APP下载

植物耐盐性与钠离子动态平衡研究进展*1

2016-09-05陈鹏程陈析丰马伯军顾志敏

关键词:液泡木质部耐盐

陈鹏程, 陈析丰, 马伯军, 顾志敏

(浙江师范大学化学与生命科学学院,浙江金华 321004)

植物耐盐性与钠离子动态平衡研究进展*1

陈鹏程, 陈析丰, 马伯军, 顾志敏

(浙江师范大学化学与生命科学学院,浙江金华321004)

综述了离子转运体系促进植物Na+动态平衡的分子机制,并对盐生植物和淡土植物对盐应答反应和运输中的基因功能进行了比较.将盐生植物中独特的耐盐转运蛋白基因和下游调控基因作为潜在的遗传资源,可为进一步的作物耐盐遗传改良服务.

盐耐受;Na+动态平衡;AVP1;SOS1;HKT1

土壤和水中的盐分严重限制了农作物的产量,全球约830~950万hm2耕作土地受到盐害影响.近年来,随着耐盐基因和Na+运输蛋白相关基因陆续被发现,植物耐盐机制和Na+稳态的研究取得了突破性进展.本文对近年来盐生植物和淡土植物模型体系进行了讨论,希望能够促进人们对植物耐盐机制的认识.

1 高盐胁迫下的渗透胁迫和离子失衡

植物在盐胁迫时主要受高渗影响,从而造成植物缺水和离子失衡(见图1)[1-3],不利于植物正常代谢和生理功能的发挥,严重时能导致细胞死亡[4-5].植物在盐胁迫下,缺水信号将快速地从根部传递到植物的其他部位,导致细胞内渗透压降低并阻碍细胞增大[6-8].

低渗透压能诱导脱落酸(ABA)合成,并通过ABA信号途径导致保卫细胞去极化和降低气孔开度及传导性[9-11].失水和离子毒害阻碍有氧代谢,导致活性氧积累量超出细胞通过解毒机制维持氧化还原平衡的能力[12-14].缺水将加速细胞衰老[15-17].

图1 NaCl引起的失水及Na+和Cl-的毒害作用[8]

高浓度Na+具有毒害作用,它使细胞膜和一些蛋白质不稳定[18-19],在细胞生理活动中能够负调控细胞分裂和生长、初级和次级代谢及矿质营养元素的动态平衡[20-21].AKT1和AtHAK5是拟南芥根中2个主要的K+吸收蛋白,Na+能够降低AKT1通道中的 K+流通量[22-23],并且抑制AtHAK5的表达[24-26].因此,即使在高亲和力K+运输系统下,Na+也能和K+竞争[22,27-28],使细胞内的K+流失,从而导致Na+/K+失衡[16-17,22].

总体上,Na+持续地被植物从土壤溶液中运输到根外表皮细胞,再经根木质部导管从根部向地上部分运输,最后到达叶片[16-18].细胞膜、转运蛋白和其他蛋白能抵抗或限制Na+吸收进入细胞.尽管有这些抵抗Na+摄取的系统存在,但由于离子梯度差和蒸腾作用,仍会导致Na+在叶片积累(见图2)[6,10,17].高盐诱导的失水降低叶片细胞扩增,由于细胞体积变小,最终导致叶片细胞中Na+浓度快速升高[16,18].

图2 植物Na+稳态依赖Na+从根木质部导管和蒸腾流中外排实现[8]

2 高盐胁迫下Na+动态平衡的重建

淡土植物细胞和大部分盐生植物细胞都具有很高的细胞生长率临界值,在低渗透压下降低细胞可延长能力从而限制细胞膨胀[9,29].盐生植物能在高盐浓度下呈现出鲜质量和干质量提高的现象,这将在缺水条件下加速植物生长和使植物持续增重[16-18].

一些盐生植物进化出独特的适应高盐环境的生理机制[17,30-31].为了耐受盐损害,盐生植物能够调节细胞内的Na+稳态,从而使细胞质中离子毒害的影响降低到最小.另外,盐生植物还能通过调节渗透压控制细胞内的Na+卸载进入根木质部,这样能降低通过蒸腾作用运输来的Na+源头浓度和限制苗中代谢活跃细胞中 Na+的积累(见图2)[18,32-33].

