不同覆盖方式和施氮量对糜子光合特性及产量性状的影响
2016-07-14瑜苏旺王舰屈洋高小丽杨璞冯佰利旱区作物逆境生物学国家重点实验室西北农林科技大学陕西杨凌700青海省农林科学院生物技术研究所青海西宁8006宝鸡市农业科学研究所陕西岐山7400
周 瑜苏 旺王 舰屈 洋高小丽杨 璞冯佰利,*旱区作物逆境生物学国家重点实验室 / 西北农林科技大学,陕西杨凌700;青海省农林科学院生物技术研究所,青海西宁8006;宝鸡市农业科学研究所,陕西岐山7400
不同覆盖方式和施氮量对糜子光合特性及产量性状的影响
周 瑜1,**苏 旺1,2,**王 舰2屈 洋1,3高小丽1杨 璞1冯佰利1,*1旱区作物逆境生物学国家重点实验室 / 西北农林科技大学,陕西杨凌712100;2青海省农林科学院生物技术研究所,青海西宁810016;3宝鸡市农业科学研究所,陕西岐山722400
摘 要:于2011—2013年以榆糜2号为试验材料,采用双因素裂区设计,以覆盖栽培方式为主因素,氮肥应用水平为副因素,调查不同栽培方式和施氮量下糜子光合指标及产量性状的变化。结果表明,与传统不覆盖和不施肥相比,覆盖和施氮均显著提高糜子开花至成熟阶段旗叶的叶绿素含量、净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr),同时显著降低胞间CO2浓度(Ci),光合改善效果以“W”垄覆地膜+垄间覆秸秆和180 kg hm-2氮肥施用量最为显著。覆盖和氮肥均显著提高糜子开花期和成熟期干物质积累量、干物质在各器官中的分配量,降低糜子花前营养器官贮藏同化物转运量及其对籽粒的贡献率,而提高了糜子花后同化物在籽粒中的分配量及其对籽粒的贡献率。覆盖显著提高糜子产量、千粒重、穗粒数和穗长,其调控效应以“W”垄覆地膜+垄间覆秸秆较好;随施氮量的提高,糜子产量和千粒重先升后降,而穗粒数和穗长持续增加,适宜的氮肥施用量为135~145 kg hm-2。因此,建议黄土高原糜子最佳栽培措施为“W”垄覆地膜+垄间覆秸秆的二元覆盖集水保水系统结合135~145 kg hm-2氮肥用量。
关键词:糜子;覆盖;氮肥;光合特性;干物质;产量
本研究由国家科技支撑计划项目(2014BAD07B03),国家自然科学基金项目(31371529),国家现代农业产业技术体系建设专项(CARS-07-12.5-A9)和陕西省小杂粮产业技术体系资助。
The study was supported by the National Key Technology R&D Program of China (2014BAD07B03),the Natural Science Foundation of China (31371529),the China Agriculture Research System (CARS-07-12.5-A9),and the Shaanxi Provincial Agro-industry Technology Research System of Shaanxi Province.
第一作者联系方式∶ E-mail∶ xinganmermer@163.com**同等贡献(Contributed equally to this work)
URL∶ http∶//www.cnki.net/kcms/detail/11.1809.S.20160321.1056.006.html
垄沟覆盖集水技术是指地表起垄、垄沟相间、垄面产流、沟内集雨种植的栽培模式[1],其集水效应可使当季属于无效和微效的降水形成径流,叠加到种植沟内,同时可抑制覆盖下土壤水分的无效蒸发,促进降水下渗,改善作物根区的土壤水分供应状况,进而提高作物产量和水分利用效率[2]。结合普通地膜、秸秆和砾石等覆盖材料,垄沟覆盖集水具有提高作物养分利用率[3-4]、调节地表温度[5-6]、活化土壤养分[7]、降低水土流失[8]、缓解土壤盐碱化[9]、改善作物光合能力[10]等作用,最终促进作物生产力提升和籽粒品质的改良[11]。截至目前,垄沟覆盖集水技术已经广泛应用于小麦[12]、玉米[13]、马铃薯[14]、谷子[15]、苜蓿[16]等作物,并实现了农机农艺配套,推进了旱区作物生产。
氮肥施用为农业增产的重要措施[17],应用氮肥可显著调控作物生长发育、光合特性及防止叶片衰老等,进而改善作物籽粒品质、提高产量。作物产量随氮肥施用量提高而增加,但当施氮量超过一定范围,作物产量不增反减[18-20]。Liu和 Wiatrak[21]研究表明,增施氮肥可显著提高玉米株高、叶片叶绿素含量、叶面积指数和产量,而当氮肥用量超过 45 kg hm-2并继续增加氮肥对玉米籽粒产量没有显著影响,当氮肥施用量大于 90 kg hm-2时增施氮肥并不能进一步提高玉米叶绿素含量。韩宝吉等[22]研究发现,在当前农民习惯施肥用量下将氮肥减少 20%左右,湖北中稻不仅不会减产反而还会增产增效;而在高氮的投入下高产田水稻增产不明显甚至减产。相关研究普遍认为,作物产量与施氮量的关系符合报酬递减规律,并利用二次抛物线、线性+平台和二次式+平台等模型模拟出了作物产量随氮肥施用量的变化趋势[23]。对覆盖和氮肥施用的研究多集中在大宗粮食作物和效益较好的经济作物上,本试验设置不同的覆盖方式和氮肥水平,研究糜子叶片光合特性、干物质分配规律和产量变化,讨论构建以覆盖集水保水技术为主、氮肥合理施用为辅的糜子抗旱高产节水栽培模式,以期为黄土高原旱地覆盖、氮肥施用技术的推广应用提供理论依据。
1 材料与方法
1.1 研究区概况
陕西榆林小杂粮试验示范基地(37°56′26″ N,109°21′46″ E,海拔1229 m)属黄土高原丘陵沟壑区,年降水量395 mm左右,集中在7月至9月,约占全年降水量的 61%。2011、2012和 2013年糜子生育期有效降水分别为305.3、330.1和314.8 mm。试验区属典型的干旱半干旱大陆性季风气候,年均气温为 8.5℃,最高气温 38.4℃,最低气温-29.0℃,日照时数2815.8 h,境内年蒸发量为2088.1 mm,谢氏干燥度 3.08,无霜期 145 d。试验地土壤为黄绵土,耕层有机质3.2 g kg-1,pH 8.6,CEC 0.1 mol kg-1,全氮0.3 g kg-1,全磷0.5 g kg-1,全钾18.3 g kg-1,碱解氮16.1 mg kg-1,速效磷4.8 mg kg-1,速效钾65.8 mg kg-1。
1.2 试验设计
采用双因素裂区设计。主因素为覆盖方式,分别为“W”垄覆地膜+垄间覆秸秆(M4)、垄覆地膜+垄间覆秸秆(M3)、双垄面覆地膜+垄间覆秸秆(M2)、传统平作全覆盖秸秆(M1)和传统平作无覆盖(M0)(M4、M3和M2田间布局见图1)。处理M4和M3为宽窄行种植,其宽行行距40 cm,窄行行距20 cm;处理M2、M1和M0为等行距种植,行距30 cm;垄高均为 10 cm。副因素为氮肥水平,分别为纯氮180 (N4)、135 (N3)、90 (N2)、45 (N1)和 0 (N0)kg hm-2,选用尿素(含纯氮 46%)一次性基施。共 25个处理,3次重复,小区面积12 m2(5.0 m × 2.4 m)。
选用当地主栽品种榆糜2号(侧穗型粳性),种植密度为32.7×104株 hm-2。糜子忌连作,3年试验期内倒茬换地,前茬绿豆,山旱地,地力中等,无灌溉条件。播前整地、覆膜和施肥,均施P2O590 kg hm-2(过磷酸钙,含P2O512%),K2O 75 kg hm-2(硫酸钾,含 K2O 33%),间定苗后覆秸秆。白色地膜厚度为0.008 mm,秸秆(谷草) 4500 kg hm-2。2011年6月8日播种,9月16日成熟;2012年6月9日播种,9月15日成熟;2013年6月15日播种,9月21日成熟。按照国家糜子品种区域试验要求进行田间管理。
图1 其中3个处理的田间示意图Fig. 1 Schematic diagrams of three treatments in field
1.3 测定项目与方法
1.3.1 叶片光合特性 糜子开花至成熟期,选择晴朗、无风的天气,9∶00至11∶00,每7 d每小区选5株有代表性、长势一致的植株,采用日本 Konica Minolta公司生产的SPAD-502 Plus便携式叶绿素计,选取叶片的上、中、下 3个部位测定糜子旗叶叶绿素含量,然后计算平均值。采用Li-6400便携式光合作用测定系统(美国Li-Cor公司),设定CO2浓度为400 μmol mol-1,光强为1000 μmol m-2s-1,重复4次,温度 20℃,测定旗叶的净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)。
