APP下载

计算机科学在智能电网中的应用

2016-05-30温诗华

中国高新技术企业 2016年21期
关键词:数据挖掘电网人工智能

温诗华

摘要:文章介绍了智能电网的相关概念、特点和相关技术,并介绍了计算机科学在智能电网中的应用,重点针对云计算、数字图像处理、数据挖掘、人工智能和软件工程等计算机科学相关技术应用于智能电网提出了一些建议,为我国智能电网技术的发展提供参考。

关键词:计算机科学;智能电网;云计算;数字图像处理;数据挖掘;人工智能 文献标识码:A

中图分类号:TM76 文章编号:1009-2374(2016)21-0047-03 DOI:10.13535/j.cnki.11-4406/n.2016.21.023

1 概述

随着信息技术的发展,人类逐渐步入信息化时代。在此过程中所引起的信息革命给许多传统行业带来了巨大的冲击,信息化时代的四大特点——智能化、电子化、全球化、非群体化成为了许多行业变革的风向标。而信息化时代的代表性象征——计算机在各行各业中的必要性与日俱增,在电力行业中也不可避免。

而电力行业作为关乎国计民生的传统行业,在信息化时代中也面临着如何更高效地利用能源、如何更安全可靠地供电、如何更好地了解用户需求等诸多方面的新挑战,于是“智能电网”的概念应运而生。

2 智能电网

2.1 智能电网的概念

智能电网是将信息技术,如通信技术、传感技术、计算机技术和控制技术等融入电力系统之中,使整个电力系统更加安全可控,成为高效智能的新型电网。由于各国的国情不同,因此各个国家对智能电网的具体要求也会有不同的侧重点。因为我国还是一个发展中国家,与国外发达国家的电力工业已步入成熟期不同,我国在发展智能电网的同时,还需要加强骨干电网建设。因此除了要建设能够充分满足用户对电力的需求和优化资源配置,确保电力供应的安全性、可靠性和经济性,满足环保约束,保证电能质量,适应电力市场化发展的坚强智能电网外,我国的智能电网建设还需要满足以特高压电网为骨干网架,各级电网高度协调发展。

2.2 智能电网的特点

智能电网一般包括有以下七个特点:

2.2.1 能量互联网:智能电网要求实现供电方和用户之间的交互,构建多向电力流,它主要由能量管理系统和配电管理系统组成。其中能量管理系统提供整个电网的实时状态信息,并根据实时信息选择最优发电方案,减少输电损耗,维护系统可靠性以确保供电稳定;配电管理系统提供配电网络的实时状态信息,允许供电方远程控制断电的隔离与恢复,管理可再生能源发电。

2.2.2 降低损耗:智能电网能够基于“能量互联网”中的实时信息,根据用户的需求来供电,通过电压控制来降低电力损耗。同时还可以沿输电线放置传感器和电容器,通过无功负载控制来减少电力损耗。减少电力损耗的同时还会降低二氧化碳的排放量,使电网系统更加低碳环保。

2.2.3 融入可再生能源发电:目前可再生能源发电的最大缺点在于可变性过大,产电不稳定。智能电网能够通过储电技术,在产电过剩时将多余电能存储起来,在供不应求时再通过智能电网的自动化技术供能,进而解决可再生能源产电不稳定的问题。

2.2.4 减少输电阻塞:智能电网能够检测输电线的实时度数,在可能发生输电阻塞时,传感器和控制器会及时地重新安排电力输送线路,使得电力能够最大限度地流过线路而不发生阻塞。

2.2.5 分布式发电:通过智能电网的双向电力流,用户自行通过太阳能、风能等可再生能源产生的电力可以出售给供电方,流入配电网络中,使电网系统在用电高峰期可以为用户提供更稳定的供电服务。