3 植物减轻Na+毒害作用的机制

盐生植物和淡土植物的许多重要生理代谢在盐胁迫早期对Na+和Cl-同样敏感[16-17,34].淡土植物和盐生植物的膜转运系统能使Na+和Cl-跨越细胞膜,流入液泡或者胞内体隔离起来,从而调节细胞质的Na+和Cl-平衡,这样能够降低细胞质内离子的毒害作用(见图3).液泡内离子积累也能促进渗透调节,它是促进细胞增大的必要条件[2].在液泡和细胞器内能够积累许多兼容性的渗透溶质,而这能够调节各细胞器间的渗透压并维持其平衡[13,35].大量证据证明,淡土植物和盐生植物在离子隔离和渗透调节方面具有相似的运输蛋白和渗透溶质合成机制.

细胞膜、液泡膜和胞内体膜的H+电势差主要应答 Na+的跨膜运输[36-38].这些细胞膜 H+-ATPase(腺苷三磷酸酶)在细胞溶质中具有催化和调节活性,利用来源于ATP水解的能量将H+定向泵出质外体,从而形成膜内外的 H+梯度[38-40].这种 H+-ATPase泵能够酸化质外体(pH 5.5),使其维持相对于细胞质(pH 7.2)大约相差1.5~2.0 pH单位,这就是内质体膜内外电势差为-120~-150 mV的原因[2,33].质膜内部负的电势和非原生质体的高Na+浓度形成一种热力学势能差,它决定Na+以被动方式进入质膜和以主动方式流出质膜[2,41-42].

图3 高Na+浓度下转运蛋白对细胞内Na+稳态的促进[8]

Na+单方向的细胞内流可能需要不同的转运系统参与,例如非选择性阳离子通道(NSCC)家族成员、HAK和AKT1(蛋白激酶),它们参与高亲和性K+摄取、低亲和性阳离子转运蛋白、阳离子和Cl-共转运蛋白和高亲和K+转运蛋白[43-44].尽管有学者指出NSCCs和HKT1转运蛋白是主要的参与者[44],但是这些通道和转运蛋白对Na+摄取的具体功能目前仍然不清楚.HKT1蛋白呈现特异性地高效选择钠离子的能力,而HKT2蛋白选择钾离子的能力比选择钠离子的能力大些或者无差别选择[45-46].

Na+向外流出细胞膜归因于SOS1 Na+/H+反转运蛋白,它属于哺乳动物NHE和细菌NhaP Na+/H+反转运蛋白家族[40,44,47].SOS1介导的逆向转运将Na+通过细胞膜排出细胞外(见图3). SOS1在根和苗中都发挥作用,目前还没有证据证明在拟南芥中有其他细胞膜Na+/H+反转运蛋白存在,意味着SOS1在大多数细胞中都发挥作用.

外界施加Ca2+能够减少Na+向内流动,从而促进和维持Na+和K+平衡[41,48-49].Ca2+激活高亲和性的 K+吸收蛋白,从而促进植物对 K+吸收[47,49].同时,外界施加 Ca2+还能够激活 CBL/ CIPK途径,磷酸化AKT1并且高亲和性摄取K+,从而降低Na+摄入量[50].细胞质内的Ca2+可能通过NSCCs抑制Na+向内流(见图3).

细胞内存在2种质子泵:V-ATPase和AVP1 H+焦磷酸酶(PPase)(见图3),它们的作用底物分别为ATP和焦磷酸(PPi)[36-37,51].这些质子泵能够利用ATP和PPi水解产生的能量转运H+泵出液泡膜,维持约1.5~2.0 pH梯度(液泡膜内腔的pH较低),从而使细胞质溶胶与内腔的膜电势维持在0~-40 mV(见图3).通过膜的电势差决定Na+流入或者流出液泡内腔是主动运输还是被动运输[32,40].V-ATPase的激活可能促进Na+隔离进质内体来降低细胞质中的离子浓度[36,52-53].

