基于复合量子点界面修饰的杂化太阳能电池研究
2016-09-13周露露汪竞阳屈少华罗中杰
周露露,汪竞阳,屈少华,罗中杰
基于复合量子点界面修饰的杂化太阳能电池研究
周露露1,2,汪竞阳2,屈少华2,罗中杰1
(1.中国地质大学(武汉) 数学与物理学院,湖北 武汉 430074;2.湖北文理学院 物理与电子工程学院,湖北 襄阳 441053)
利用连续离子层吸附与反应法,在透明TiO2纳米晶薄膜表面制备出CdSe/CdS复合量子点,并组装了基于复合量子点界面修饰的P3HT/CdSe/CdS/TiO2杂化太阳能电池. 通过XRD、SEM-EDX、紫外可见分光光度计、模拟太阳光光电性能测试系统和电化学阻抗谱等手段对量子点敏化TiO2薄膜的形貌结构成分及电池的光电性能进行表征分析. 结果表明,CdSe/CdS复合量子点作为界面修饰材料可拓展杂化电池的吸收范围和吸收强度,增大给体/受体界面复合电阻,降低载流子复合几率,从而大幅提高光电转换效率,相比纯P3HT/TiO2杂化电池的效率提高了6倍.
复合量子点;连续离子层吸附与反应法;杂化太阳能电池;光电性能
近年来,有机/无机杂化太阳能电池因其无机受体材料的电子迁移率高、物理化学稳定性好及其有机组分易制备低成本、大面积、柔性光伏器件等优点引起了研究者的大量关注[1-4]. 然而,由于受到有机聚合物较短的激子扩散距离所限制[5],杂化太阳能电池的效率相对其他类型来说依然较低.
目前为改善杂化太阳能电池的光电性能,人们尝试了多种方法和手段,如采用一维纳米阵列构筑有序的杂化太阳能电池,促进有机材料的填充,为载流子提供直接而快速的传输通道,减少载流子复合[6-7];开发新型窄带隙有机给体材料,提高杂化太阳能电池的光谱响应范围[8-9]等. 相比以上方法,利用界面修饰剂改善给体受体之间的界面特性,促进激子分离,提高载流子传输效率,从而提高电池性能是一个较为理想的选择[10]. 迄今为止无机半导体量子点在敏化太阳能电池中的应用得到了广泛研究[11-13],无机半导体量子点具有众多优异的特性,如光吸收能力强,光学吸收范围可调控以及通过改变尺寸和组分带隙可调节等[14-15],已有研究表明CdS和CdSe共敏化的CdSe/CdS/TiO2电池结构能增强量子点敏化太阳能电池的光电转换效率[16-17]. 因此,本文选择复合量子点应用于杂化太阳能电池的界面修饰,制备出P3HT/CdSe/CdS/TiO2杂化太阳能电池,并系统研究CdSe/CdS复合量子点界面修饰对杂化太阳能电池光电性能的影响机制.
1 试验
1.1 杂化电池的制备
将商用P25TiO2浆料采用旋涂法在FTO基底上制备出透明TiO2多孔膜,并在450℃下烧结60min. 再采用连续离子层吸附与反应法在TiO2表面沉积量子点[18]. 具体工艺如下:将TiO2薄膜浸入溶有0.2M Cd(NO3)2的乙醇溶液中1min,取出用乙醇冲洗干净用N2吹干;再将TiO2薄膜浸泡入溶解有0.2 M Na2S的甲醇和去离子水混合溶液中(体积比6 : 4)1min,取出用甲醇冲洗干净并用N2吹干,这样完成一次SILAR循环. 重复以上步骤5次即可在TiO2纳米棒表面沉积一定数量的CdS量子点. CdSe量子点沉积过程在手套箱N2气氛保护中进行,步骤同上,将0.05M Cd(NO3)2和0.05M Na2Se 分别溶解于乙醇中,完成5次浸泡时间为1min的SILAR周期后即制备出CdSe/CdS复合量子点敏化的TiO2薄膜,取出用乙醇冲洗干净后N2吹干备用.
将P3HT(Rieke Metals, 20 mg/ml)溶解于1,2,3-三氯苯中,将该溶液旋涂在量子点敏化的TiO2薄膜上,制备的样品在120℃下真空加热30min,最后用直流磁控溅射法在样品表面沉积Al上电极,组装成电池器件.