1.3.2 干物质的积累与分配 采用烘干法测定。在糜子开花期和成熟期,按叶片、茎秆+叶鞘、穗轴+颖壳、籽粒等器官取样,105℃烘箱杀青30 min,80℃烘至恒重,称干物质质量[24-25]。
花前营养器官贮藏同化物转运量(g plant-1) =开花期干物质量−成熟期干物质量
花前营养器官贮藏同化物对籽粒贡献率(%) =(开花期干重−成熟期干重)/成熟期籽粒干重×100
花后同化物在籽粒中的分配量(g plant-1) = 成熟期籽粒干重−开花前营养器官贮藏同化物转运量
花后同化物对籽粒贡献率(%) = 花后同化物在籽粒中的分配量/成熟期籽粒干重×100
1.3.3 产量及其构成因素 糜子成熟时,随机选取各小区10株,测定其穗长、穗粒数、千粒重,并计算平均值。按各处理小区实收测产。
1.4 数据处理
用 Microsoft Excel 2003和SAS V8.0统计分析,用Duncan's进行多重比较(α = 0.05),SigmaPlot 12.0软件绘图。
2 结果与分析
2.1 不同覆盖方式和氮肥水平下旗叶光合特性
2.1.1 旗叶叶绿素含量 由图2可见,2013年糜子灌浆期间旗叶叶绿素含量呈现逐步降低的趋势。各覆盖处理间糜子灌浆期间旗叶叶绿素含量差异达到显著水平(P < 0.05),与传统栽培M0相比,M4、M3、M2和M1处理分别提高21.2%、14.7%、10.4% 和 5.5%,其中以 M4处理提升效应最为明显;各氮肥处理间糜子灌浆期间旗叶叶绿素含量差异达到显著水平(P < 0.05),与不施氮肥处理N0相比,N4、N3、N2和N1处理分别提高了19.6%、16.1%、11.3% 和 8.9%,其中以 N4处理增加效应最为显著。2011 和 2012年各覆盖处理和氮肥水平对糜子灌浆期旗叶叶绿素含量的影响与2013年一致。
2.1.2 旗叶净光合速率 由图3可见,2013年糜子灌浆期间旗叶净光合速率整体上呈现逐步降低趋势。各覆盖处理间糜子灌浆期间旗叶净光合速率差异达到显著水平(P < 0.05),与传统栽培 M0相比,M4、M3、M2和M1处理分别提高62.2%、47.0%、28.4%和13.8%,其中以M4处理提升效应最为明显;各氮肥处理间糜子灌浆期间旗叶净光合速率差异达到显著水平(P < 0.05),与不施氮肥处理 N0相比,N4、N3、N2和N1处理分别提高44.5%、37.3%、26.6%和12.9%,其中以N4处理增加效应最为显著。覆盖方式和氮肥水平对糜子旗叶净光合速率的影响在年份间保持一致。
图2 2013年不同覆盖方式和氮肥水平下糜子开花至成熟阶段旗叶叶绿素含量的动态变化Fig. 2 Dynamic changes of chlorophyll content of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013
图3 2013年不同覆盖方式和氮肥水平下糜子开花至成熟阶段旗叶净光合速率的动态变化Fig. 3 Dynamic changes of net photosynthetic rate of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013
2.1.3 旗叶气孔导度的影响 由图 4可见,2013年糜子灌浆期间旗叶气孔导度呈现逐步降低的趋势。各覆盖处理间糜子灌浆期间旗叶气孔导度差异达到显著水平(P < 0.05),与传统栽培M0相比,M4、M3、M2和M1处理分别提高55.6%、40.7%、27.6% 和12.4%,其中以M4处理提升效应最为明显;各氮肥处理间糜子灌浆期间旗叶气孔导度差异达到显著水平(P < 0.05),与不施氮肥处理N0相比,N4、N3、N2和 N1处理分别提高 50.7%、35.9%、25.2%和 11.3%,其中以N4处理增加效应最为显著。覆盖方式和氮肥水平对糜子旗叶气孔导度的影响在年份间保持一致。
2.1.4 旗叶胞间CO2浓度 由图5可见,2013年糜子灌浆期间旗叶胞间 CO2浓度呈现逐步升高的趋势。各覆盖处理间糜子灌浆期间旗叶胞间CO2浓度差异达到显著水平(P < 0.05),与传统栽培M0相比,M4、M3、M2和M1处理分别降低29.4%、22.3%、14.9%和7.2%,以M4处理减少幅度最大;各氮肥处理间糜子灌浆期间旗叶胞间CO2浓度差异达到显著水平(P < 0.05),与不施氮肥处理N0相比,N4、N3、N2和N1处理分别减少33.2%、26.3%、17.2%和8.6%,其中以N4处理降低幅度最大。覆盖方式和氮肥水平对糜子旗叶胞间CO2浓度的影响在年份间保持一致。
图4 2013年不同覆盖方式和氮肥水平下糜子开花至成熟阶段旗叶气孔导度的动态变化Fig. 4 Dynamic changes of stomatal conductance of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013
图5 2013年不同覆盖方式和氮肥水平下糜子开花至成熟阶段旗叶胞间CO2浓度的动态变化Fig. 5 Dynamic changes of intercellular CO2concentration of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013
2.1.5 旗叶蒸腾速率 由图6可知,2013年糜子灌浆期间旗叶蒸腾速率整体上呈现逐步降低的趋势。各覆盖处理间糜子灌浆期间旗叶蒸腾速率差异达到显著水平(P < 0.05),与传统栽培M0相比,M4、M3、M2和M1处理分别提高36.2%、27.6%、16.6% 和 9.2%,其中以M4的提升幅度最大;各氮肥处理间糜子灌浆期间旗叶蒸腾速率差异达到显著水平(P < 0.05),与不施氮肥处理N0相比,N4、N3、N2和N1处理分别提高26.9%、21.9%、16.5%和7.7%,其中以N4处理的提升幅度最大。
大田试验可以看出,糜子开花至成熟阶段顶三叶的叶绿素含量和气孔导度呈现不断降低的趋势,净光合速率和蒸腾速率在变化上存在同步关系,表现为下降—略微上升—急剧下降的规律,而胞间CO2浓度不断上升,年际间糜子旗叶光合特性没有显著差异。年份×覆盖方式和年份×氮肥水平交互作用均不显著,同时年份×覆盖方式×氮肥水平交互作用亦没有达到显著水平,而覆盖方式×氮肥水平交互作用达到显著水平(表1)。
2.2 不同覆盖方式和氮肥水平下糜子干物质积累和分配规律
2.2.1 糜子开花期和成熟期干物质积累 由图 7可知,与传统栽培M0相比,3年试验中M4、M3、M2和M1处理糜子开花期和成熟期干物质积累量均显著提高,提升效应表现为M4 > M3 > M2 > M1;与不施氮肥处理N0相比,N4、N3、N2和N1处理糜子开花期和成熟期干物质积累量均显著提高,提升效应表现为N4 > N3 > N2 > N1。
图6 2013年不同覆盖方式和氮肥水平下糜子开花至成熟阶段旗叶蒸腾速率的动态变化Fig. 6 Dynamic changes of transpiration rate of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013
表1 糜子旗叶开花至成熟期光合特性互作效应分析Table 1 Interaction of photosynthetic characteristics of flag leaf in broomcorn millet from flowering to maturity
图7 不同覆盖方式和氮肥水平下糜子开花期和成熟期的干物质积累量Fig. 7 Dry matter accumulation amounts at flowering and maturity of broomcorn millet under different treatments误差线上不同小写字母表示差异显著(P < 0.05)。FS表示开花期,MS表示成熟期。