生理学的证据表明,Na+/H+反转运蛋白参与Na+向内流进液泡或者质内体(见图3).其中NHX反转运蛋白是一类阳离子/H+转运蛋白(见图3),它能促进和维持细胞内Na+,Na+/K+和pH内稳态[44,52,54],并通过调控液泡K+的积累来增强NaCl的耐受能力[24,52].

4 植物根木质部Na+的外排作用

土壤溶液中的Na+向根细胞流动主要是梯度压力差推动的(见图2)[6,55].Na+由土壤溶液向根木质部运输过程需要经历共质体途径、非原生质体或者横跨细胞膜途径到内皮层.内皮层是一个疏水性的屏障,它包含凯氏带,能够限制非原生质体的物质进出[6,43,56].软木质是一种蜡状物质,它是质外体途径的一个疏水性屏障[31],但是它可能属于内皮层[5,9,33].

转运系统限制了非原生质体Na+流入木质部导管,从而减少Na+运输到植物地上部分(见图2(a))[18].Na+从根细胞外排到质外体[18,33,57],归因于 SOS1 Na+/H+反转运蛋白(见图2 (a))[43,47,58].盐芥属拟南芥的盐耐能力,与组成型的和盐诱导的胁迫适应性基因表达相关,例如SOS1[59-61].T.salsuginea SOS1 RNAi抑制SOS1的表达,降低了它对NaCl的耐受能力.通过测定发现,T.salsuginea SOS1 RNAi株系增加了植物根中Na+的摄入,Na+由地下部分向地上部分运输,所以地上部分(主要为叶片)Na+含量很高[52,62-63].T.salsuginea的根中呈现高水平的非渗透压依赖的NSCC K+/Na+选择性活性,这可能降低Na+的内流[64].盐生植物Suaedamaritima明显没有根特异性NSCC基因或者阳离子转运蛋白,这样就会加速Na+吸收[35].

植物能够通过促进液泡隔离作用减少游离Na+进入内胚层细胞,使Na+在根外表皮和内皮层细胞积累(见图2(a)).在小麦根中,Na+浓度在表皮和亚表皮最高,在皮层细胞和内皮细胞由外层向内层逐渐降低[18].这些结果显示,根的外皮和内皮层细胞在Na+从土壤溶液到木质部运输途径中起着阻泄作用[18].NHX类Na+/H+反转运蛋白可能在Na+向液泡或者胞内体的隔离过程中起着重要作用(见图2(a))[52,65].

Na+从木质部导管向外排和卸载作用限制蒸腾流中Na+的浓度(见图2)[12,18,63].中柱鞘细胞和木质部薄壁细胞能够积累Na+,减少Na+运输到木质部导管中[12,18].共质体途径中的Na+通过主动或者被动运输卸载到木质部导管,前者需要SOS1的参与[12,18,44].HKT1转运蛋白在决定Na+从导管卸载到中柱鞘细胞的过程中起着重要作用(见图2(a))[43,45,66].另外,有研究表明HKT1还能将地上部分(主要为叶片)的Na+转运回根部[67].在淡土植物根中柱鞘特异性表达的HKT1能够减少木质部导管和苗中Na+的积累,从而增强植物NaCl耐受能力(见图2)[43,63].此外,根外皮和表皮细胞积累更高浓度的Na+,表明HKT1活性可能促进Na+从中柱鞘细胞转运回中柱鞘外细胞.

5 植物地上部分Na+的动态平衡

Na+由根向地上部分运输主要是由木质部导管蒸腾压梯度产生的张力推动的(见图2 (b))[6,68-69].尽管非气孔蒸腾也能促成植物的水流失[7,10],但是蒸腾流主要由气孔开度决定[6,68].因此,通过调控气孔开度和气孔开度密度,能够减轻蒸腾作用,从而减小Na+由根向地上部分转移的速率[18,43,70].另外,限制Na+由根向地上部分转移,能限制或者减小叶细胞吸收Na+的速率(见图2(b))[43,50,71].曾经有研究者提出,一些盐生植物通过细胞内的感受机制,通过降低蒸腾作用,可减少盐胁迫下苗中Na+积累[41,62,66].然而,降低蒸腾作用可能产生不利的后果,例如降低碳同化能力、营养元素的吸收和蒸发作用下叶片的冷却(见图2)[11,16,70].C3植物还能通过水孔蛋白的水力传导率减小Na+的转移速率,应对由于高盐引起的高渗胁迫[70,72-73].

