APP下载

海藻糖浸种对盐胁迫下扬麦19生理特性的影响

2016-08-18闫道良郑炳松浙江农林大学林业与生物技术学院浙江杭州311300

浙江农业学报 2016年8期
关键词:扬麦生长率脯氨酸

闫道良,郑炳松(浙江农林大学林业与生物技术学院,浙江杭州311300)

·作物科学·

海藻糖浸种对盐胁迫下扬麦19生理特性的影响

闫道良,郑炳松
(浙江农林大学林业与生物技术学院,浙江杭州311300)

以扬麦19为材料,研究4个海藻糖溶液浓度(0、2、20、40 mmol·L-1)浸种对其种子萌发的影响。选择对种子萌发没有明显抑制效应的最适海藻糖溶液浓度(2 mmol·L-1),研究其对盐胁迫下(3 g·L-1NaCl)扬麦19幼苗生长及生理特性的影响。结果表明,2 mmol·L-1海藻糖溶液浸种处理对扬麦19种子发芽率和幼苗株高无显著影响,但对幼苗单株干质量有显著促进作用。在盐胁迫下,2 mmol·L-1海藻糖浸种处理可显著提高扬麦19幼苗相对生长率、单株生物量、叶绿素相对含量和N含量,比水浸种处理分别提高200%、6.50%、15.07%和9.25%;幼苗脯氨酸积累速度明显加快,K+含量及K+/Na+显著增加,Na+含量显著下降(P<0.05)。双因素方差分析表明,影响幼苗K+含量的程度依次为海藻糖>NaCl>海藻糖×NaCl。海藻糖浸种处理可以使扬麦19更快更早地积累脯氨酸,增强对K+的吸收,以适应盐胁迫环境。

扬麦19;海藻糖;盐胁迫;浸种;生理特性

干旱和土壤盐胁迫是影响作物生长及产量的主要不利环境因子[1-2]。面对逆境胁迫,植物在形态和生理上产生不同程度的适应特性,如植株矮化、叶片肉质化,抗氧化物酶活性增强,积累更多的渗透调节物质等[3]。而且,在逆境下,植物通过诱导基因的表达及生化修饰对首次胁迫产生“记忆”,以提高对后续环境胁迫的适应[4]。研究表明,对播种前的种子预处理是增强植物对不利环境适应的重要措施之一[5],并且,这种处理方式成本较低,操作方便。

海藻糖是一种非还原性二糖,是一些生物的结构和能量贮藏物质,也是植物新陈代谢过程中的一种应激性的适应物质。许多生物在高温、冷冻、干旱脱水及高渗等逆境状态下表现出极强的耐受力,这与它们体内合成、积累大量的海藻糖有直接的关系[6]。研究证实,把海藻糖合成酶相关基因转入到不合成海藻糖的水稻、小麦等植株内,可提高其对盐胁迫的适应性[7-9]。而外源海藻糖同样能缓解盐胁迫和高温胁迫对烟草细胞和冬小麦幼苗所造成的伤害,减轻盐胁迫和高温胁迫对幼苗生长的抑制[10-12]。本研究以江淮一带大面积种植的扬麦19为材料,探讨海藻糖浸种处理对盐胁迫下种子萌发及相关生理特性的影响,为提高小麦在盐渍化土壤中的抗性提供参考。

1 材料与方法

1.1 种子发芽及指标测定

水选法挑取籽粒饱满、完好无损的扬麦19种子,用75%乙醇消毒2 min,用流水冲洗干净后,置于装有等体积不同浓度的海藻糖溶液(0、2、20、40 mmol·L-1)的广口瓶中,其中对照组CK(海藻糖浓度为0)用蒸馏水,在4℃冰箱中浸泡处理种子2 d后做种子发芽试验。将处理好的种子置于铺有2层滤纸的培养皿中,每培养皿50粒种子,每处理3个重复,培养皿添加适量的蒸馏水,保障种子萌发所需水分,待种子胚根长为2 mm时,记为种子萌发,直至7 d后不再有种子萌发为止,计算发芽率。

