APP下载

锂离子电池用水性黏结剂的研究进展

2016-09-02任建国袁国辉

储能科学与技术 2016年2期
关键词:负极水性锂离子

黄 书,任建国,袁国辉



锂离子电池用水性黏结剂的研究进展

黄 书1,2,任建国2,袁国辉1

(1哈尔滨工业大学,黑龙江 哈尔滨150000;2深圳市贝特瑞新能源材料股份有限公司,广东 深圳518000)

黏结剂是影响锂离子电池电化学性能的重要组成部分,合适的黏结剂可以提高黏结强度进而降低黏结剂的用量,并提高电化学性能以及一定程度地抑制膨胀,同时水性黏结剂的使用不仅降低成本,更有利于保护环境。本文综述了水性黏结剂在锂离子电池正、负极中的应用,及其良好的电化学性能和广阔的应用前景, 阐述了不同锂离子电池电极黏结剂的特征和优缺点,说明可以代替有机溶剂型黏结剂聚偏氟乙烯的使用,分析了锂离子电池电极黏结剂的未来发展方向。

锂离子电池;水性黏结剂;电化学性能

锂离子电池由于具有容量高、寿命长、无记忆效应、绿色环保、使用温度范围宽、倍率性能好及安全性高等特点被广泛应用于手机、电脑、电动自行车和电动汽车等。黏结剂是影响锂离子电池正负极性能的重要组成部分,并对提高电池的循环性能以及降低电池的内阻等具有较大的作用[1]。目前,锂离子电池工业生产中最广泛应用的黏结剂是聚偏氟乙烯(PVDF),并用-甲基吡咯烷酮(NMP)作分散剂,但有机溶剂的挥发会造成一定的环境污染,于是促进了水性黏结剂的研发,在生产中,负极己经采用水溶性黏结剂,如CMC(羧甲基纤维素钠)/SBR(丁苯橡胶)以及PAA(聚丙烯酸)黏结剂,如LA系列产品。目前,国内外学者致力于新型水性黏结剂的研究以提高锂离子电池的性能,且已获得重大成果,本文将对近年来锂离子电池水性黏结剂的研究进展进行综述。

1 负极材料水性黏结剂

1.1 石墨材料水性黏结剂

石墨材料是锂离子电池传统的负极材料,其电化学性能稳定。目前工业上所使用的黏结剂主要为PVDF、SBR/CMC和PAA(如LA系列产品),但是PVDF为溶剂型黏结剂,工业生产时需加入NMP为溶剂,故对环境和工作人员的健康都有不利影响,且成本较高,而SBR/CMC和PAA为水性黏结剂,其使用有利于保护环境、降低成本,且储存安全,但是SBR极片循环后易出现析锂等现象,而PAA黏结剂较脆,涂布后极片易出现开裂掉粉等现象,所以更优性能的水性黏结剂不仅能促进电池性能的发挥,更是市场的迫切需求。国内外的学者也把目光转移到黏结剂的研究,促进了黏结剂的发展。ZHANG等[2]研究了PAA黏结剂对溶解Fe沉积在石墨电极上的抑制作用,使用扣式半电池体系研究结果表明,当电解液中的Fe含量达到1800 μg/mL时,循环后PAA和PVDF制备半电池的首次库仑效率分别为70%和54%;PAA制备的半电池放电容量损失较小,而PVDF制备的半电池放电容量损失了27%。KOMABA等[3]分别用聚甲基丙烯酸(PMA)、聚丙烯酸(PAA)、聚乙烯醇(PVA)作为黏结剂用于石墨负极中,实验结果表明黏结剂中的羧基官能团(如—COOLi和—COOH)有利于促进石墨电极表面SEI膜的形成(图1),黏结剂(首次库仑效率为75%~80%)所制备的极片在聚碳酸酯(PC)基电解液中的首次库仑效率比PVDF(首次库仑效率<45%)黏结剂高。KOMABA等[4]比较了PAA、PVA、PMA和PVDF黏结剂(图2)用于石墨材料中的影响,结果表明水性黏结剂PAA、PVA和PMA的循环性能明显优于PVDF黏结剂,库仑效率则无明显差别。

