APP下载

“日历中的数字规律”的教学设计

2016-08-12黄宝瑛江西省新余市第四中学

中国数学教育(初中版) 2016年4期
关键词:方框字母规律

黄宝瑛(江西省新余市第四中学)



“日历中的数字规律”的教学设计

黄宝瑛(江西省新余市第四中学)

摘要:本课是在学习完整式及其加减法的基础上的一节活动课,通过探究日历中的数字规律,引导学生学会用字母表示数.设计了“我来考老师”“我来排日历”等一系列体现以学生为主体地位的活动,让学生在做中学,从而获得问题意识、应用意识和符号意识的发展.

关键词:数字规律;问题意识;应用意识;符号意识殊到一般的探究方法.

目标和目标解析

1.目标

(1)了解日历中的数字规律;

(2)理解整式表示数的意义;

(3)掌握从特殊到一般的探究方法,渗透数形结合等思想;

(4)通过小组活动分享学习协作的快乐,体验成功的喜悦.

2.目标解析

通过积极的参与数学活动,寻找日历中的数字规律,将数字规律抽象为用整式表示,体验到整式比数字更具有一般性的事实,进而用从特殊到一般的数学方法观察、分析问题,尝试从不同角度探究生活中存在的其他数字规律,并用整式去表示其数字规律,培养应用意识和创新意识.在整个数学活动中,通过小组合作交流、反思质疑,分享学习协作的快乐,体验获得成功的乐趣,建立学好数学的自信心.

教学问题诊断分析

本节课学生容易找到日历中的数字规律,但由于学生刚刚进入初中,还没有建立起运用符号语言表达思想的意识和习惯,用代数式和等式表示所发现的规律对于学生来说还存在一些困难,但随着后续学习的进行,学生的符号意识会渐渐加强.

在研究同一直线上相邻三个数的规律时,学生很容易找到横行和竖列的规律,在教师的引导下,学生

内容和内容解析

1.内容

探究日历中的数字规律.

2.内容解析

本节课是人教版《义务教育教科书·数学》七年级上册第二章“整式的加减”的一节活动课,旨在通过探究日历中的数字规律,引导学生学会用字母表示数,既为学习下一章“一元一次方程”做铺垫,又为今后学习“分式”“二次根式”打基础,它在教材中具有承上启下的作用;另外,本节课属于“综合与实践”的范畴,可以培养学生在数学学习中的问题意识、应用意识和符号意识,这符合《义务教育数学课程标准(2011年版)》的教学理念.

本节课的核心内容是探究日历中的数字规律,并用整式来表示其规律,进一步理解整式的实际意义.

基于以上分析,确定本节课的教学重点:通过探究日历中的数字规律,学会用整式表示数,掌握从特也应该不难发现还有斜对角的情况,但容易误认为关系是一样的.教师可引导他们说明相差的6和8的实际意义分别是什么,加深学生对日历中规律的认识.

本节课的教学难点:理解整式比数字更有具一般性的事实.

教学支持条件分析

引入时的小魔术需准备一张某个月的日历,为了提高课堂效率,教师为学生准备了学案,同时采用多媒体课件辅助教学,使问题直观、简洁、形象地展示到屏幕上,帮助学生理解和掌握.

教学过程设计

1.师生互动,激趣导入

师:同学们,你们认识刘谦吗?崇拜他吗?其实老师也会一个小魔术,这里有一张日历,这是一张卡纸,不管你们用卡纸盖住日历中的哪一个3×3方框,老师都能迅速求出这3×3方框中九个数字的和,你们相信吗?不信我们可以试一试.

师生活动——我来考老师:请一名学生到讲台上,随便盖住日历中的一个3×3方框,教师迅速地回答出3×3方框中九个数字的和.

【设计意图】引入实际问题,从而引发学生的好奇心,激发学生的学习兴趣.在本次活动中,一改以往教师考学生的惯例,由学生来考教师,更能体现师生平等的地位,引导学生感觉到教师只是师生活动中“平等中的首席”,拉近师生之间的距离,使师生可以更好的互动.同时,教师能迅速回答九个数的和,也能激发学生的求知欲.

2.合作探究,总结新知

问题1:(1)请大家根据所给信息,排出2015年9月的日历;

(2)在排日历的过程中,你能发现日历中的数字特点吗?