植物在含盐的环境中通过渗透调节作用积累大量的盐离子,因此这些离子不能从叶片细胞中完全排除.然而,Na+吸收和转移到叶片将导致叶片细胞体积减小,从而增加细胞质中Na+的浓度.与淡土植物相比,很多耐盐的盐生植物叶片具有非常高的Na+浓度[5,17,74],表明这些盐生植物具有较大的Na+稳态能力.

6 植物Na+动态平衡和信号转导

近年来,通过转录物组和蛋白质组分析鉴定了许多参与耐盐信号转导途径的基因或蛋白[42,75-76].其中,对SOS系统调控 Na+动态平衡的研究已经非常清晰[29](见图2).NaCl诱导的细胞质内Ca2+浓度升高,能够被钙调磷酸酶B蛋白和类神经元的Ca2+感受器蛋白SOS3(CBL4)识别,这是一种能够在EF手型Ca2+结合位点发生酰化作用的蛋白[24,60,77].Ca2+激活的SOS3能够与SOS2(CIPK24)自我抑制结构域互作,SOS2是SnRK家族成员之一[24,60,77].SOS3与 SOS2的自我抑制结构域结合,激活SOS2激酶活性并且促进SOS2-SOS3复合物定位到细胞膜上[24,50,78]. SOS2随后与细胞膜上的 Na+/H+反转运蛋白SOS1互作,它能磷酸化SOS1并使之激活,从而使Na+从细胞质流出到质外体[24,47,78].研究表明,SOS途径调控植物耐盐信号转导途径的分子机制在植物中是高度保守的[58,79].

SCABP8(CBL10)是SOS3(CBL)家族的一员,它在苗中发挥着作用[24,80].SCABP8依赖的SOS途径激活SOS1使Na+外流,从而调节苗中细胞内的Na+积累(见图2(a))[24,80].SCABP8磷酸化SOS2,它能够稳定SCABP8-SOS2复合物,并且将其定位到细胞膜,从而增强SOS1反转运蛋白的活性[24].因此,在根中主要由SOS3与SOS2互作,在苗中主要由SCABP8与SOS2互作,它们共同将这些复合物招募到细胞膜上来激活SOS1的活性,调整 Na+的动态平衡和增强其耐盐能力[78,80].

ABI2能与SOS2互作,从而抑制SOS3结合SOS2及SOS2激酶的活性[24,81].ABI2与SOS2的互作可能代表一个细胞内NaCl和ABA信号转导的交点[24,50].NaCl诱导的磷脂酶D(PLD)能够激活受诱导的磷脂酸的合成,这将激活MAPK6,从而磷酸化不同下游靶蛋白,其中包括SOS1[8,82]. Pldα1和 mpk6及 sos1功能的缺失导致植物对NaCl敏感[81].

SOS途径通过调控V型ATPase和NHX反转运蛋白活性促进液泡的Na+隔离(见图3).sos2-2能够显著降低液泡膜微囊的 Na+/H+交换活性[47].这种交换活性对阿米洛利和NHX1抗体敏感,这就证明SOS2能够调控NHX Na+/H+反转运蛋白的活性.此外,SOS2结合V-ATPase的B1 和B2亚基,sos2-2降低液泡膜 ATPase的活性[83].遗传学证据表明,SOS1正调控AVP1的活性,促进液泡 Na+积累和增强耐盐能力[79]. SCABP8(CBL10)-SOS2复合物能够定位到液泡膜,说明SCABP8(CBL10)-SOS2可能参与了促进Na+在液泡中的隔离[11,24].

最近的研究表明,SOS途径在适应盐胁迫环境过程中调控根系形态的重建[7,49,84].在中等浓度NaCl条件下,SOS途径通过调控植物激素的由上往下运输来影响侧根的形成[85].此外,盐害条件下SOS途径在维持Na+稳态和根向地性方面起着重要的作用[86].

7 结论

综合数十年盐生植物的生理研究、最近的基因组测序、盐生植物和淡土植物的盐反应分子遗传数据,研究者分析了Na+及其他离子的转运蛋白和逆境信号途径,发现这些离子转运因子和逆境信号途径对于细胞内外的离子动态平衡和耐盐性是十分必要的.