JEONG等[5]用羧甲基纤维素钠(CMC)为水性黏结剂用于石墨(SLP30)中,并在充放电C/10 到 1 C倍率中得到370 mA·h/g的理论比容量。SLP30电极显示优异的电循环稳定性,因为其在第5周和第20周的充放电曲线无太大差异。第1、2和3周的库仑效率分别是86%、97.7%和98.7%。PARK 等[6]分别用PAA、CMC、CMC/SBR和PVDF为黏结剂用于锂离子电池球形石墨负极中,在循环50周后仍维持其极片的多孔结构(图3),以促使其更优异的电化学性能。因此,PAA作为水性黏结剂更有利于球形石墨发挥其电化学性能。

1.2 硅基材料水性黏结剂

近几年,随着研究的不断深入,硅(Si)材料由于其高理论容量(3579 mA·h/g)成为了研究热点,并且其来源广泛。但其在充放电过程中体积膨胀率(>270%)较大,限制了其应用。而黏结剂的研发有利于硅基材料更好地发挥其电化学性能。HOCHGATTERERY等[7]将CMC作为水性黏结剂用于Si/C复合材料中研究其电循环性能,通过研究黏结剂与硅颗粒之间的相互作用,证明了活性物质和黏结剂之间的相互作用对提高Si/C复合材料循环稳定性有重要的影响。YUE等[8]用羧甲基壳聚糖(C-chitosan)作为新型水性黏结剂用于锂离子电池Si材料中。Si/C-chitosan负极第1周放电容量为4270 mA·h/g,首次库仑效率为89%。分别用CMC、C-chitosan、PVDF和Alginate作为黏结剂用于Si材料分别于第2周和第40周测试其阻抗性能(图4),其结果表明,Si/C-chitosan负极显示最优的电化学性能及最低的阻抗性能。FAROOQ等[9]研究了PAA和PVDF作为黏结剂用于硅/石墨(Si-Gr)复合材料中并装配锂离子电池测试其电化学性能。测试结果显示,PAA为水性黏结剂,用于复合材料中,随着Si含量的提高其首次放电容量(图5)也不断提高,在Si含量为20%时,其容量高达1000 mA·h/g。

1.3 其它负极材料水性黏结剂

GOMEZ-CAMER等[10]分别用PVDF和聚丙烯酸锂(LiPAA)为黏结剂用于TiSb2电极中,循环性能(图6)的测试结果显示,在前60周比容量无太大差别并超过420 mA·h/g,但60周后PVDF制作电极的容量衰减更大。同时,LiPAA电极的库仑效率在40周高达98%,而PVDF电极为97%,并且在后续循环中稳定性较差。TRAN等[11]用PEGMA-MMA-IBVE共聚物作为新型水性黏结剂用于锂离子电池Li4Ti5O12(LTO)负极材料中。PEG基黏结剂不仅增强黏结性能,同时能加强导电性能并维持电子导电通道的稳定,更有利于其发挥电化学性能。POHJALAINEN等[12]研究了Acryl S020作为新型水性黏结剂用于Li4Ti5O12负极材料中,并与PVDF黏结剂对比其电化学性能。用Acryl S020黏结剂制作的电极显示更好的容量保持率。