发芽率/%=已萌发种子数/所有测试种子数×100。

用直尺测量株高,幼苗在80℃条件下烘干至恒重时称量干质量。

1.2 盐胁迫及指标测定

本试验所有材料置于全光照人工气候培养箱内,温度为(25±1)℃/(22±1)℃(14 h/10 h),光照强度36~40 μmol·m-2s-1,相对湿度为70%~80%。取蒸馏水(对照组CK)和2 mmol· L-1海藻糖浸泡的种子分2组,做盐胁迫试验,试验设置分别为:CK、3 g·L-1NaCl(S)、2 mmol· L-1海藻糖(Tr)、2 mmol·L-1海藻糖 +3 g·L-1NaCl(Tr+S)4个处理,盐胁迫试验是在相同规格的培养皿中进行,每隔2 d更换滤纸及注入同体积的处理液,处理液的量以浸没种子厚度的1/3为准。同时,为避免单盐毒害,种子萌发后,每培养皿喷施定量的1/4 Hoagland营养液。12 d后,用叶绿素仪(SPAD-502 Plus)测定叶片叶绿素相对含量SPAD值和含氮量,测量时避开主脉,每片叶在不同方位测5次,取平均值。生物量测定是把植株置于70℃烘箱中持续72 h后称量干质量。相对生长率RGR=(ln DW2-ln DW1)/(D2-D1),其中:DW1和DW2分别为试验开始和取样测定时的单株干质量;D1和D2分别为试验开始和取样测定时的时间点(d)。

1.3 Na+、K+及脯氨酸含量的测定

用FP6400-A火焰光度计(上海傲普分析仪器有限公司)测定植株叶片Na+和K+含量(mg· kg-1干质量)。脯氨酸含量测定参照郝建军等[13]的方法。

1.4 数据分析

利用SPSS 13.0对数据进行统计分析,处理间差异显著性(P<0.05)采用Duncan法多重比较。图、表中数据为均值±标准误。

2 结果与分析

2.1 海藻糖浸种处理对扬麦19种子发芽率及幼苗生长的影响

发芽试验表明,与对照相比,2 mmol·L-1海藻糖浸种处理对种子的发芽率没有显著影响。3个浓度的海藻糖浸种处理对苗期株高均没有显著抑制作用。和对照相比,2~20 mmol·L-1海藻糖明显增加了苗期生物量积累,2 mmol·L-1海藻糖处理后的幼苗单株干质量比对照高13.10%(表1),说明低浓度海藻糖浸种处理可以提高扬麦19幼苗干物质的合成与积累。

表1 海藻糖处理对扬麦19种子发芽率及幼苗生长的影响Table 1 Effect of exogenous trehalose on germination percentage of seeds and growth of seedlings of Yangmai-19

2.2 海藻糖浸种处理对扬麦19幼苗耐盐性的影响

由表2可知,水浸种后的种子经盐胁迫处理(S),其相对生长率、单株生物量、叶绿素相对含量(SPAD值)和N含量均显著下降,分别是未经盐胁迫处理(CK)的18.18%、74.58%、79.51% 和84.80%。2 mmol·L-1海藻糖浸种(Tr+S)显著提高了盐胁迫下幼苗的相对生长率、单株生物量、SPAD和N含量,分别比水浸种处理(S)提高了200%、6.50%、15.07%和9.25%,说明海藻糖浸种能缓解盐胁迫对幼苗叶绿素的破坏,降低盐害对叶片光合作用的抑制。

表2 海藻糖预处理对NaCl胁迫下植株生长、叶绿素相对含量和N含量的影响Table 2 Effects of trehalose pretreatment on growth,chlorophyll relative content and N content of Yangmai-19 seedlings under salt stress