通过对拟南芥及其耐盐近缘种、水稻、小麦的HKT1的研究,建立了盐生植物和淡土植物的基本耐盐保护机制.盐生植物未来的研究将会发现新的耐盐等位基因和位点.这些遗传因子包括转运蛋白、调节细胞内(包括根茎)外钠钾动态平衡的基因.另外,盐生植物在高盐引起的低水势条件下能进行最理想的细胞伸长和干物质积累,而这些能力都是淡土植物中不存在的,因此是独特而重要的遗传资源.在今后的农业生产中,将利用前人研究的这些蛋白和基因等遗传资源进行农作物耐盐性的遗传改良,提高农作物的产量和品质.

[1]Lexer C,Welch M E,Durphy JL,etal.Natural selection for salt tolerance quantitative trait loci(QTLs)in wild sunflower hybrids:Implications for the origin of Helianthus paradoxus,a diploid hybrid species[J].Molecular Ecology,2003,12(5):1225-1235.

[2]Hasegawa PM,Bressan R A,Zhu JK,etal.Plant cellular andmolecular responses to high salinity[J].Annual Review of Plant Biology,2000,51(1):463-499.

[3]Flowers T J,Galal H K,Bromham L.Evolution of halophytes:Multiple origins of salt tolerance in land plants[J].Functional Plant Biology,2010,37(7):604-612.

[4]Debat V,David P.Mapping phenotypes:Canalization,plasticity and developmental stability[J].Trends in Ecology&Evolution,2001,16(10):555-561.

[5]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.

[6]Taji T,SekiM,Satou M,et al.Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray[J].Plant Physiology,2004,135(3):1697-1709.

[7]Matthews M A,Van Volkenburgh E,Boyer JS.Acclimation of leaf growth to low water potentials in sunflower[J].Plant Cell&Environment,1984,7(3):199-206.

[8]Hasegawa PM.Sodium(Na+)homeostasis and salt tolerance of plants[J].Environmental and Experimental Botany,2013,92(8):19-31.

[9]Schroeder J I,Allen G J,Hugouvieux V,et al.Guard cell signal transduction[J].Annual Review of Plant Biology,2001,52(1):627-658.

[10]Yoo C Y,Pence H E,Hasegawa PM,etal.Regulation of transpiration to improve crop water use[J].Critical Reviews in Plant Science,2009,28(6):410-431.

[11]Kim T H,Böhmer M,Hu H,et al.Guard cell signal transduction network:Advances in understanding abscisic acid,CO2,and Ca2+signaling [J].Annual Review of Plant Biology,2010,61(4):561-591.

[12]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31(1):149-190.

[13]Flowers T J,Colmer T D.Salinity tolerance in halophytes[J].New Phytologist,2008,179(4):945-963.

[14]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.

[15]Rivero R M,Kojima M,Gepstein A,et al.Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J].Proc Natl Acad Sci USA,2007,104(49):19631-19636.

[16]Flowers T J,Troke P F,Yeo A R.Themechanism of salt tolerance in halophytes[J].Annual Review of Plant Physiology,1977,28(1):89-121.

[17]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31(1):149-190.

[18]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annu Rev Plant Biol,2008,59:651-681.

[19]Xu G,Magen H,Tarchitzky J,et al.Advances in chloride nutrition of plants[J].Advances in Agronomy,1999,68:97-150.

[20]White P J,Broadley M R.Chloride in soils and its uptake and movementwithin the plant:A review[J].Annals of Botany,2001,88(6):967-988.

[21]Teakle N L,Tyerman SD.Mechanisms of Cl-transport contributing to salt tolerance[J].Plant Cell&Environment,2010,33(4):566-589.

[22]Alemán F,Nieves-Cordones M,Martínez V,et al.Root K+acquisition in plants:The Arabidopsis thaliana model[J].Plant and Cell Physiology,2011,52(9):1603-1612.

[23]Qi Z,Spalding E P.Protection of plasmamembrane K+transport by the salt overly sensitive1 Na+-H+antiporter during salinity stress[J]. Plant Physiology,2004,136(1):2548-2555.