2.2.2 糜子成熟期干物质在各器官中分配量 由图 8可知,成熟期干物质在糜子各器官中的分配量为籽粒>茎秆+叶鞘>叶>颖壳+穗轴。2013年,M4、M3、M2和M1处理下,糜子成熟期干物质在各器官中的分配量较 M0均显著提高,分别增加 89.0%、75.0%、51.1%和19.6%,提升效应表现为M4 > M3 >M2 > M1。糜子N4、N3、N2和N1处理成熟期干物质在各器官中的分配量比N0均显著提高,成熟期干物质在茎秆+叶鞘、叶、颖壳+穗轴中的分配量提升效应均为N4 > N3 > N2 > N1,而在籽粒中的分配量提升效应表现则为N3 > N4 > N2 > N1。2011、2012年覆盖处理和氮肥水平对糜子成熟期干物质在各器官中分配量的影响均表现出与 2013年相一致的规律。
图8 2013年不同覆盖方式和氮肥水平下糜子成熟期干物质在各器官中的分配量Fig. 8 Dry matter partitioning in different organs at maturity of broomcorn millet under different treatments in 2013
2.2.3 糜子开花后营养器官干物质再分配量 年际间糜子花前营养器官贮藏同化物转运量和花后同化物在籽粒中分配量的差异达显著水平,表现为2012年>2013年>2011年,而糜子花前营养器官贮藏同化物对籽粒的贡献率和花后同化物对籽粒的贡献率均没有显著差异(表2)。与M0相比,覆盖处理下的糜子花前营养器官贮藏同化物转运量及其对籽粒的贡献率均显著降低,而花后同化物在籽粒中的分配量及其对籽粒的贡献率显著提高,均以 M4处理效应最为显著;与不施氮肥处理N0相比,施氮处理的糜子花前营养器官贮藏同化物转运量及其对籽粒的贡献率均显著减少,而花后同化物在籽粒中的分配量及其对籽粒的贡献率均显著增加,均以 N3处理效果最为显著。
3年试验结果可知,年份、覆盖方式和氮肥水平对糜子花前营养器官贮藏同化物转运量和花后同化物在籽粒中的分配量两两交互作用显著,三因素之间交互作用达到显著水平;而年份、覆盖方式和氮肥水平对糜子开花前营养器官贮藏同化物对籽粒的贡献率和花后同化物对籽粒的贡献率两两交互作用不显著,三因素之间交互作用亦没有达到显著水平。
2.3 不同覆盖方式和氮肥水平下糜子产量差异
年际间糜子产量、千粒重、穗粒数及穗长差异均达到显著水平,表现为 2012年>2013年>2011年(表3)。经过覆盖处理的糜子产量、千粒重、穗粒数及穗长均较 M0差异显著,且各覆盖处理间差异均达到显著水平,其中处理 M4效应最明显,其次为M3、M2和M1处理。与不覆膜处理M0相比,M4、M3、M2和 M1处理糜子平均产量分别显著提高55.9%、46.0%、33.1%和17.7%,平均千粒重分别显著提高2.7%、2.0%、1.5%和0.9%,平均穗粒数分别显著提高53.7%、40.8%、30.6%和12.8%,平均穗长分别显著提高12.2%、9.1%、8.4%和5.7%。经过氮肥处理的糜子产量、千粒重、穗粒数及穗长均较N0显著提高,且各氮肥处理间差异亦达到显著水平,平均产量和千粒重均在处理 N3下最高,平均穗粒数和穗长均在处理N4下最高。与不施肥处理N0相比,N4、N3、N2和N1处理糜子平均产量分别显著提高29.8%、37.3%、26.6%和16.1%,平均千粒重分别显著提高1.9%、2.4%、1.7%和1.1%,平均穗粒数分别显著提高61.0%、46.5%、28.9%和15.2%,平均穗长分别显著提高12.2%、10.8%、9.8%和4.4%。
表2 不同覆盖方式和氮肥水平下糜子花后营养器官干物质的再分配量Table 2 Reallocation of dry matter from vegetative organs after flowering of broomcorn millet under different treatments
年份、覆盖方式和氮肥水平对糜子产量、千粒重、穗粒数及穗长两两交互作用均显著,且三因素之间交互作用亦均达到显著水平。
3 讨论
3.1 不同覆盖和氮肥水平对糜子旗叶光合特性的影响
叶片光合作用是光化学过程、CO2向固定位置扩散和生物合成的共同作用,除受气孔因素调控外,还受光合结构的影响[26]。叶片光合结构的活性与其吸收、转化、传递和固定光电子的能力密切相关[27],而光电能量转化与传递又会受到环境因子的显著影响[28]。本试验研究结果证实环境的改变可明显改变植物叶片的光合能力,与前人的研究结果相吻合[29]。
干旱缺水会极大降低作物光合能力[30]。Chernyad'ev[31]研究发现,水分胁迫下植物可通过调节气孔导度、细胞结构和关联蛋白的从头合成来增加对干旱的抵御;Subrahmanyam等[32]研究认为,水分胁迫导致光合速率下降是由非光化学因素引起的;Shangguan等[33]研究表明,水分胁迫会导致光合速率降低并减少光合同化物在冬小麦叶片中的积累;Ueda等[34]研究发现,水分胁迫下植物的光合速率和气孔导度都受到影响,胞间 CO2得到积累。直接导致作物光合能力下降的因素有气孔因素和非气孔因素,其中气孔因素是指环境胁迫使气孔导度下降,进而使CO2进入叶片受阻从而降低光合速率[35]。如果胞间CO2浓度与净光合速率和气孔导度变化趋势一致,说明光合速率下降是受气孔因素的影响;反之,如果胞间 CO2浓度与净光合速率和气孔导度变化趋势相反,说明光合速率下降是受非气孔因素的影响[36-37]。本研究中,灌浆期糜子旗叶净光合速率和气孔导度逐步降低,而叶片胞间 CO2浓度逐步升高,表明糜子光合速率的下降并不是由气孔导度下降使 CO2供应减少所致,而是由于非气孔因素阻碍了CO2的利用,造成CO2的积累,这与Robredo等[38]和Ghobadi等[39]的研究结果相一致。覆盖可以显著提高糜子旗叶的叶绿素含量、净光合速率、气孔导度和蒸腾速率,同时明显降低胞间 CO2浓度,可能是由于覆盖能够降低作物棵间蒸发、增加土壤水分贮存,从而降低了非气孔因素对光合作用的限制[40-41]。本试验中,覆盖的光合改善效果由高到低依次为“W”垄覆地膜+垄间覆秸秆、垄覆地膜+垄间覆秸秆、双垄面覆地膜+垄间覆秸秆、秸秆覆盖,覆盖的光合改善效果可能与其蓄水保墒能力有关。韩娟等[42]和李儒等[43]的研究表明,与传统的垄覆地膜+垄间不覆盖处理相比,垄覆地膜+垄间覆盖秸秆处理的蓄水保墒效果更为显著;李荣等[44]也证明垄覆地膜+垄间覆盖秸秆处理的集水保墒效果最好。这可能是由于地膜和秸秆结合起到双重保墒作用,能更有效地阻断土壤水分的垂直蒸发,从而减少无效水的逃逸,降低土壤水分循环的强度[45-46]。“W”垄覆地膜+垄间覆秸秆的光合改善效果最好,可能是由于起垄造沟后在田间形成了较多的垄和沟,改变了微地形,土壤表面积增加,使受热和散热面积同时增加,土壤温度波动幅度更大,但由于覆盖使水分蒸发受阻,土壤-植物-大气连续体(soil-plant-atmosphere continuum,SPAC)的水热交换发生变化,从而土壤水热特性将产生显著变化[47]。本试验没有涉及覆盖方式对光、温、水等的影响,关于不同覆盖方式改善作物光合能力的机制有待进一步研究。
表3 不同覆盖方式和氮肥水平下糜子产量及其构成因素的变化Table 3 Changes of yield and yield components in broomcorn millet under different treatments
氮是维持叶绿素含量、提高叶片光合速率及延长叶片功能期的重要元素[48]。Rubisco含量和Rubisco活化程度均是影响作物光合速率的非气孔因素[49],叶片中 Rubisco含量和活性与氮素密切相关[50-51]。本研究表明,增施氮肥可以显著改善糜子旗叶光合能力,随着氮肥水平的增加,光合能力的提升幅度增加,可能是因为施氮增加了叶片的含氮量,提高了单位叶面积内羧化酶的总活性。吴自明等[52]研究同样表明,增施氮肥能够提高水稻 Rubisco羧化活性和光合能力,降低杂交水稻叶绿素衰减率 6.1%~27.1%,提高杂交水稻净光合速率3.0%~15.8%。
3.2 不同覆盖和氮肥水平对糜子干物质积累与分配的影响