2 正极材料水性黏结剂

由于负极用水性黏结剂成功地提高了电池的电化学性能,研究者希望黏结剂可以同样优化正极的性能,所以正极用水性黏结剂成为新的研究趋势。LI等[13]研究表明CMC黏结剂可用于高电压工作(4.8 V),并且用于Li[Li0.2Mn0.56Ni0.16Co0.08]O2电极材料中0.2 C和1 C,循环结果显示均优于PVDF(图7)。CAI等[14]报道了水性黏结剂PAA用于LiFePO4正极材料中与PVDF黏结剂对比其性能。研究表明,用水性黏结剂PAA制备的电极不仅成本更低更环保,而且其电化学性能更优,容量更高,阻抗更低,循环稳定性更好以及极化更小。PORCHER等[15]使用聚乙烯醇(PVA)和聚乙二醇(PEG)水性黏结剂用于LiFePO4锂离子正极材料中,其在高倍率下表现出比PVDF更高的容量。SUN等[16]研究了壳聚糖(C-CTS)作为水性黏结剂应用于LiFePO4电极中测试其电化学性能,结果表明分别用C-CTS、PVDF和CMC制作的电极循环后容量分别为147 mA·h/g、152 mA·h/g和142 mA·h/g(图8)。倍率性能测试结果显示C-CTS和PVDF黏结剂优于CMC黏结剂,C-CTS与PVDF性能总体无较大差别。WU等[17]研究了含氟丙烯酸复合乳胶(TRD 202A)用于锂离子电池富锂锰基正极材料中。Li/LMR-NMC半电池的比容量高于240 mA·h/g,而阻抗低于50 Ω·cm2。

3 结 语

综上所述,PVDF是目前锂离子电池工业中最常用的电极黏结剂,但需要使用-甲基吡咯烷酮(NMP)作溶剂,不利于降低成本和环境保护。进而促进了水性黏结剂的研发,水性黏结剂的应用不仅减低成本更有利于环境保护。研究表明使用水性黏结剂装配的锂离子电池正负极具有优异的电化学性能,如CMC/SBR和PAA黏结剂已用于大规模生产中,电极的初始充放电容量、库仑效率、倍率充放电性质以及电化学循环性能等均表现优良。同时,国内外新型水性黏结剂的研发对正负极材料性能的发挥有重大的影响,特别对于提高硅基材料粘结性能和循环性能有重大贡献,并对抑制硅基材料体积膨胀有突出作用,而且对新型正负极材料的循环、倍率等性能的提高有显著效果。随着黏结剂的不断改进,也促进了锂离子电池性能的更好发挥,虽然其含量较少但对正负极的影响却尤为突出。因此,锂离子电池用水性黏结剂的研发具有广阔的前景,将成为锂离子电池重要的发展方向。

[1] 杨军,解晶莹,王久林.化学电源测试原理与技术[M]. 北京:化学工业出版社,2006:60-61.

YANG Jun,XIE Jingying,WANG Jiulin . Principles and techniques of chemical power supply testing [M]. Beijing:Chemical Industry Press,2006:60-61.

[2] ZHANG Z,CAO Z,ZENG T,et al. Effects of polyacrylic acd on the suppression of Fe depositin on graphite for lithium-ion batteries[J]. J. Electrochem. Soc.,2013,160(9):A1353-A1357.

[3] KOMABA S,YABUUCHI N,OZEKI T,et al. Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media[J]. J. Power Sources,2010,195:6069-6074.

[4] KOMABA S,OZEKI T,OKUSHI K. Functional interface of polymer modified graphite anode[J]. Journal of Power Sources,2009,189:197-203.

[5] JEONG S S,BÖCKENFELD N,BALDUCCI A,et al. Natural cellulose as binder for lithium battery electrodes[J]. J. Power Sources,2012,199:331-335.

[6] PARK Y S,OH E S,LEE S M. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries[J]. J. Power Sources,2014,248(4):1191-1196.

[7] HOCHGATTERER N S,SCHWEIGER M R,KOLLER S,et al. Silicon/graphite composite electrodes for high-capacity anodes:Influence of binder chemistry on cycling stability[J]. Electrochem. Sol. Stat. Lett.,2008,11(5):A76-A80.

[8] YUE L,ZHANG L Z,ZHONG H X. Carboxymethyl chitosan:A new water soluble binder for Si anode of Li-ion batteries[J]. J. Power Sources,2014,247:327-331.