2.3 海藻糖浸种处理对盐胁迫下扬麦19幼苗叶片脯氨酸含量的影响

盐胁迫下,扬麦19幼苗叶片中脯氨酸含量明显上升。其中,Tr+S处理的脯氨酸含量比S处理上升速度更快,在48 h达到最高值,约为2.7 mmol·g-1(图1)。处理时间为12、24、48 h时,Tr+S处理的脯氨酸含量分别是 S处理的1.64、1.28和1.79倍。处理72 h时,两者脯氨酸含量较为接近。

2.4 海藻糖浸种处理对盐胁迫下扬麦19幼苗叶片Na+、K+含量的影响

由表3可见,Tr处理的 K+含量显著高于CK,是CK的1.32倍。与S处理相比,Tr+S处理的K+含量和K+/Na+显著提高,说明海藻糖浸种可提高扬麦19幼苗对K+的吸收与积累,增强其对盐胁迫的抗性。

双因素方差分析表明,海藻糖与NaCl处理存在显著的交互作用。对K+含量而言,各因素的影响程度为:海藻糖>NaCl>海藻糖×NaCl(表4)。

表3 海藻糖预处理对扬麦19盐胁迫下幼苗Na+、K+含量的影响Table 3 Effect of trehalose pretreatment of Yangmai-19 on contents of Na+and K+in leaves

图1 海藻糖预处理对扬麦19幼苗脯氨酸含量的影响Fig.1 Effects of seed pretreatment with trehalose on content of proline in leaves of Yangmai-19

表4 Na+、K+含量的双因素方差分析结果Table 4 Results of a two-way analysis of variance of Na+and K+ion concentrations

3 讨论

海藻糖对生物体和生物膜、蛋白质等大分子具有非特异性保护作用[14]。研究表明,通过转基因技术或环境诱导能够提高生物体内海藻糖的表达和积累,从而提高黑麦草[15]、冬小麦[8,16]、水稻[7]、和烟草[17]等作物的抗逆性。对植株施加外源海藻糖的方法更为简便灵活,尤其是对种子进行预处理,避免种子发芽延缓,确保种子的发芽势,对农业生产具有重要的意义[18]。外源海藻糖能提高甜瓜幼苗抗盐碱胁迫能力[19],提高高盐浓度或高渗胁迫下油菜[20]、海滨锦葵[21]等种子的发芽率,以及冬小麦幼苗的抗寒性[22]和确保萝卜在水分亏缺下的正常生长[23]。研究表明,海藻糖提高植株的抗逆性与其能够提高植株内在的氧化防御体系活性,保护膜系统免受伤害有密切联系。本研究表明,2 mmol·L-1海藻糖浸种扬麦19种子,并没有明显抑制种子的发芽率,却显著促进了幼苗干物质的积累。由此推测,一定浓度的外源海藻糖能促进扬麦19植株碳水化合物的合成,这与海藻糖能够调节碳水化合物代谢,促进碳物质积累有密切关系[24-25]。