土壤水肥条件的改变可显著调控作物的干物质积累与分配[53-54]。覆盖可显著影响土壤水、肥、气、热,从而影响作物产量[55]。李华等[56]研究表明,覆膜显著增加冬小麦各生育期干物质的积累,提高干物质转运量或花后干物质累积量;覆草显著增加生长后期干物质累积量。Liu等[57]研究表明当氮肥用量小于250 kg hm-2时玉米干物质积累量随氮肥用量的增加而增加。Tekalign等[58]认为,低氮条件下,由于缺乏产量形成的物质基础而使营养器官中干物质分配比例下降,从而影响产量;高氮条件下,会由于地上部的徒长使分配到经济器官中的干物质减少,导致产量降低。本研究认为,覆盖和施氮均有利于糜子干物质的积累,提高糜子花后营养器官(叶片、茎秆+叶鞘、穗轴+颖壳)干物质向籽粒的转运量和对籽粒的贡献率,这是旱作糜子获得高产的生理基础。此外,当氮肥用量超过135 kg hm-2时,增施氮肥并没有进一步提高糜子花后同化物对籽粒的贡献率,结果与Lahai和Ekanayake[59]研究相似,这可能是水肥条件不适宜导致作物源/库比例不协调,从而不利于作物经济产量的提高。
3.3 不同覆盖和氮肥水平对糜子产量的影响
覆盖和氮肥措施均能显著提高作物产量[60-64]。Ibarra-Jimenez等[10]研究表明,覆盖黑色聚乙烯膜加白色穿孔聚乙烯膜的黄瓜产量显著高于只覆盖黑色聚乙烯膜。Kumar和Dey[65]研究证实覆盖能显著提高草莓的产量,但是黑色聚乙烯膜的提升效果显著高于干草。由此可知,覆盖对作物产量的效应与覆盖物的类型有一定相关性。本研究表明,地膜和秸秆覆盖均能显著提高黄土高原旱地糜子产量,以地膜覆盖提升效果更好。
Barati等[66]认为在地中海半干旱地区,适宜的氮肥用量可提高大麦的产量,但施氮过高或过低均不利于大麦产量的提高。Azizian和Sepaskhah[67]研究表明,当氮肥用量超过150 kg hm-2时,增施氮肥并不能进一步提升玉米产量。本研究得出类似的结论,施用氮肥可以增加糜子产量,但当氮肥水平超过135 kg hm-2时,增施氮肥却降低了糜子的产量。此外,利用二次抛物线模型模拟得出黄土高原旱地糜子适宜的氮肥施用量为 135~145 kg hm-2(年际间有所差异),氮肥应用要科学合理[68]。
叶片光合作用是作物物质生产和产量构成的基础,而光合产物的分配在一定程度上也影响了作物的最终产量。本试验中,覆盖处理对光合作用的改善效果、开花期和成熟期干物质积累量的增加、花后同化物向籽粒转运的提高程度均表现为 M4>M3>M2>M1,因而 M4的产量最高;氮肥水平对光合作用的改善效果、开花期和成熟期干物质积累量的增加表现为 N4>N3>N2>N1,而对成熟期干物质向籽粒转运的提高程度表现为 N3>N4>N2>N1,最终产量也呈现N3>N4>N2>N1的趋势。
4 结论
覆盖和氮肥施用均能在不同程度上提升糜子的光和能力,提高产量,其中“W”垄覆地膜+垄间覆秸秆的二元覆盖集水保水系统结合135~145 kg hm-2的氮肥用量,是黄土高原旱区糜子生产的适宜栽培模式。
References
[1] 屈洋,苏旺,李翠,高金锋,高小丽,王鹏科,冯佰利,柴岩.陕北半干旱区沟垄覆膜集水模式下糜子边际效应及生理特性.应用生态学报,2014,25∶ 776-782 Qu Y,Su W,Li C,Gao J F,Gao X L,Wang P K,Feng B L,Chai Y. Border effect and physiological characteristics of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in the semi-arid region of Northern Shaanxi,China. Chin J Appl Ecol,2014,25∶ 776-782 (in Chinese with English abstract)
[2] Li X Y,Gong J D. Effect of different ridge∶ Furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agric Water Manag,2002,54∶ 243-254
[3] Li F M,Guo A H,Wei H. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res,1999,63∶ 79-86
[4] Fisher P D. An alternative plastic mulching system for improved water management in dryland maize production. Agric Water Manag,1995,27∶ 155-166
[5] Zhang S,Lövdahl L,Grip H,Tong Y,Yang X,Wang Q. Effects of mulching and catch cropping on soil temperature,soil moisture and wheat yield on the Loess Plateau of China. Soil Till Res,2009,102∶ 78-86
[6] Ramakrishna A,Tam H M,Wani S P,Long T D. Effect of mulch on soil temperature,moisture,weed infestation and yield of groundnut in northern Vietnam. Field Crops Res,2006,95∶115-125
[7] Niu J Y,Gan Y T,Zhang J W,Yang Q F. Postanthesis dry matteraccumulation and redistribution in spring wheat mulched with plastic film. Crop Sci,1998,38∶ 1562-1568
[8] Ren X,Chen X,Jia Z. Ridge and furrow method of rainfall concentration for fertilizer use efficiency in farmland under semiarid conditions. Appl Eng Agric,2009,25∶ 905-913
[9] Dong H Z,Li W J,Tang W,Zhang D M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res,2009,111∶ 269-275
[10] Ibarra-Jiménez L,Quezada-Martin M R,de la Rosa-Ibarra M. The effect of plastic mulch and row covers on the growth and physiology of cucumber. Aust J Exp Agric,2004,44∶ 91-94
[11] Li F M,Wang J,Xu J Z,Xu H L. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Till Res,2004,78∶ 9-20
[12] 王彩绒,田霄鸿,李生秀. 沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响. 中国农业科学,2004,37∶ 208-214 Wang C R,Tian X H,Li S X. Effects of plastic sheet-mulching on ridge for rainwater-harvesting cultivation on WUE and yield of winter wheat. Sci Agric Sin,2004,37∶ 208-214 (in Chinese with English abstract)
[13] Zhang S,Li P,Yang X,Wang Z,Chen X. Effects of tillage and plastic mulch on soil water,growth and yield of spring-sown maize. Soil Till Res,2011,112∶ 92-97
[14] Wang X L,Li F M,Jia Y,Shi W Q. Increasing potato yields with additional water and increased soil temperature. Agric Water Manag,2005,78∶ 181-194