[24]Pardo JM,Rubio F.Na+and K+transporters in plant signaling[M]//Transporters and Pumps in Plant Signaling.Berlin:Springer,2011:65-98.

[25]Peleg Z,Apse M P,Blumwald E.Engineering salinity and water-stress tolerance in crop plants:Getting closer to the field[J].Adv Bot Res,2011,57:405-443.

[26]Nieves-Cordones M,Miller A J,Alemán F,etal.A putative role for the plasmamembrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5[J].PlantMolecular Biology,2008,68(6):521-532.

[27]Epstein E.The essential role of calcium in selective cation transport by plant cells[J].Plant Physiology,1961,36(4):437-444.

[28]Epstein E,Rains DW,Elzam OE.Resolution of dualmechanismsof potassium absorption by barley roots[J].Proc Natl Acad SciUSA,1963,49(5):684-692.

[29]Binzel M L,Hess F D,Bressan R A,et al.Intracellular compartmentation of ions in salt adapted tobacco cells[J].Plant Physiology,1988,86 (2):607-614.

[30]Bohnert H J,Nelson D E,Jensen R G.Adaptations to environmental stresses[J].Plant Cell,1995,7(7):1099-1111.

[31]Shabala SN,Mackay A S.Ion transport in halophytes[J].Advances in Botanical Research,2011,57:151-187.

[32]Niu X,Bressan R A,Hasegawa PM,et al.Ion homeostasis in NaCl stress environments[J].Plant Physiology,1995,109(3):735-742.

[33]Cuin T A,Bose J,Stefano G,et al.Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat:In planta quantificationmethods[J].Plant Cell&Environment,2011,34(6):947-961.

[34]Greenway H,Osmond C B.Salt responses of enzymes from species differing in salt tolerance[J].Plant Physiology,1972,49(2):256-259.

[35]Wang Suomin,Zhang Jinlin,Flowers T J.Low-affinity Na+uptake in the halophyte Suaeda maritima[J].Plant Physiology,2007,145(2):559-571.

[36]Schumacher K,Krebs M.The V-ATPase:small cargo,large effects[J].Current Opinion in Plant Biology,2010,13(6):724-730.

[37]Gaxiola R A,Palmgren M G,Schumacher K.Plant proton pumps[J].FEBS Letters,2007,581(12):2204-2214.

[38]Duby G,Boutry M.The plant plasmamembrane proton pump ATPase:A highly regulated P-type ATPasewithmultiple physiological roles[J]. Pflügers Archiv:European Journal of Physiology,2009,457(3):645-655.

[39]Piette A S,Derua R,Waelkens E,etal.A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasmamembrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins[J].Journal of Biological Chemistry,2011,286(21):18474-18482.

[40]Blumwald E,Aharon G S,Apse M P.Sodium transport in plant cells[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2000,1465 (1/2):140-151.

[41]Epstein E.Mineral nutrition of plants:Principles and perspectives[M].London:John Wiley and Sons Inc,1972.

[42]Zhang Jinlin,Flowers T J,Wang Suomin.Mechanisms of sodium uptake by roots of higher plants[J].Plant and Soil,2010,326(1):45-60.

[43]Plett D,Moller I.Na+transport in glycophytic plants:whatwe know and would like to know[J].Plant Cell&Environment,2010,33(4):612-626.

[44]Kronzucker H J,Britto D T.Sodium transport in plants:a critical review[J].New Phytologist,2011,189(1):54-81.

[45]Hauser F,Horie T.A conserved primary salt tolerancemechanismmediated by HKT transporters:Amechanism for sodium exclusion andmaintenance of high K+/Na+ratio in leaves during salinity stress[J].Plant Cell&Environment,2010,33(4):552-565.

[46]Mian A,Oomen R J,Isayenkov S,etal.Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance[J]. Plant Journal,2011,68(3):468-479.

[47]Qiu Quansheng,Guo Yan,Dietrich M A,et al.Regulation of SOS1,a plasmamembrane Na+/H+exchanger in Arabidopsis thaliana,by SOS2 and SOS3[J].Proc Natl Acad Sci USA,2002,99(12):8436-8441.