盐胁迫明显抑制了扬麦19幼苗的相对生长率,降低了叶绿素和N含量,而海藻糖浸种显著提高了扬麦19幼苗在盐胁迫下的相对生长率和叶绿素及N含量,这与前人研究结果一致[26-27]。由此可见,播种前对扬麦19进行海藻糖浸种处理可显著缓解盐胁迫对扬麦19幼苗生长发育的抑制作用。脯氨酸是植物应对各种胁迫的重要物质,起着渗透调节和稳定细胞结构的作用。研究表明,内源脯氨酸含量的增加可以提高植物对干旱及盐胁迫的抗性[28-29]。Jiang等[30]把6-磷酸海藻糖合成酶基因IbTPS转入烟草,通过提高植株的内源海藻糖和脯氨酸含量,增强了植株对盐胁迫的适应。本试验结果表明,海藻糖预处理可提高盐胁迫下幼苗中脯氨酸积累速度,其在处理48 h时即达到最大值,比水浸种处理提前了约24 h。由此可见,海藻糖预处理可以使植物更快适应盐胁迫,这也与其显著提高幼苗的相对生长率一致。由此推测,海藻糖可作为使植物适应胁迫的一种诱导物,诱导植物通过基因表达及生理生化变化,以适应后期的盐胁迫。植物体内K+含量及高K+/Na+是植物抗盐性的重要指标[31]。海藻糖浸种处理可提高盐胁迫下扬麦19幼苗K+含量和K+/Na+。双因素方差分析表明,海藻糖对K+的影响程度最高。由此可见,海藻糖可能是作为一种信号分子,诱导扬麦19植株内某些氨基酸合成及K+吸收,以平衡Na+积累对细胞造成的伤害,提高植株对盐胁迫的适应性。

(References):

[1] LI J T,QIU Z B,ZHANG X W,et al.Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress [J].Acta Physiologiae Plantarum,2011,33(3):835 -842.

[2] WU H F,LIU X L,YOU L P,et al.Effects of salinity on metabolic profiles,gene expressions and antioxidant enzymes in halophyte Suaeda salsa[J].Journal of Plant Growth Regulation,2012,31(3):332-341.

[3] ASHRAF M.Biotechnological approach of improving plant salt tolerance using antioxidants as markers[J].Biotechnology Advances,2009,27(1):84-93.

[4] PHAM L N,DIONNE M S,SHIRASU-HIZA M,et al.A specific primed immune response in Drosophila is dependent on phagocytes[J].PLOS Pathogens,2007,3(3):3042 -3048.

[5] JIMENEZ-ARIAS D,PEREZ J A,LUIS J C,et al.Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation[J].Environmental and Experimental Botany,2015,109:23-30.

[6] ROTHSCHILD L J,MANCINELLI R L.Life in extreme environments[J].Nature,2001,409(6823):1092-1101.

[7] GARG A K,KIM J K,OWENS T G,et al.Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(25):15898-15903.

[8] GE L F,CHAO D Y,SHI M,et al.Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J].Planta,2008,228(1):191-201.

[9] 杜丽璞,徐惠君,叶兴国,等.小麦转TPS基因植株的获得及其初步功能鉴定[J].麦类作物学报,2007,27(3):369-373. DU L P,XU H J,YE X G,et al.Transgenic wheat plants with trehalose-6-phosphate synthase(TPS)gene and identification of their function[J].Journal of Triticeae Crops,2007,27(3):369-373.(in Chinese with English abstract)

[10] HOQUE M A,BANU M N A,NAKAMURA Y,et al.Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cell[J].Journal of Plant Physiology,2008,165(8):813-824.

[11] LUO Y,LI F,WANG G P,et al.Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage[J].Biologia Plantarum,2010,54 (3):495-501.

[12] CHANG B W,YANG L,CONG W W,et al.The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus[J].Plant Physiology and Biochemistry,2014,77 (2):140-148.

[13] 郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007.

[14] RICHARDS A B,KRAKOWKA S,DEXTER L B,et al. Trehalose:a review of properties,history of use and human tolerance,and results of multiple safety studies[J].Food and Chemical Toxicology,2002,40(7):871-898.

[15] 贾炜珑,胡鸢雷,张彦芹,等.海藻糖合酶基因转化黑麦草及耐旱性研究[J].分子植物育种,2007,5(1):27 -30. JIA W L,HU Y L,ZHANG Y Q,et al.Transformation of trehalose synthase gene(TPS Gene)into perennial ryegrass and identification of drought tolerance[J].Molecular Plant Breeding,2007,5(1):27-31.(in Chinese with English abstract)

[16] 刘录祥,赵林姝,郑企成,等.海藻糖合成酶基因导入小麦研究初报[J].核农学报,2001,15(5):315-315,281. LIU L X,ZHAO L S,ZHENG Q C,et al.The initial research report of wheat transformation of trehalose synthase gene[J].Acta Agriculturae Nucleatae Sinica,2001,15(5):315-315,281.(in Chinese with English abstract)

[17] PILON-SMITS E A H,TERRY N,SEARS T,et al.Trehalose-producing transgenictobaccoplantsshowimproved growth performance under drought stress[J].Journal of Plant Physiology,1998,152(4/5):525-523.