[15] 丁瑞霞,贾志宽,韩清芳,任广鑫,王俊鹏. 宁南旱区微集水种植条件下谷子边际效应和生理特性的响应. 中国农业科学,2006,39∶ 494-501 Ding R X,Jia Z K,Han Q F,Ren G X,Wang J P. Border effect and physiological characteristic responses of foxtail millet to different micro-catchment stripshapes in semiarid region of South Ningxia. Sci Agric Sin,2006,39∶ 494-501 (in Chinese with English abstract)
[16] 寇江涛,师尚礼,周万海,尹国丽,李建伟. 垄覆膜集雨种植对二年龄苜蓿草地土壤养分的影响. 草业学报,2011,20(5)∶207-216 Kou J T,Shi S L,Zhou W H,Yin G L,Li J W. Soil nutrient in two-year alfalfa field on condition of film-mulching rainfall harvesting cultivation. Acta Pratac Sin,2011,20(5)∶ 207-216 (in Chinese with English abstract)
[17] 朱兆良,金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报,2013,19∶ 259-273 Zhu Z L,Jin J Y. Fertilizer use and food security in China. Plant Nutr Fert Sci,2013,19∶ 259-273 (in Chinese with English abstract)
[18] 同延安,赵营,赵护兵,樊红柱. 施氮量对冬小麦氮素吸收、转运及产量的影响. 植物营养与肥料学报,2007,13∶ 64-69 Tong Y A,Zhao Y,Zhao H B,Fan H Z. Effect of N rates on N uptake,transformation and the yield of winter wheat. Plant Nutr Fert Sci,2007,13∶ 64-69 (in Chinese with English abstract)
[19] Wang Y C,Wang E L,Wang D L,Huang S M,Ma Y B,Smith C J,Wang L G. Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain. Nutr Cycl Agroecos,2010,86∶ 105-119
[20] 杨宪龙,路永莉,同延安,林文,梁婷. 长期施氮和秸秆还田对小麦-玉米轮作体系土壤氮素平衡的影响. 植物营养与肥料学报,2013,19∶ 65-73 Yang X L,Lu Y L,Tong Y A,Lin W,Liang T. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system. Plant Nutr Fert Sci,2013,19∶65-73 (in Chinese with English abstract)
[21] Liu K S,Wiatrak P. Corn production response to tillage and nitrogen application in dry-land environment. Soil Till Res,2012,124∶ 138-143
[22] 韩宝吉,曾祥明,卓光毅,徐芳森,姚忠清,肖习明,石磊. 氮肥施用措施对湖北中稻产量,品质和氮肥利用率的影响. 中国农业科学,2011,44∶ 842-850 Han B J,Zeng X M,Zhuo G Y,Xu F S,Yao Z Q,Xiao X M,Shi L. Yield,grain quality and N-use efficiency of midseason rice in Hubei province. Sci Agric Sin,2011,44∶ 842-850 (in Chinese with English abstract)
[23] Chen X P,Zhou J C,Wang X R,Zhang F S,Bao D J,Jia X H. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. Acta Pedol Sin,2000,37∶ 346-354
[24] 郭增江,于振文,石玉,赵俊晔,张永丽,王东. 不同土层测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响. 作物学报,2014,40∶ 731-738 Guo Z J,Yu Z W,Shi Y,Zhao J Y,Zhang Y L,Wang D. Photosynthesis characteristics of flag and dry matter accumulation and allocation in winter wheat under supplemental irrigation after measuring moisture content in different soil layers. Acta Agron Sin,2014,40∶ 731-738 (in Chinese with English abstract)
[25] 胡梦芸,张正斌,徐萍,董宝娣,李魏强,李景娟. 亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究. 作物学报,2007,33∶ 1884-1891 Hu M Y,Zhang Z B,Xu P,Dong B D,Li W J,Li J J. Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin,2007,33∶1884-1891 (in Chinese with English abstract)
[26] Hikosaka K. Interspecific difference in the photosynthesisnitrogen relationship∶ patterns,physiological causes,and ecological importance. J Plant Res,2004,117∶ 481-494
[27] Bartels D,Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci,2005,24∶ 23-58
[28] Logan B A,Demmig-Adams B,Adams W W,Grace S C. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. J Exp Bot,1998,49∶ 1869-1879
[29] Lone P M,Khan N A. The effects of rate and timing of N fertilizer on growth,photosynthesis,N accumulation and yield of mustard (Brassica juncea) subjected to defoliation. Environ Exp Bot,2007,60∶ 318-323
[30] 张兴华,高杰,杜伟莉,张仁和,薛吉全. 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报,2015,41∶ 154-159 Zhang X H,Gao J,Du W L,Zhang R H,Xue J Q. Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agron Sin,2015,41∶ 154-159 (in Chinese with English abstract)