2.2.6 自愈:智能电网能够基于实时测量的概率风险评估确定最有可能失败的设备、发电厂和线路,及时进行隔离和恢复,从而减少大面积用电故障的出现。同时,智能电网还能实时分析电网的整体健康水平,及时触发可能导致电网故障发展的早期预警,并根据具体情况确定是否立即进行检查或采取相应措施。

2.2.7 用户需求管理:智能电网能够通过智能电表实时通知用户其电力消费成本、实时电价、电网的状况、计划停电信息等信息,使用户可以根据这些信息制定自己的电力使用方案,继而通过影响用户需求来促进电力供求平衡。

2.3 智能电网的相关技术

智能电网的关键基础技术主要包括集成的通信技术、先进的传感和测量技术、先进的电网设备技术、先进的控制技术以及决策支持和可视化技术。

3 计算机科学在智能电网中的应用

在电网智能化的过程中,计算机是必不可少的。而计算机科学在智能电网中也有诸多应用,其中云计算、数字图像处理、数据挖掘、人工智能和软件工程这些计算机科学相关技术在智能电网中尤为重要。

3.1 云计算

云计算是分布式计算的一种特殊形式,根据美国国家标准与技术研究院的定义,云计算可以实现随时随地、便捷、按需地从可配置计算资源共享池中获取所需的资源,资源可以快速供给和释放,使管理的工作和服务提供者的介入降低至最少。

云计算技术能够整合优化电网系统中的各种异构资源,如电力系统中的监控维护资源、配电管理资源和市场运营资源等。利用云计算支持广泛企业计算和普适性强的特点,能够构建更加高效的智能电网数据中心,实现基础设施资源的自动化管理。例如利用Google的Borg能够使大量服务器协调工作,继而实现大规模系统的可靠性管理。

而智能电网信息系统所产生的大量数据,更需要通过云计算来实现分布式存储和管理。利用云计算来实现海量数据的分布式存储,可以通过冗余存储和高可靠性软件来提高数据的可靠性,并能较好地达到成本、可靠性和性能的最佳平衡。例如利用Google的GFS文件系统可以实现数据的冗余存储,并大幅度降低主服务器的负担,使系统IO高度并行工作,从而提高系统的整体性能。智能电网所产生的数据种类众多,而云计算的数据管理技术能够较好地满足智能电网信息平台数据种类繁多的海量服务请求,因此云计算能够高效地管理智能电网信息平台中的多元数据。例如,利用Google的BigTable,通过一个巨大的分布式多维数据表,将数据都作为对象,并通过关键字、列关键字和时间戳来进行索引,满足各类数据的性能要求,进而实现多元数据的高效管理。

为了保证电网系统运行的安全稳定,智能电网需要通过大规模的电力系统计算来监控整个电网系统的运行状态,如暂态稳定计算、故障计算、拓扑分析、数据挖掘与智能决策等,计算量极大,而云计算可以为智能电网提供高性能的并行计算与分析服务。例如利用Google的MapRduce,可实现针对大规模数据集的并行计算。

3.2 数字图像处理

数字图像处理是指通过计算机对图像进行去噪、增强、复原、分割以及提取特征等处理,从而改善图示信息,以便人们解释或机器自动理解。

在智能电网系统所产生的海量数据中有不少的数据都是图像数据,例如对输电线路状态的远程监测常常通过线路图像/视频监控系统来实现。为了能够实现对输电线路状态全天候全方位的实时监控,采用智能化和自动化的手段来代替人工是必然的趋势。但原始图像中包含的噪声太多了,价值密度低,难以用于智能识别。在这种情况下,可以通过数字图像处理中的灰度变换、直方图修正、小波包去噪、图像锐化以及边缘检测等处理方式来增强图像对比度,去除噪声,加强图像的轮廓特征,以便于特征的提取和识别,进而产生价值密度较高的特征数据集,为输电线路状态的智能识别过程做好图像数据的预处理。