[18] 陈大清,李亚男.氯化钙和海藻糖浸种对杂交种子人工老化的保护效应[J].华中农业大学学报,1997,16(4):325-327. CHEN D Q,LI Y N.The protective effects of calcium chloride and peg treatment on crop hybrid seeds under artificial ageing conditions[J].Journal of Huazhong Agricultural University,1997,16(4):325-327.(in Chinese with English abstract)

[19] 马光恕,廉华,靳亚忠,等.海藻糖对NaCl胁迫下甜瓜幼苗生长的影响[J].广东农业科学,2013(16):40 -43. MA G S,LIAN H,JIN Y Z,et al.Effect of trehalose on the growth of muskmelon seedlings under NaCl stress[J]. Guangdong Agricultural Science,2013(16):40-43.(in Chinese with English abstract)

[20] 周启贵,汤绍虎,孙敏,等.海藻糖对渗透胁迫下油菜种子萌发和幼苗生长的影响[J].西南师范大学学报(自然科学版),2007,32(1):39-42. ZHOU Q G,TANG S H,SUN M,et al.Effects of trehalose on seed germination and seedlings growth of rape under osmotic stress[J].Journal of Southwest China Normal University(Natural Science Edition),2007,32(1):39-42.(in Chinese with English abstract)

[21] 杨巧玲,杨晓梅,闫道良,等.外源海藻糖对盐胁迫下海滨锦葵种子萌发的影响[J].江西林业科技,2014,42 (2):1-4. YANG Q L,YANG X M,YAN D L,et al.Effect of exogenous trehalose on the germination of Kosteletzkya pentacarpos (L.)Ledeb.seeds under salt stress[J].Jiangxi Forestry Science and Technology,2014,42(2):1-4.(in Chinese with English abstract)

[22] 谢冬微,王晓楠,付连双,等.外源海藻糖对冬小麦低温下胚芽长及幼苗抗寒性的影响[J].麦类作物学报,2015,35(2):215-223. XIE D W,WANG X N,FU L S,Et al.Effect of exogenous trehalose on germ length and seedling freeze resistance of winter wheat under cold stress[J].Journal of Triticeae Crop,2015,35(2):215-223.(in Chinese with English abstract)

[23] SHAFIQ S,AKRAM N A,ASHRAF M.Does exogenouslyapplied trehalose alter oxidative defense systemin the edible part of radish(Raphanus sativus L.)under water-deficit conditions[J].Scientia Horticulturae,2015,185:68-75.

[24] MATTHEW P.Trehalose 6-phosphate[J].Current Opinion in Plant Biology,2007,10(3):303-309.

[25] EASTMOND P J,LI Y,GRAHAM I A.Is trehalose-6-phosphate a regulator of sugar metabolism in plants[J].Journal of Experimental Botany,2003,54(382):533-537.

[26] 丁顺华,李艳艳,王宝山.外源海藻糖对小麦幼苗耐盐性的影响[J].西北植物学报,2005,25(3):513-518.DING S H,LI Y Y,WANG B S.Effect of exogenous trehalose on salt tolerance of wheat seedlings[J].Acta Botanica Boreali-Occidentalia Sinica,2005,25(3):513-518.(in Chinese with English abstract)

[27] 王三根,邓如福,裴炎,等.海藻糖提高绵阳15号小麦幼苗耐盐能力的研究[J].西南大学学报(自然科学版),1992,14(2):182-185. WANG S G,DENG R F,PEI Y,et al.Effects of trehalose pretreatments on salt resistance in wheat seedlings[J].Journal of Southwest Agricultural University(Natural Science Edition),1992,14(2):182-185.(in Chinese with English abstract)

[28] GARCIA A B,ENGLER J D A,IYER S,et al.Effects of osmoprotectants upon NaCl stress in rice[J].Plant Physiology,1997,115(1):159-169.