[48]Cramer G R,Lynch J,Lächli A,et al.Influx of Na+,K+,and Ca2+into roots of salt-stressed cotton seedlings effects of supplemental Ca2+[J].Plant Physiology,1987,83(3):510-516.

[49]Rengel Z.The role of calcium in salt toxicity[J].Plant Cell&Environment,1992,15(6):625-632.

[50]Lin Huixin,Yang Yongqing,Quan Ruidang,etal.Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J].Plant Cell,2009,21(5):1607-1619.

[51]Pasapula V,Shen G,Kuppu S,etal.Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions[J].Plant Biotechnology Journal,2011,9(1):88-99.

[52]Bassil E,Ohto M,Esumi T,et al.The Arabidopsis intracellular Na+/H+antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J].Plant Cell,2011,23(1):224-239.

[53]Krebs M,Beyhl D,Görlich E,et al.Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation[J].Proc Natl Acad Sci USA,2010,107(7):3251-3256.

[54]Leidi E O,Barragán V,Rubio L,et al.The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J]. Plant Journal,2010,61(3):495-506.

[55]Brady N C.The nature and properties of soils[M].New York:Macmillan Publishing Company,1996.

[56]Baxter I,Brazelton JN,Yu D,etal.A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1[J].PLoSGenetics,2010,6(11):e1001193.

[57]Tester M,Langridge P.Breeding technologies to increase crop production in a changingworld[J].Science,2010,327(5967):818-822.

[58]Oh D H,Dassanayake M,Bohnert H J,et al.Life at the extreme:Lessons from the genome[J].Genome Biol,2012,13(3):241.

[59]Dassanayake M,Oh D H,Haas JS,et al.The genome of the extremophile crucifer Thellungiella parvula[J].Nat Genet,2011,43(9):913-918.

[60]Gong Qingqiu,Li Pinghua,Ma Shisong,et al.Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J].Plant Journal,2005,44(5):826-839.

[61]Dassanayake M,Oh D,Hong H,et al.Transcription strength and halophytic lifestyle[J].Trends in Plant Science,2011,16(1):1-3.

[62]Edelist C,Raffoux X,Falque M,et al.Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H.annuus and H.petiolaris(Asteraceae)[J].American Journal of Botany,2009,96(10):1830-1838.

[63]Plett D,Safwat G,Gilliham M,et al.Improved salinity tolerance of rice through cell type-specific expression of AtHKT1[J].PLoSOne,2010,5(9):e12571.

[64]Amtmann A.Learning from evolution:Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants[J].Molecular Plant,2009,2(1):3-12.

[65]Olías R,Eljakaoui Z,Li Jun,etal.The plasmamembrane Na+/H+antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+between plant organs[J].Plant Cell&Environment,2009,32(7):904-916.

[66]Munns R,James R A,Xu B,etal.Wheatgrain yield on saline soils is improved by an ancestral Na+transporter gene[J].Nature Biotechnology,2012,30(4):360-364.

[67]Berthomieu P,Conéjéro G,Nublat A,etal.Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance[J].EMBO Journal,2003,22(9):2004-2014.

[68]Jaffe M J,Takahashi H,Biro R L.A peamutant for the study of hydrotropism in roots[J].Science,1985,230(4724):445-447.

[69]Boyko A,Kovalchuk I.Genome instability and epigeneticmodification-heritable responses to environmentalstress[J].CurrentOpinion in Plant Biology,2011,14(3):260-266.

[70]Casson SA,Hetherington A M.Environmental regulation of stomatal development[J].CurrentOpinion in Plant Biology,2010,13(1):90-95.

[71]Christmann A,Weiler EW,Steudle E,et al.A hydraulic signal in root-to-shoot signalling of water shortage[J].Plant Journal,2007,52(1):167-174.

[72]Horie T,Hauser F,Schroeder JI.HKT transporter-mediated salinity resistancemechanisms in Arabidopsis andmonocot crop plants[J].Trends in Plant Science,2009,14(12):660-668.

[73]Ayadi M,Cavez D,Miled N,et al.Identification and characterization of two plasmamembrane aquaporins in durum wheat(Triticum turgidum L.subsp.durum)and their role in abiotic stress tolerance[J].Plant Physiology and Biochemistry,2011,49(9):1029-1039.