[31] Chernyad'ev I I. Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins∶ a review.Appl Biochem Micro,2005,41∶ 115-128
[32] Subrahmanyam D,Subash N,Haris A,Sikka K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica,2006,44∶ 125-129
[33] Shangguan Z P,Shao M A,Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot,2000,44∶141-149
[34] Ueda A,Kanechi M,Uno Y,Inaqaki N. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J Plant Res,2003,116∶ 65-70
[35] 王晓娟,贾志宽,梁连友,丁瑞霞,王敏,李涵. 不同有机肥量对旱地玉米光合特性和产量的影响. 应用生态学报,2012,23∶ 419-425 Wang X J,Jia Z K,Liang L Y,Ding R X,Wang M,Li H. Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize. Chin J Appl Ecol,2012,23∶ 419-425 (in Chinese with English abstract)
[36] Klaus W,Michael J S. Analysis of stomatal and nonstomatal components in the environmental control of CO2exchanges in leaves of Welwitschia mirabilis. Plant Physiol,1986,82∶173-178
[37] Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol,1982,33∶ 317-345
[38] Robredo A,Perez-Lopez U,Lacuesta M,Mena-Petite A,Munoz-Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2concentrations. Blol Plant,2010,54∶ 285-292
[39] Ghobadi M,Taherabadi S,Ghobadi M E,Mohammadi G R,Jalali-Honarmand S. Antioxidant capacity,photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.)cultivars in response to drought stress. Ind Crop Prod,2013,50∶29-38
[40] Ashraf M,Ahmad A,McNeilly T. Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica,2001,39∶ 289-294
[41] Karkanis A,Bilalis D,Efthimiadou A. Architectural plasticity,photosynthesis and growth responses of velvetleaf (Abutilon theophrasti Medicus) plants to water stress in a semi-arid environment. Aust J Crop Sci,2011,5∶ 369-374
[42] 韩娟,廖允成,贾志宽,韩清芳,丁瑞霞. 半湿润偏旱区沟垄覆盖种植对冬小麦产量及水分利用效率的影响. 作物学报,2014,40∶ 101-109 Han J,Liao Y C,Jia Z K,Han Q F,Ding R X. Effects of ridging with mulching on yield and water use efficiency in winter wheat in semi-humid drought-prone region in China. Acta Agron Sin,2014,40∶ 101-109 (in Chinese with English abstract)
[43] 李儒,崔荣美,贾志宽,韩清芳,路文涛,侯贤清. 不同沟垄覆盖方式对冬小麦土壤水分及水分利用效率的影响. 中国农业科学,2011,44∶ 3312-3322 Li R,Cui R M,Jia Z K,Han Q F,Lu W T,Hou X Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. Sci Agric Sin,2011,44∶3312-3322 (in Chinese with English abstract)
[44] 李荣,王敏,贾志宽,侯贤清,杨宝平,韩清芳,聂俊峰,张睿.渭北旱塬区不同沟垄覆盖模式对春玉米土壤温度,水分及产量的影响. 农业工程学报,2012,28(2)∶ 106-113 Li R,Wang M,Jia Z K,Hou X Q,Yang B P,Han Q F,Nie J F,Zhang R. Effects of different mulching patterns on soil temperature,moisture water and yield of spring maize in Weibei Highland. Trans. Chin Soc Agric Eng,2012,28(2)∶ 106-113 (in Chinese with English abstract)
[45] 买自珍,罗世武,程炳文,王勇. 玉米二元覆盖农田水分动态及水分利用效率研究. 中国生态农业学报,2007,15(3)∶ 68-70 Mai Z Z,Luo S W,Cheng B W,Wang Y. Soil water content dynamics and water use efficiency under plastic film and straw dual-mulching in maize fields. Chin J Eco-Agric,2007,15(3)∶68-70 (in Chinese with English abstract)
[46] 刘艳红,贾志宽,张睿,刘婷,马晓丽. 沟垄二元覆盖对旱地土壤水分及作物水分利用效率的影响. 干旱地区农业研究,2010,28(4)∶ 152-157 Liu Y H,Jia Z K,Zhang R,Liu T,Ma X L. Effects of dualmulching with plastic film and other mulching materials on soil water and WUE in semiarid region. Agric Res Arid Areas,2010,28(4)∶ 152-157 (in Chinese with English abstract)
[47] 侯慧芝,王娟,张绪成,方彦杰,于显枫,王红丽,马一凡. 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报,2015,41∶ 1582-1590 Hou H Z,Wang J,Zhang X C,Fang Y J,Yu X F,Wang H L,Ma Y F. Effects of mini-ditch planting with plastic mulching in ridges on soil water content,temperature and potato yield in rain-fed semiarid region. Acta Agron Sin,2015,41∶ 1582-1590 (in Chinese with English abstract)
