edu.cn

10.5846/stxb201501270211

谌芸,何丙辉,练彩霞,刘志鹏,彭石磊.三峡库区陡坡根-土复合体抗冲性能.生态学报,2016,36(16):5173- 5181.

Chen Y, He B H, Lian C X, Liu Z P, Peng S L.Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area.Acta Ecologica Sinica,2016,36(16):5173- 5181.

猜你喜欢

香根抗冲径级
甘肃插岗梁省级自然保护区连香树种群结构与数量动态研究
云南松不同径级组各部位生物量对比研究
黄果厚壳桂人工林幼树群体生存状态及谱分析
阜阳市引种香根草栽培试验初报 *
香根草对Cd、Pb、Zn的吸收累积特征研究
香根草耐盐胁迫生理代谢酶变化研究
高流动性抗冲共聚聚丙烯热性能与动态力学性能分析
平推流管式连续反应器合成高抗冲ABS树脂的研究
高流动高抗冲聚丙烯的结晶行为与性能研究
黄龙山白桦桦木醇与桦木酸含量研究