师生互动——我来排日历:在学生排完日历后,可以鼓励一名学生上台展示自己排的日历,并做出解释说明.提出问题(2)后,可以鼓励学生积极发言,说出自己所观察到的数字特点.

对于问题(2),学生容易发现在日历中,从左向右看(以下统称“横行”),数字依次增加1,从上向下看(以下统称“竖列”),数字依次增加7,不容易发现从左往右斜向下(如图1,以下统称“下阶梯”)和从左往右斜向上(如图2,以下统称“上阶梯”)两种情形,教师在对学生的观察力给予充分肯定的同时,要注意引导学生观察其他情况,这时可以引入问题2.

图1

图2

【设计意图】从制作日历这个简单活动开始,让学生能更深刻地体会到日历中的数字特点.这样做不仅提高了学生的动手能力,还锻炼了学生的表达能力,增强了学习的自信心.

问题2:(1)观察日历,同一直线上相邻三个数有哪几种情况?

(2)对于横行相邻的情况,你能找出其中蕴含的规律吗?

(3)你能用字母a及含字母a的整式来表示横行相邻的三个数吗?你能用字母来验证规律吗?

(4)在刚才找规律的过程中我们用到了什么探究方法?

师生互动——我来找规律:通过追问的形式提出上述几个问题,每提出一个问题后,可以引导学生分组讨论,得出答案,小组派代表或随机抽学生回答问题,在学生回答完问题后,教师及时给予肯定与鼓励.

对于问题(1),学生一般很容易想到横行和竖列的情况,有些学生甚至可以发现斜对角的规律,但很少有学生能考虑到斜对角的情况还要分下阶梯和上阶梯两种情况,教师可以安排小组进行讨论,并视具体情况做出必要的提示,引导学生进行团队合作,并初步体验分类讨论的思想.

对于问题(2)、问题(3),从横行相邻三个数这种情况入手,先让学生观察其中的规律,并引导学生用文字语言描述,再引导学生尝试用字母来代替具体数字,体会字母具有代表数字的作用,理解整式中字母表示数的意义,体会整式比数字更具有一般性的事实.

学生选择用字母表示数字时,可能出现设哪个数为字母a的情况各不相同,这时可以引导学生尝试评价不同设法之间的差异,从而得出最优方案:用字母a表示中间那个数,但无论哪种方案,结论总是相同的.

问题(4)对于学生来说较难回答,这时教师要注意引导学生理解其中蕴涵的从特殊到一般的数学思想.

【设计意图】从容易发现规律的简单问题入手,引导学生用从特殊到一般的数学方法进行探究,体会这种方法的好处,同时理解用字母表示数字的意义,体会整式比数字更具一般性的事实.

问题3:(1)针对竖列、下阶梯、上阶梯的情况,如果设中间的数为a,你能用含a的代数式表示出其他两个数吗?他们又有什么规律呢?

(2)通过以上四种情况的讨论,你能总结出什么规律吗?这些结论对于任一日历是否都成立?

(3)在探究“同一直线上相邻三个数的规律”的整个过程中,还应用了什么方法?

师生互动:在探究完横行的情况后,问题(1)的回答对学生来说相对简单,所以这部分内容教师借助于学案、学生小组合作的方式即可完成.

学生回答问题(2)时,教师引导学生发现,无论哪种情况,均能得出相邻三数之和等于中间数的3倍的结论.

问题(3)是对整个探究活动的一个升华,教师要注意引导学生理解分类讨论这种思想及考虑问题时分类讨论的必要性.

【设计意图】增强学生应用数学知识解决实际问题的能力,提高学生课堂的自主性、动手能力及归纳能力,渗透类比的思想.

3.应用新知,体验成功

问题4:(1)在日历上圈出一个3×3方框,若正中心那个数用a表示,那么其他八个数用a怎么表示呢?若用a表示的不是正中心那个数,你会吗?相对于第一种表示方法,哪种更简单?

(2)方框中九个数的和与方框正中心的数有什么关系?

(3)随机再圈出一个3×3的方框,问题(2)中的关系仍然成立吗?你能得出什么结论?

(4)这个结论对于任何一个月的日历都成立吗?

(5)哪位同学可以进行课堂一开始的魔术大揭秘呢?