[48] Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant physiol,1983,72∶ 297-302
[49] 陈贵,周毅,郭世伟,沈其荣. 水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究. 中国农业科学,2007,40∶ 2162-2168 Chen G,Zhou Y,Guo S,Shen Q R. The regulatory mechanism of different nitrogen form on photosynthetic efficiency of rice plants under water stress. Sci Agric Sin,2007,40∶ 2162-2168 (in Chinese with English abstract)
[50] Ookawa T,Naruoka Y,Sayama A,Hirasawa T. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Sci,2004,44∶2107-2115
[51] Imai K,Suzuki Y,Mae T,Makino A. Changes in the synthesis of Rubisco in rice leaves in relation to senescence and N influx. Ann Bot,2008,101∶ 135-144
[52] 吴自明,王竹青,李木英,曾蕾,石庆华,潘晓华,谭雪明. 后期水分亏缺与增施氮肥对杂交稻叶片光合功能的影响. 作物学报,2013,39∶ 494-505 Wu Z M,Wang Z Q,Li M Y,Zeng L,Shi Q H,Pan X H,Tan X M. Effect of water shortage and increasing nitrogen application on photosynthetic function of different hybrid rice combinations at grain filling stage. Acta Agron Sin,2013,39∶ 494-505 (in Chinese with English abstract)
[53] Ma S C,Duan A W,Wang R,Guan Z M,Yang S J,Ma S T,Shao Y. Root-sourced signal and photosynthetic traits,dry matter accumulation and remobilization,and yield stability in winter wheat as affected by regulated deficit irrigation. Agric Water Manag,2015,148∶ 123-129
[54] Pepler S,Gooding M J,Ellis R H. Modeling simultaneously water content and dry matter dynamics of wheat grains. Field Crops Res,2006,95∶ 49-63
[55] 王俊,李凤民,宋秋华,李世清. 地膜覆盖对土壤水温和春小麦产量形成的影响. 应用生态学报,2003,14∶ 205-210 Wang J,Li F M,Song Q H,Li S Q. Effects of plastic film mulching on soil temperature and moisture and on yield formation of spring wheat. Chin J Appl Ecol,2003,14∶ 205-210 (in Chinese with English abstract)
[56] 李华,王朝辉,李生秀. 地表覆盖和施氮对冬小麦干物质和氮素积累和转移的影响. 植物营养与肥料学报,2008,14∶1027-1034 Li H,Wang Z H,Li S X. Effect of soil surface mulching and N rate on dry matter and nitrogen accumulation and translocation of winter wheat. Plant Nutr Fert Sci,2008,14∶ 1027-1034 (in Chinese with English abstract)
[57] Liu J L,Zhan A,Bu L D,Zhu L,Luo S S,Chen X P,Cui Z L,Li S Q,Hill R L,Zhao Y. Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agron J,2014,106∶ 390-396
[58] Tekalign T,Hammes P S. Growth and productivity of potato as influenced by cultivar and reproductive growth∶ I. Stomatal conductance,rate of transpiration,net photosynthesis,and dry matter production and allocation. Sci Hort,2005,105∶ 13-27
[59] Lahai M T,Ekanayake I J. Accumulation and distribution of dry matter in relation to root yield of cassava under a fluctuating water table in inland valley ecology. Afr J Biotechnol,2009,8∶4895-4905
[60] Di Paolo E,Rinaldi M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res,2008,105∶ 202-210
[61] Iqbal M,Anwar-ul-Hassan,Ibrahim M. Effects of tillage systems and mulch on soil physical quality parameters and maize (Zea mays L.) yield in semi-arid Pakistan. Biol Agric Hort,2008,25∶311-325
[62] Mukherjee A,Kundu M,Sarkar S. Role of irrigation and mulch on yield,evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L). Agric Water Manag,2010,98∶182-189
[63] Shaheen A,Ali S,Stewart B A,Naeem M A,Jilani G. Mulching and synergistic use of organic and chemical fertilizers enhances the yield,nutrient uptake and water use efficiency of sorghum. Afr J Agric Res 2010,5∶ 2178-2183
[64] Miller P R,Gan Y,McConkey B G,McDonald C L. Pulse crops for the northern Great Plains∶ I. Grain productivity and residual effects on soil water and nitrogen. Agron J,2003,95∶ 972-979