[29] SU J,WU R.Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis[J].Plant Science,2004,166(4):941-948.

[30] JIANG T,ZHAI H,WANG F B,et al.Cloning and characterization of a salt tolerance-associated gene encoding trehalose-6-phosphate synthase in sweet potato[J].Journal of Integrative Agriculture,2014,13(8):1651-1661.

[31] 乔海龙,沈会权,陈和,等.大麦盐害及耐盐机理的研究进展[J].核农学报,2007,21(5):527-531. QIAO H L,SHEN H Q,CHEN H,et al.Progress in salt damage and mechanism of salinity tolerance of barley[J]. Journal of Nuclear Agricultural Sciences,2007,21(5):527 -531.(in Chinese with English abstract)

(责任编辑 张 韵)

Effects of soaking seeds in trehalose on physiological characteristics of wheat Yangmai-19 under salt stress

YAN Dao-liang,ZHENG Bing-song
(College of Forestry&Biotechnology,Zhejiang A&F University,Hangzhou 311300,China)

To investigate the effect of trehalose pretreatment with different concentrations of 0,2,20 and 40 mmol· L-1on seed germination,Yangmai-19,a high-yielding winter wheat cultivar,was selected as the experimental material.Furthermore,the optimal concentration of trehalose(2 mmol·L-1)was screened out to study its effect on growth and physiological characteristics of Yangmai-19 under salt stress(3 g·L-1NaCl).The results showed that the seed germination and plant height were not significantly affected in the pretreatment with 2 mmol·L-1trehalose,but the dry weight per plant was significantly increased.Under salt stress,compared with the non-treated seeds,the relative growth rate,biomass per plant,relative chlorophyll content and N content in the pretreatment of 2 mmol·L-1trehalose were significantly improved by 200%,6.50%,15.07%and 9.25%,respectively.Proline accumulation rate was found to be significantly increased in the seedlings pretreated with 2 mmol·L-1trehalose than the non-treated seeds,as well as the total K+content and K+/Na+ratio,while Na+content was significantly decreased(P<0.05).Two-factor variance analysis showed that the factor orders of impacting K+content was trehalose>NaCl>trehalose×NaCl.Trehalose pretreatment could improve the seedlings adaption to salt stress earlier,by increasing their proline accumulation and also increasing their K+absorption.

wheat Yangmai-19;trehalose;salt stress;soaking seed;physiological characteristics

S512.1;S311

A

1004-1524(2016)08-1271-06

10.3969/j.issn.1004-1524.2016.08.01

2015-11-17

浙江省重点科技创新团队项目(2010R50039)

闫道良(1975—),男,安徽宿州人,讲师,从事植物资源与耐盐生理生态研究。E-mail:liangsie2000@foxmail.com

猜你喜欢

扬麦生长率脯氨酸
国家药监局批准脯氨酸恒格列净片上市
扬麦系列小麦品种的饼干品质分析
日本落叶松以林分平均木材积生长率代替林分蓄积生长率可行性验证
扬麦系列品种品质性状分析及育种启示
植物体内脯氨酸的代谢与调控
安徽不同生态区弱筋小麦产量和品质差异分析
海南省马占相思生长率模型研建
干旱胁迫对马尾松苗木脯氨酸及游离氨基酸含量的影响
基于海南省连清资料建立松树和橡胶树材积生长率模型
拔节期弱光胁迫对扬麦15麦秸营养成分和体外发酵的影响