1.2 测试项目及仪器
样品表面形貌及成分分析采用带能谱仪(EDX)的场发射扫描电镜(FE-SEM,S-4800, Hitachi)进行表征. 吸收谱由紫外可见分光光度计 (UV-2550, Shimadzu)测定. I-V测试系统采用美国Newport91192型太阳能模拟器(光强为100 mw/cm2,AM1.5)和吉时利2400数字源表构成. 太阳能电池IPCE测试采用的是美国Newport公司的QE/IPCE测试系统,光谱范围为400nm~800nm. 电化学阻抗谱(EIS)测试采用电化学工作站(PGSTAT302N, Autolab)进行测试,交流阻抗谱范围为0.01Hz ~100kHz. 开路电压衰减曲线(OVCD)测试由电化学工作站测试记录电池在光照下开路电压及暗态时的开路电压衰减曲线.
2 结果与讨论
2.1 微观形貌结构及成分表征
(a)TiO2薄膜表面;(b)CdSe/CdS/TiO2表面;(c) CdSe/CdS/TiO2表面SEM-EDX图;(d) P3HT/CdSe/CdS/TiO2表面;(e) P3HT/CdSe/CdS/TiO2断面 图1 样品SEM图
2.2 光电性能表征
图2给出各个样品的吸收谱,可以看出纯TiO2薄膜在紫外区域的吸收特性与其带隙能量3.2eV相对应,由于CdS的带隙为2.4eV,因而CdS/TiO2薄膜的吸收边红移至525 nm附近,当沉积CdSe到CdS/TiO2薄膜表面后,由于CdSe的带隙为1.7 eV,样品吸收边移至700 nm附近,可见通过量子点敏化,可有效提高TiO2薄膜的光谱响应范围和吸收强度. 而对于P3HT/CdSe/CdS/TiO2薄膜样品,顶层P3HT的引入使的样品在400-700nm波长范围内的吸收强度进一步增强[20].
在样品组装成杂化太阳能电池器件后,进一步测试电池的光电性能. 图3为3种不同杂化太阳能电池在AM1.5模拟光照下的特性曲线,电池光伏参数如表1所示. 可以看出,电池的光伏参数(如scoc)由于界面修饰层的引入都有显著提高. 基于P3HT/CdSe/CdS/TiO2薄膜组装的电池短路电流密度sc为2.82mA/cm2,开路电压oc为0.66V,填充因子为0.52,光电转换效率为0.98%,超过基于P3HT/TiO2薄膜组装电池效率的6倍.
图2 样品的吸收谱图3 不同杂化电池样品的J-V曲线
表1 不同杂化电池的光伏参数
一般来说,有机无机杂化太阳能电池的效率可由3个因素决定:1)光吸收效率;2)激子分离效率;3)载流子收集效率,即自由载流子到达对电极的几率[21-22]. 在本文中,杂化太阳能电池的提高主要可归结于TiO2表面沉积的CdSe和CdS量子点,因此为进一步了解CdSe/CdS量子点界面层的增效机制,测试杂化太阳能电池的单色入射光光电转换效率(IPCE),开路电压衰减曲线(OCVD)和电化学阻抗谱(EIS). 图4为基于P3HT/TiO2和P3HT/CdSe/CdS/TiO2结构的杂化太阳能电池IPCE曲线,与纯P3HT/TiO2电池相比,复合量子点界面修饰的P3HT/CdSe/CdS/TiO2杂化电池在400-650nm波长范围内具有更高的单色入射光转换效率,特别注意的是IPCE的入射光响应范围也同时扩展至700nm左右,这与图2中紫外可见吸收光谱图中的结果相吻合. 因此,引入复合量子点CdSe/CdS界面层后,可有效拓展杂化电池的光谱吸收范围,同时提高可见光范围内的吸收强度,从而提高杂化电池的光电流强度.
图5给出了P3HT/TiO2和P3HT/CdSe/CdS/TiO2杂化电池的OCVD曲线. 去掉光照后,P3HT/TiO2电池的开路电压迅速消失,而P3HT/CdSe/CdS/TiO2的开路电压则衰减较慢. 这表明CdSe/CdS量子点中间层可有效抑制P3HT/TiO2界面的电子复合,增加载流子收集效率,从而提高杂化电池的开路电压[23]. 研究表明P3HT作为p型电子传输材料,其最低未占轨道(LUMO)能级高于CdSe,CdS,TiO2的导带能级[24-26]. 因此在该杂化太阳能电池中p型P3HT和n型CdSe/CdS/TiO2之间可以构成一个异质结,根据费米能级调整机理[16],该异质结中P3HT,CdSe、CdS和TiO2的能带形成阶梯状结构(图6),可有效抑制电子反向传输与P3HT空穴复合,降低载流子复合几率.
