APP下载

单峰分布下三段截尾变量概率边界的估计

2016-10-14李宗秀

高师理科学刊 2016年7期
关键词:财经学院单峰上界

李宗秀



单峰分布下三段截尾变量概率边界的估计

李宗秀

(黑龙江财经学院 基础部,黑龙江 哈尔滨 150025)

假定随机变量为单峰分布,众数,且满足,,研究了三段线性函数的概率上界与下界,其中:;.给出了单峰分布下三段截尾变量概率边界的估计,进一步深化了小值概率理论的原有认识.

截尾变量;辛钦变换;单峰分布;矩问题

小偏差概率估计问题的研究历史悠远,从Chebyshev到Stieltjes[1],提出了切比雪夫不等式并给出了证明过程.后来Karlin S[2],Isii K[3]在概率的研究工作上也做出了非常杰出的贡献.近期,Popescu I[4]得到了单峰分布下随机变量在时,的上确界.在国内,也有相关研究[5-8],这些研究使概率理论的应用价值得到了非常广泛的推广.

[1] Stieltjes T J.Recherches Sur Les Fractions Continues[J].Annalesdela Facultede Sciences de Toulouse,1894,9(1):45-47

[2] Karlin S,Studden W.Tchebyshev Systems:With Applications in Analysis and Statistics,Pure and Applied Mathematics[M]. NewYork:John Wiley and Sons,1966

[3] Isii K.On Sharpness of Chebyshev-type Inequalities[J].Annual of Institute of Statistical Mathematics,1963(14):185-197

[4] Popescu I, Bertsimas D. Moment Problems Via Semidefinite Programming[J].Applications in Probability and Finance,2000(4):1-27

[5] Gao F,Li W V.Logarithmic Level Comparison for Small Deviation Probabilities[J].Journal of Theoretical Probability,2006, 19(3):535-556

[6] Liu G Q,Li W V.Semiparametric Bounds of Mean and Variance for Exotic Options[J].Science in China Series A:Mathematics Jul,2009,52(7):1-14

[7] 张银龙,刘国庆,王敏慧.两类截尾变量的均值与方差的估计[J].哈尔滨理工大学学报,2010(10):74-77

[8] 李宗秀,刘国庆.三段截尾变量概率分布的上界[J].高师理科学刊,2011,31(4):4-6

The estimates on bounds of probability for three-piece truncated random variables of the unimodal distribution

LI Zong-xiu

(Department of Basic Course,Heilongjiang College of Finance and Economice,Harbin 150025,China)

Supposed random variablesis the unimodal distribution.Modeand the random variableswith,,mainly studied the problem of estimating on upper bound and lower bound of probability for three-piece truncated random variables for estimations ofwith,given.Gave the estimates on bounds of probability for three-piece truncated random variables of the unimodal distribution,the result improves the original understanding of probability theory.

truncated variable;Kintchine transform;unimodal distribution;moment problem

1007-9831(2016)07-0001-03

O211.3

A

10.3969/j.issn.1007-9831.2016.07.001

2016-04-22

黑龙江省教育教改项目(JG2014010930);黑龙江省教育科学规划课题(GJD1215031);黑龙江财经学院院级课题(2016YB05)

李宗秀(1980-),女,黑龙江哈尔滨人,讲师,硕士,从事概率论与数理统计研究.E-mail:xiuer505@163.com

猜你喜欢

财经学院单峰上界
图的完全积的独立数和独立多项式
天一漫画
天一漫画
The Innovation and Sustainability of “Five-waterCo-Governance” in Ningbo
Kirchhoff方程单峰解的局部唯一性
一个三角形角平分线不等式的上界估计
一道经典不等式的再加强
Quotation Strategy in Business Negotiations
关于单峰偏好的注记
一类平顶单峰映射的迭代