[9] FAROOQ U,CHOI J H,PERVEZ S A,et al. Effect of binder and composition ratio on electrochemical performance of silicon/graphite composite battery electrode[J]. Materials Letters,2014,136:254-257.

[10] GOMEZ-CAMER J L,NOVAK P. Polyacrylate bound TiSb2electrodes for Li-ion batteries[J]. J. Power Sources,2015,273:174-179.

[11] TRAN B,OLADEJI I O,WANG Z D,et al. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12electrode[J]. Electrochimica Acta,2013,88:536-542.

[12] POHJALAINEN E,RÄSÄNEN S,JOKINEN M,et al. Water soluble binder for fabrication of Li4Ti5O12electrodes[J]. J. Power Sources,2013,226:134-139.

[13] LI J,KLÖPSCH R,NOWAK S,et al. Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries[J]. J. Power Sources,2011,196:7687-7691.

[14] CAI Z P,LIANG Y,LI W S,et al. Preparation and performances of LiFePO4cathode in aqueous solvent with polyacrylic acid as a binder[J]. J. Power Sources,2009,189:547-551.

[15] PORCHER W,LESTRIEZ B,JOUANNEAU S,et al. Optimizing the surfactant for the aqueous processing of LiFePO4composite electrodes[J]. J. Power Sources,2010,195:2835-2843.

[16] SUN M,ZHONG H,JIAO S,et al. Investigation on carboxymethyl chitosan as new water soluble binder for LiFePO4cathode in Li-ion batteries[J]. Electrochimica Acta,2014,127:239-244.

[17] WU Q L,HA S,PRAKASH J,et al. Investigations on high energy lithium-ion batteries with aqueous binder[J]. Electrochimica Acta,2013,114:1-6.

[18] MAGASINSKI A,ZDYRKO B,KOVALENKO I,et al. Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid[J]. ACS Applied Materials & Interfaces,2010,2(2):3004-3010.

[19] ARIANNA M,GUK-TAE K,DOMINIC B,et a1.Investigation of different binding agents for nanocrystalline anatase TiO2anodes and its application in a novel, green lithium-ion battery[J]. J. Power Sources,2013,221(1):419-426.

[20] BRIDEL J S,AZAIS T,MORCRETTE M,et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chem. Mater.,2010,22:1229-1241.

[21] BEATTIE S D,LARCHER D,MORCRETTE M,et al. Si electrodes for Li-ion batteries:A new way to look at an old problem[J]. J. Electrochem. Soc.,2008,155:A158-A163.

[22] LI J,LEWIS R B,DAHN J R. Sodium carboxymethyl cellulose:A potential binder for Si negative electrodes for Li-ion batteries[J]. Electrochem. Sol. Stat. Lett.,2007,10:A17-A20.

[23] ZHANG X L,LI S Z,QIU X Y. Influence of water-binder based on sodium alginate on electrochemical performances of graphite electrode[J]. Applied Chemical Industry,2012,41(2):263-281.

[24] WU H,YU G H,PAN L J,et al. Stable Li-ion battery anodes bypolymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nat. Commun.,2013,4(3):131-140.

[25] ZHANG S S,JOW T R. Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4cathode of Li-ion batteries[J]. J. Power Sources,2002,109(2):422-426.

[26] OSKAM G,SEARSON P C,JOW T R. Sol-gel synthesis of carbon/silica gel electrodes for lithium intercalation[J]. Electrochem. Sol. Stat. Lett.,1999,2(12):610-612.

[27] LOEFFLER N,ZAMORY J V,LASZCZYNSKI N,et al. Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder[J]. J. Power Sources,2014,248:915-922.

[28] CHEN D,YI R,CHEN S R,et al. Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes[J]. Solid State Ionics,2014,254:65-71.