图5 P3HT/TiO2和P3HT/CdSe/CdS/TiO2 杂化电池的OCVD曲线图6 P3HT/CdSe/CdS/TiO2异质结界面能带结构模型
通过电化学阻抗谱测试我们研究杂化太阳能电池界面电子传输过程. 图7为暗态下的P3HT/TiO2和P3HT/CdSe/CdS/TiO2杂化太阳能电池在施加一定偏压下的阻抗谱,该阻抗谱由两个半圆构成,左边半圆为高频段,与P3HT/Au界面的电荷交换过程有关;右边半圆为中频段,与P3HT/TiO2界面的电荷转移有关[27,28]. 实验表明圆弧尺寸较大的P3HT/CdSe/CdS/TiO2电池界面复合电阻大于P3HT/TiO2,说明复合量子点界面修饰后P3HT/TiO2界面电荷复合率有效降低,这与OCVD的测试结果相对应,进一步证实了复合量子点界面层的引入对抑制界面载流子复合的贡献.
3 结语
本文制备了基于CdSe/CdS复合量子点界面修饰的P3HT/TiO2杂化太阳能电池,实验结果发现CdSe/CdS量子点的引入可显著增加杂化电池的光吸收利用效率,提高光电流强度,同时在给体受体界面之间形成了阶梯状能带结构,有效抑制载流子的界面复合,从而大幅提高杂化电池的光电转换效率. 研究表明无机半导体量子点可作为界面修饰材料应用于有机无机杂化太阳能电池,以改善电池性能.
[1] BEEK W, WIENK M, JANSSEN R. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer[J]. Advanced Materials, 2004,
16(12): 1009-1013.
[2] OOSTERHOUT S D, WIENK M M, BAVEL S S V, et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells[J].
Nature Materials, 2009, 8(10): 818-824.
[3] WRIGHT M, UDDIN A. Organic-inorganic hybrid solar cells: a comparative review[J]. Solar Energy Material & Solar Cells, 2012, 107(107): 87-111.
[4] SMITA D, REESE M O, FERGUSON A J, et al. The Effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of
poly(3‐hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells[J]. Advanced Functional Materials, 2010, 20(16): 2629-2635.
[5] LIN Y Y, CHU T H, CHEN C W, et al. Improved performance of polymer/TiO2nanorod bulk heterojunction photovoltaic devices by interface
modification[J]. Applied Physics Letters, 2008, 92(5): 053312-053312-3.
[6] BAETEN L, CONINGS B, BOYEN H G, et al. Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays[J]. Advanced
Materials, 2011, 23(25): 2802-2805.
[7] KUO C Y, TANG W C, GAU C, et al. Ordered bulk heterojunction solar cells with vertically aligned TiO2nanorods embedded in a conjugated polymer[J].
Applied Physics Letters, 2008, 93(3): 033307-033307-3.
[8] PEET J, KIM J Y, COATES N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nature Materials,
2007, 6(7): 497-500.
[9] WANG E, WANG L, LAN L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Applied Physics Letters, 2008,
92(3): 033307-033307-3.
[10] LIN Y Y, LEE Y Y, CHANG L, et al. The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells[J]. Applied
Physics Letters, 2009, 94(6): 063308-063308-3.
[11] LESCHKIES KURTIS S, DIVAKAR R, BASU J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices[J]. Nano
Letter, 2007, 7(6):1793-1798.
[12] SUN W T, YU Y, PAN H Y, et al. CdS quantum dots sensitized TiO2nanotube-array photoelectrodes[J]. Journal of the American Chemical Society, 2008,
130(4): 1124-1125.
[13] GAO X F, LI H B, SUN W T, et al. CdTe quantum dots-sensitized TiO2nanotube array photoelectrodes[J]. J. phys. chem. c, 2009, 113(18): 7531-7535.
[14] LEE H J, BANG J, PARK J, et al. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2mesoporous solar cells: all prepared by successive ionic
layer adsorption and reaction processes[J]. Chemistry of Materials, 2010, 22(19): 5636-5643.
[15] HO B J, KAMAT P V. Quantum dot sensitized solar cells. a tale of two semiconductor nanocrystals: Cdse And Cdte[J]. Acs Nano, 2009, 3(6):1467-1476.
[16] LEE J, JHO J Y. Fabrication of highly ordered and vertically oriented TiO2nanotube arrays for ordered heterojunction polymer/inorganic hybrid solar
cell[J]. Solar energy materials and solar cells, 2011. 95(11): 3152-3156.