师生互动——我来揭秘:学生先小组讨论,然后派小组代表回答问题,教师只是在需要的时候稍作提示,并且对学生的回答及时给予肯定和表扬.

在之前学习的基础上,学生可以很容易的用字母a表示出其他八个数(如表1),且能理解设正中心的那个数为a是最简单的表示方法.

表1

对于问题(2)学生直接利用整式的加法运算法则即可得出:方框中九个数的和是正中心数的九倍,这时问题(3)、问题(4)、问题(5)的回答就很自然了.

【设计意图】在此过程中,引导学生继续体会整式比具体数字更具有一般性的事实,引导其感受符号.将课堂还给学生,让学生利用所学知识解释本节课最开始的小魔术中蕴含的数学知识,提高学生学习数学的兴趣,利用所学知识解决问题的能力及表达能力.

问题5:你能找出日历中的其他对称图案吗?能得出什么规律?

师生互动——我爱对称美:引导学生通过合作交流,找出日历中的其他对称图案,并通过用字母表示数的方法探究其隐含的数字规律,在此过程中教师应及时给予肯定的评价.

【设计意图】将所得结论进一步推广,锻炼学生思考问题的能力,提升其思考问题的深度与广度.

4.总结升华,布置作业

先请学生谈一谈学习本节课的收获,再由教师总结升华.

【设计意图】通过小结,引导学生认识到用整式表示数是一种重要的方法,将本节课内容与整章内容联系起来,认识到生活中处处有数学,并体会从特殊到一般的探究方法.

作业:请大家利用本节课所学到的数学方法分析

日历中同一直线上相邻四个数间的规律,并将其推广.

【设计意图】引导学生应用本节课所学习的方法解决同类问题,渗透类比思想.

目标检测设计

1.从日历的背景中跳出来,考查更多的数是否具有类似于日历中的规律.将班上64位学生的学号按照一定的顺序排列好,如学号表,试问同一直线上相邻的三个数、3×3方框等对称图案是否具有类似规律?

【设计意图】检测学生用整式表示实际问题中的数量关系的能力,引导学生进一步意识到生活中处处有数学,并可以用数学的思想方法发现问题、解决问题.

图3

2.图3的数阵是由一些奇数排成的,试回答下列问题.到其他一些有序排列的数表,都能从不同角度发现规律,并用数学的方式表示规律,综合与实践课的价值也就体现出来了,课堂效果可能就更精彩了.

总之,虽然广大一线教师经过十多年的课改探索,对“综合与实践”课程的理解逐渐加深,但它的教学定位,它的教育价值还需要教师深入挖掘,我们还需要更新观念,研读《标准(2011年版)》与教材,发挥综合实践课程应有的教育教学价值.

参考文献:

[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)》[M].北京:北京师范大学出版社,2012.

[2]林群.义务教育教科书·数学(七年级上册)[M].北京:人民教育出版社,2012.

[3]章建跃.在“落实立德树人根本任务,全面深化课程教学改革”中再立新功[J].中国数学教育(初中版),2015(1/2):2-4.

(1)观察图中框住的九个数之间的关系,试用字母a及含a的式子表示任意一个这样的框中的九个数;

(2)若框住的九个数之和为225,求这九个数;

(3)是否存在这样的九个数,它们的和为270?297呢?为什么?

【设计意图】此题可以用来检测学生用整式表示实际问题中的数量关系的能力,引导学生举一反三,进一步加深学生学习数学的兴趣.它既是对本节课内容的深化,又为学习“一元一次方程”一章做铺垫.

[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.

[2]董林伟.在数学实验中发展学生的数感[J].中国数学教育(初中版),2015(11):2-6.

[3]叶纪元,潘金城.例谈“学本课堂”的教学设计:以“锐角三角函数(正切)”为例[J].中国数学教育(初中版),2015(11):47-50.

收稿日期:2015—12—04

作者简介:黄宝瑛(1987—),女,中学二级教师,主要从事初中数学教育与教学研究.

猜你喜欢

方框字母规律
规律睡眠中医有妙招
找规律 画一画 填一填
找排列规律
方框里的数字
缓存:从字母B到字母Z
方框里填数
字母派对
巧解规律
该涂黑哪个
巧排字母等