[74]Rus A,Baxter I,Muthukumar B,etal.Naturalvariantsof AtHKT1 enhance Na+accumulation in twowild populationsof Arabidopsis[J].PLoS Genetics,2006,2(12):e210.

[75]Golldack D,Lüking I,Yang O.Plant tolerance to droughtand salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J].Plant Cell Reports,2011,30(8):1383-1391.

[76]Pérez-Alfocea F,Ghanem M E,Gómez-Cadenas A,etal.Omics of root-to-shoot signaling under salt stressand water deficit[J].Omics:A Journal of Integrative Biology,2011,15(12):893-901.

[77]Tracy F E,Gilliham M,Dodd A N,etal.NaCl-induced changes in cytosolic free Ca2+in Arabidopsis thaliana are heterogeneous and modified by external ionic composition[J].Plant Cell&Environment,2008,31(8):1063-1073.

[78]Quintero F J,Martinez-Atienza J,Villalta I,et al.Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1(SOS1)by phosphorylation of an auto-inhibitory C-terminal domain[J].Proc Natl Acad Sci USA,2011,108(6):2611-2616.

[79]Undurraga SF,SantosM P,Paez-Valencia J,etal.Arabidopsis sodium dependentand independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent[J].Plant Science,2012,183(2):96-105.

[80]Quan R,Lin H,Mendoza I,et al.SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].Plant Cell,2007,19(4):1415-1431.

[81]Roy S J,Tucker E J,Tester M.Genetic analysis of abiotic stress tolerance in crops[J].Current Opinion in Plant Biology,2011,14(3):232-239.

[82]Cheng Ninghui,Pittman JK,Zhu Jiankang,et al.The protein kinase SOS2 activates the Arabidopsis H+/Ca2+antiporter CAX1 to integrate calcium transport and salt tolerance[J].Journal of Biological Chemistry,2004,279(4):2922-2926.

[83]Batelli G,Verslues P E,Agius F,et al.SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity[J].Molecular and Cellular Biology,2007,27(22):7781-7790.

[84]Sunkar R,Chinnusamy V,Zhu J,etal.SmallRNAsasbig players in plantabiotic stress responsesand nutrient deprivation[J].Trends in Plant Science,2007,12(7):301-309.

[85]Zhao Yankun,Wang Tao,Zhang Wensheng,et al.SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J].New Phytologist,2011,189(4):1122-1134.

[86]Mirouze M,Paszkowski J.Epigenetic contribution to stress adaptation in plants[J].Current Opinion in Plant Biology,2011,14(3):267-274.

(责任编辑薛荣)

Na+homeostasis and salt tolerance of plants

CHEN Pengcheng, CHEN Xifeng, MA Bojun, GU Zhimin
(College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 321004,China)

Itwas summarized ion transport systems that facilitated plant Na+homeostasis.Halophyte and glycophyte salinity responses and transport determinant function were compared and contrasted.The potential of halophytes as genetic resources for unique alleles or loci of transport protein genes,transcriptional and posttranscriptional regulation of transport protein function were discussed in the context of crop salt tolerance.

salt tolerance;Na+homeostasis;AVP1;SOS1;HKT1

Q945.78

A

1001-5051(2016)02-0207-08

10.16218/j.issn.1001-5051.2016.02.014

*收文日期:2015-05-06;2015-10-15

浙江省自然科学基金资助项目(LY12C06001)

陈鹏程(1987-),男,湖南衡阳人,硕士研究生.研究方向:植物分子遗传学.

猜你喜欢

液泡木质部耐盐
有了这种合成酶 水稻可以耐盐了
不同品种吊兰根初生木质部原型的观察与比较
植物液泡膜H+-ATPase和H+-PPase 研究进展
白念珠菌液泡的致病性作用
郫县豆瓣中一株耐盐酵母菌的分离鉴定及其发酵性能
烟草合子时期特异表达基因的克隆与分析
镉污染来源对萝卜镉积累特性的影响
农用纸膜破损试验
盐分胁迫对2种杨树次生木质部导管特征的影响
转OjDREB基因提高烟草耐盐能力的研究