电子辐照对聚乙烯/碳纳米管复合材料微观结构的影响
2016-05-30崔海欣杨剑群刘超铭马国亮
崔海欣 杨剑群 刘超铭 马国亮
摘 要:随着航天技术的发展,对轻质、高性能和低成本的辐射防护材料提出了迫切需求。由于聚乙烯/碳纳米管复合材料(PE/CNTs)具有防护、轻质、高性能等诸多优势,在航天领域具有广阔的发展前景。本文以1MeV电子辐照前后低密度聚乙烯(LDPE)及含0.2wt%多壁碳纳米管(MWCNTs)的LDPE/MWCNTs复合材料为研究对象,利用现代材料分析手段研究了碳纳米管对电子辐照聚乙烯微观结构的影响。电子顺磁共振(EPR)、差示扫描量热(DSC)分析结果表明,1MeV电子辐照条件下,LDPE/MWCNTs复合材料产生稳定的自由基,MWCNTs具有清除自由基的作用,MWCNTs的添加提高了材料的结晶度,电子辐照进一步提高了复合材料的结晶度。研究结果可为LDPE/MWCNTs复合材料在航天工程上的应用提供相关理论依据。
关键词:碳纳米管复合材料;电子辐照;微观结构
1 概述
航天器在轨运行时要受到空间环境中多种带电粒子辐射,使得航天器内部电子器件受到严重损伤。研究表明,富氢材料如水(H2O)、聚乙烯(PE)等具有优异的辐射防护能力。目前,聚乙烯已被作为评估其他材料空间辐射防护效果的标准参考,然而直接选用聚乙烯作为辐射防护材料的应用尚少,原因之一是聚乙烯的强度还不能很好地满足要求,有必要进一步加以提高。1991年日本专家Iijima首次报道发现碳纳米管(CNTs)[1],其具有独特的力学性能,弹性模量约为钢的5倍、理论拉伸强度约为钢的100倍,密度却只有钢的1/6[2]。这些优异的力学性能使其成为提高材料强度的较好填充物。在低密度聚乙烯(LDPE)中添加碳纳米管(CNTs),一方面提高材料自身强度且对材料重量影响较小,另一方面,针对太空较为恶劣的复杂环境,碳纳米管也同样拥有一定的防护能力。
针对添加碳纳米管对聚合材料物理性能影响的研究[3],大多结合多种微观分析方法分析添加碳纳米管对材料结构的影响。Kresten L.C. Nielsen[4]等研究电子辐照前后掺有单壁碳纳米管(SWCNTs)的聚酰亚胺复合材料,由于SWCNTs的添加使得材料的拉伸性能有所改善,且辐照后也未有衰退变化。他们通过ESR测试分析得出辐照后SWCNTs影响了材料原子团的化学性,这可能归因于SWCNTs对辐射能量的分散阻碍了原子团的形成或是其优先与辐射粒子发生反应。基于以上研究成果,本项工作采用电子顺磁共振(EPR)及差示扫描量热(DSC)分析高能电子辐照条件下添加MWCNTs对LDPE基体辐射损伤的影响。从而为LDPE/MWCNTs这种复合材料在航天工程上的应用提供相关依据。
2 实验
2.1 样品制备
本试验的基体材料为巴斯夫(BASF)公司生产的LDPE,密度为0.922g/cm3。纳米管填料选用美国天奈科技有限公司生产的多壁碳纳米管(MWCNTs),纯度大于95%,平均直径为110nm,长度约10μm。利用HAAKE RHEOMIX OS 密炼机,通过机械共混法制备LDPE/0.2%MWCNTs 复合材料薄膜,其平均厚度为280μm。
2.2 试验过程
本试验采用1 MeV电子辐照,试验在黑龙江省科学院技术物理研究所进行,辐照注量为3×1015e/cm2;差示扫描量热(DSC)试验所用仪器为德国Netzsch公司的DSC 204 F1型号的差示扫描量热仪,升温范围20-170℃,升温速率10℃/min;降温范围170-20℃,降温速率10℃/min。采用氩气作为吹扫气体及保护气体。电子顺磁共振(EPR) 所用仪器为德国Bruke公司的A200型电子顺磁共振谱仪,最大扫描范围为0-7000Gs。
3实验结果与讨论
3.1 EPR分析
已有研究表明MWCNTs具有清除自由基的能力[5,6]。图1是1MeV电子辐照前后LDPE和LDPE/0.2% MWCNTs复合材料样品的EPR谱。从图(a)可以看到,1 MeV电子辐照可使LDPE中产生大量自由基,经48小时之后,LDPE中产生的自由基几乎全部消失,这说明在辐照过程中所产生的自由基的不稳定从而易发生退
火。从图(b)可看出,而经1MeV电子辐照后LDPE/0.2% MWCNTs复合材料中也产生自由基,主要是MWCNTs的自由基,基体LDPE所产生的自由基几乎不存在,这说明MWCNTs具有清除自由基的功能。
3.2 DSC分析
表1给出了起始融化温度、终止融化温度、熔融焓、起始结晶温度、终止结晶温度、结晶焓和结晶度。可以看出,辐照后LDPE及LDPE/0.2%MWCNTs复合材料起始融化温度和终止融化温度均略高于辐照前,而起始结晶温度及终止结晶温度均低于辐照前。最终通过结晶度计算可以看出辐照可提高LDPE及LDPE/0.2%MWCNTs复合材料的结晶度;同时,辐照前后 LDPE/0.2%MWCNTs复合材料起始温度高于LDPE,而终止温度略低于LDPE,且LDPE/0.2%MWCNTs复合材料的结晶度高于LDPE,可知MWCNTs的添加提高了材料的结晶度。
4 结论
本文针对1MeV电子辐照条件下,MWCNTs对LDPE力学性能及微观结构的影响进行了研究,得出如下结论:
①经EPR分析可知,组元MWCNTs具有清除基体LDPE因辐照产生自由基的作用。
②辐照后经DSC分析得知,辐照可提高LDPE及LDPE/MWCNTs复合材料的起始融化温度、终止融化温度及结晶度,降低起始结晶温度、终止结晶温度。且添加MWCNTs提高了LDPE/MWCNTs复合材料的起始温度、结晶度,降低了终止温度,改善了LDPE/MWCNTs复合材料的热学性能。
参考文獻:
[1]S. Iijima. Helical microtubules of graphitic carbon. Nature. 1991,354(7):56-58.
[2]E. W. Wong,P. E. Sheehan,C. M. Lieber. Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes. Science. 1997(277):1971-1975.
[3]Brian P. Grady. Effects of Carbon Nanotubes on Polymer Physics. JOURNAL OF POLYMER SCIENCE. 2012(50): 591-623.
[4]Kresten L.C. Nielsen, David J.T. Hill, Kent A. Watson, John W. Connell,Shigetoshi Ikeda, Hisaaki Kudo, Andrew K. Whittaker. The radiation degradation of a nanotubeepolyimide nanocomposite. Polymer Degradation and Stability. 2008(93):169-175.
[5]P.S. Rama Sreekanth, N. Naresh Kumar, S. Kanagaraj. Improving post irradiation stability of high density polyethylene by multi walled carbon nanotubes. Composites Science and Technology.2012(72):390-396.
[6]M.J. Martínez-Morlanes, P. Castell, V. Martínez-Nogués, M.T. Martinez, P.J. Alonso, J.A. Puértolas. Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Composites Science and Technology. 2011(71):282-288.