[65] Kumar S,Dey P. Effects of different mulches and irrigation methods on root growth,nutrient uptake,water-use efficiency and yield of strawberry. Sci Hort,2011,127∶ 318-324
[66] Barati V,Ghadiri H,Zand-Parsa S,Karimian N. Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi-arid Mediterranean climate. Arch Agron Soil Sci,2015,61∶ 15-32
[67] Azizian A,Sepaskhah A R. Maize response to water,salinity and nitrogen levels∶ yield-water relation,water-use efficiency and water uptake reduction function. Int J Plant Prod,2014,8∶183-214
[68] Pirmoradian N,Sepaskhah A R,Maftoun M. Effects of water-saving irrigation and nitrogen fertilization on yield and yield components of rice (Oryza sativa L.). Plant Prod Sci,2004,7∶ 337-346
Effects of Mulching and Nitrogen Application on Photosynthetic Characteristics and Yield Traits in Broomcorn Millet
ZHOU Yu1,**,SU Wang1,2,**,WANG Jian2,QU Yang1,3,GAO Xiao-Li1,YANG Pu1,and FENG Bai-Li1,*1State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy,Northwest A&F University,Yangling 712100,China;2Research Institute of Biotechnology,Qinghai Academy of Agriculture and Forestry Sciences,Xining 810016,China;3Baoji Academy of Agriculture Sciences,Qishan 722400,China
Abstract:To reveal the mechanism of effects of mulching and nitrogen fertilizer on yield of broomcorn millet,we employed a split-plot design in variety Yumi 2 with mulching as main plot and nitrogen rates as subplot. In a three-year field experiment from 2011 to 2013,we investigated and related the variation of photosynthetic characteristics and yield traits indices under different mulching patterns and nitrogen rates. The results showed that compared with traditional planting (no mulching and no nitrogen),all mulching patterns and nitrogen fertilizer treatments could significantly increase chlorophyll content,net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr),and decrease intercellular CO2concentration (Ci) of flag leaves from flowering to maturity in broomcorn millet,among which “W” ridge covered with common plastic film + intredune covered with straw (M4) and 180 kg ha-1of nitrogen rate (N4) caused the most significant improvement on photosynthesis. All mulching patterns and nitrogen fertilizer treatments could significantly improve dry matter accumulation and allocation amount at flowering and maturity stages. In addition,the mulching and nitrogen fertilizer treatments significantly reduced pre-flowering reserves translocation and contribution to grain,but increased post-flowering assimilates allocation and contribution to grain. Mulching could significantly improve the grain yield,thousand grain weight,panicle grain number and panicle length of broomcorn millet,and M4 treatment showed the greatest improvement. With the increasing of nitrogen fertilizer rates,broomcorn millet grain yield and thousand grain weight increased at first and declined then,but panicle grain number and panicle length constantly increased. The best rate of nitrogen fertilizer applied in Loess Plateau was between 135 and 145 kg ha-1. Therefore,the combination of “W”ridge covered with common plastic film + intredune covered with straw and nitrogen rate from 135 to 145 kg ha-1could be considered as the most efficient cultivation measure to broomcorn millet in Loess Plateau.
Keywords:Broomcorn millet;Mulching;Nitrogen fertilizer;Photosynthetic characteristic;Dry matter;Yield
DOI:10.3724/SP.J.1006.2016.00873
*通讯作者(
Corresponding author)∶ 冯佰利,E-mail∶ 7012766@163.com,Tel∶ 13891852175
收稿日期Received()∶ 2015-12-03;Accepted(接受日期)∶ 2016-03-14;Published online(网络出版日期)∶ 2016-03-21.