[17] LIN K H, CHUANG C Y, LEE Y Y, et al. Charge transfer in the heterointerfaces of CdS/CdSe co-sensitized TiO2 photoelectrode[J]. J.phys.chem.c, 2012,
116(1): 1550-1555.
[18] LEE H, WANG M, CHEN P, et al. Efficient cdse quantum dot-sensitized solar cells prepared by an improved successive Ionic layer adsorption and reaction
process[J]. Nano Lett, 2009, 9(12): 4221-4227.
[19] WEICKERT J, DUNBAR R B, HESSE H C, et al. Nanostructured organic and hybrid solar cells[M]. Advanced Materials, 2011,23(16): 1810-1828.
[20] WATAANBE A, KASUYA A. Effect of atmospheres on the open-circuit photovoltage of nanoporous TiO2/poly(3-hexylthiophene) heterojunction solar
cell[J]. Thin Solid Films, 2005, 483(1): 358-366.
[21] GREENE L E, LAW M, YUHAS B D, et al. ZnO-TiO2core-shell nanorod/P3HT solar cells[J]. Journal of Physical Chemistry C, 2007, 111(50):
18451-18456.
[22] Yi Z, YUNCHAO L, HAIZHENG Z, et al. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSe(x)Te(1-x) nanocrystals.[J].
Nanotechnology, 2006, 17(16): 4041-4047.
[23] MORA-SEROT I, BISQUERT J, ZABAN A, et al. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte
electronic energy levels in dye-sensitized solar cells by open-circuit[J]. Journal of the American Chemical Society, 2004, 126(41): 13550-13559.
[24] KAMAT P V. Quantum dot solar cells. semiconductor nanocrystals as light harvesters [J]. J. Phys. Chem. c, 2008, 112(48): 18737-18753.
[25] ERIN L, RATCLIFF, JUDITH L, et al. Electrodeposited, “textured” poly(3-hexyl-thiophene) (e-P3HT) films for photovoltaic applications[J]. Chemistry of
Materials, 2008, 20(18): 5796-5806.
[26] HAO Y, PEI J, WEI Y, et al. Efficient semiconductor-sensitized solar cells based on poly(3-hexylthiophene)@CdSe@ZnO core-shell nanorod arrays[J].
Journal of Physical Chemistry C, 2010, 114(18): 8622-8625.
[27] CONINGS B, BAETEN L, BOYEN H G, et al. Influence of interface morphology onto the photovoltaic properties of nanopatterned
ZnO/Poly(3-hexylthiophene) hybrid solar cells. an impedance spectroscopy study[J]. J. Phys. Chem. c, 2011, 115(33): 16695-16700.
[28] ZHONG M, YANG D, ZHANG J, et al. Improving the performance of CdSP3HT hybrid inverted solarcells by interfacial modification[J]. Solar Energy
Materials & Solar Cells, 2012, 96(1): 160-165.
(责任编辑:饶 超)
Hybrid Solar Cells Based on Interfacial Modifiers of Composite Quantum Dots
ZHOU Lulu1,2, WANG Jingyang2, QU Shaohua2, LUO Zhongjie1
(1.School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China; 2.School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053, China)
A hybrid solar cell was developed using a P3HT/CdSe/CdS/TiO2stepwise structure which modified by composite quantum dots and CdSe/CdS quantum dots were deposited on the surface of transparent TiO2nanocrystalline films by successive ionic layer adsorption and reaction. The morphology, microstructure, component of quantum dots co-sensitized TiO2thin film and photoelectric performance of cells were characterized by XRD, SEM-EDX, UV-vis spectrophotometer, simulated sunlight photoelectric performance testing system and electrochemical impedance spectroscopy. The results show that composite CdSe/CdS quantum dots as interfacial modifiers not only can enhance the range and intensity of light harvesting but also increase the interfacial recombination resistance at the donor/accepter interfaces and lead to a lower recombination rate of the carrier,therefore, photoelectric conversion efficiency improved greatly,which is more than 6 times higher than that of pure P3HT/TiO2hybrid solar cell.
Composite quantum dots; Successive ionic layer adsorption and reaction; Hybrid solar cells; Photoelectric performance
TB332
A
2095-4476(2016)02-0032-05
2015-10-24;
2015-11-25
国家自然科学基金项目(51302075); 低维光电材料与器件湖北省重点实验室开放课题(HLOM141004)
周露露(1991— ), 女, 湖北宜昌人, 湖北文理学院与中国地质大学(武汉)联合培养硕士研究生;
汪竞阳(1978— ), 男, 湖北襄阳人, 湖北文理学院物理与电子工程学院讲师, 博士, 主要研究方向: 光电功能材料与器件.