[29] QIU L,SHAO Z Q,WANG D X,et al. Enhanced electrochemical properties of LiFePO4(LFP) cathode using the carbonxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery[J]. Carbohydrate Polymers,2014,111:588-591.

[30] JEENA M T,LEE J I,KIM S H,et al. Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:18001-18007.

[31] YUCA N,ZHAO H,SONG X Y,et al. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:17111-17118.

[32] LIU J,ZHANG Q,WU Z Y,et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chem. Commun.,2014,50:6386-6389.

[33] ZHANG L X,LIU Z H,CUI G L,et al. Biomass-derived materials for electrochemical energy storages[J]. Progress in Polymer Science,2015,43:136-164.

[34] CHOU S L,PAN Y D,WAWG J Z,et al. Small things make a big difference:Binder effects on the performance of Li and Na batteries[J]. Phys. Chem. Chem. Phys.,2014,16:20347-20359.

[35] KOMABA S,YABUUCHI N,OZEKI T,et al. Comparative study of sodium polyacrylate and poly (vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries[J]. J. Phys. Chem. C,2012,116:1380-1389.

[36] NGUYEN V H,WANG W L,JIN E M,et al. Impacts of different polymer binders on electrochemical properties of LiFePO4cathode[J]. Applied Surface Science,2013,282:444-449.

[37] WEI Z B,XUE L X,NIE F,et al. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries[J]. J. Power Sources,2014,256:28-31.

[38] KIM I T,MAGASINSKI A,JACOB K,et al. Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries[J]. Carbon,2013,52:56-64.

[39] LESTRIEZ B,BAHRI S,SANDU I,et al. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries[J]. Electrochemistry Communications,2007,9:2801-2806.

[40] MAZOUZI D,KARKAR Z,HERNANDEZ C R,et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes[J]. J. Power Sources,2015,280:533-549.


Research progress of water-based binder for Li-ion batteries

HUANG Shu1,2, REN Jianguo2, YUAN Guohui1

(1Harbin Institute of Technology, Harbin 150000, Heilongjiang, China;2Shenzhen BTR Co. Ltd., Shenzhen 518000, Guangdong, China)

Binder is an important material for making electrodes, which can significantly influence the electrochemical performances of Li-ion batteries. Water-based binders have attracted much attention in recent research because the proper binders could enhance the adhesion with less amount. Moreover, binders alsoon improving electrochemical performance and restraining volume expansion. The application of water-based binder makes the production process more environmental friendly and cheaper. The application of water-based binder for cathode and anode in Li-ion batteries was reviewed in this paper. It was pointed out that the electrodes prepared with water-based binder possessed excellent performances and capacious application prospects. The features, merits and demerits for different kinds of binders were discussed. It shows that water-based binder can be used to replace the organic solvent-based binder polyvinylidene fluoride(PVDF). Finally, the developing trend of electrode binder was summarized.

Li-ion batteries; water-based binder; electrochemical performances

10.3969/j.issn.2095-4239.2016.02.003

TM 912.9

A

2095-4239(2016)02-129-06

2015-08-13;修改稿日期:2015-09-23。

黄书(1988—),女,工程师,主要研究方向为锂离子电池用水性黏结剂,E-mail:hnlgnh@126.com;通讯联系人:袁国辉,教授,研究方向为锂离子电池及材料制备,E-mail:ygh@hit.edu.cn。

猜你喜欢

负极水性锂离子
全陶瓷电极可用于锂离子电池
快速充电降低锂离子电池性能存在其他原因
蠕虫状MoS2/C的制备及其在锂离子电池负极材料中的应用
应对硅负极材料体积变化的策略
高能锂离子电池的“前世”与“今生”
索尔维推出可持续防腐蚀Halar ECTFE水性涂料
水性与常性
负极材料LTO/G和LTO/Ag-G的合成及其电化学性能
LiCuVO4负极材料合成及其电化学性能研究
新型鞋用水性聚氨酯胶研发成功