3.3 数据挖掘

数据挖掘是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘的方法包括分类、聚类、关联分析、预测等。

由于智能电网系统中的数据具有数据量巨大、数据类型繁多、价值密度低以及处理速度快的特点,智能电网系统中的数据属于无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的“大数据”,需要通过数据挖掘来提取其中隐含的有价值的信息,从而实现对整个电网系统多角度、多层次的精确感知。例如,通过对长期的、大量的用户用电数据进行数据挖掘,对不同地区以及不同用户进行分类,可以得到有助于优化配电调度的信息,并能为电费定价调整提供参考;由于在当今社会中各行业的发展都离不开能源的使用,因此对用电数据进行挖掘甚至还可以归纳总结出各种指标增长率与社会用电情况的一般规律,便于政府了解和预测社会各行业发展状况及用能情况,为政府决策提供参考。而通过对长期的、大量的电动汽车充电数据进行数据挖掘,可以为充电站的布点提供参考。通过对长期的、大量的可再生能源发电情况进行数据挖掘,有利于降低可再生能源产电不稳定对供电网络的影响,进而更好地融入可再生能源发电。此外,数据挖掘还有利于用户能效的分析管理、业务拓展分析、供电舆情监测预警分析、电力系统的故障预测和状态检修、短期电网负荷预测、城市电网规划等。智能电网系统的数据特性表明了数据挖掘在智能电网中有着广泛的应用。

3.4 人工智能

根据著名人工智能科学家Michael R.Genesereth和Nils J.Nilsson在1987年提出的定义,人工智能是研究智能行为的科学,它的最终目的是建立关于自然智能实体行为的理论和指导创造具有智能行为的人工制品。人工智能是一门研究如何将人的智能转化为机器智能或者用机器来模拟或实现人的智能的学科。

数据挖掘在智能电网中有着广泛的应用,而数据挖掘需要人工智能技术来提供数据分析的技术支持,因此人工智能在智能电网中也有着十分重要的应用。例如,通过构建人工神经网络来对经过数字图像处理所得的典型线路状态的监控图像特征数据集进行训练识别来实现输电线路状态的智能识别。除了故障诊断外,人工神经网络还可应用于智能控制、继电保护、优化运算等

方面。

除了为数据挖掘提供数据分析的技术支持外,人工智能还可以通过人类专家提供的经验和知识来构建相应的专家系统,如电网故障诊断和调度处理专家系统和操作票专家系统等,模拟人类专家解决问题的过程来进行决策,从而实现电网自动化和智能化。

而采用遗传算法、粒子群算法等进化算法求解诸如发电厂和输电线架设的规划问题以及电力系统中各种控制参数的最优解等问题或利用模糊集理论来处理电力系统中难以实现精确控制的复杂问题,也是人工智能在智能电网中的重要应用。

3.5 软件工程

根据Fritz Bauer在NATO会议上给出的定义,软件工程是建立和使用一套合理的工程原则,以便获得经济的软件,这种软件是可靠的,可以在实际机器上高效的

运行。

为了便于管理和使用,无论是供电管理方还是用户方都会希望通过一个稳定可靠,功能完备,并具有友好人机界面的软件来方便操作。因此在建设智能电网的过程中势必需要开发相应的软件,软件工程便应用于其中。尤其是对用户端而言,在移动设备使用越来越广泛的今天,开发相应的移动端的APP无疑能够更好地促进用户参与到交互过程中。一个针对用户个体,能够实时显示如电力消费成本、实时电价、电网状况、计划停电信息等的智能电表提示信息,结合数字家庭技术,能够远程控制家电开关以便于用户随时随地调整自己的用电情况,并整合线上业务申请、缴纳电费等功能的APP能够极大程度地减轻用户的操作负担,方便用户的使用,使智能电网更加高效智能。

4 结语

计算机科学在智能电网中的广泛应用使电力行业在信息化时代中能够更好地应对各种新挑战,为整个社会的发展带来深远的影响。

参考文献

[1] 肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9).

[2] 李乃湖,倪以信,孙舒捷,等.智能电网及其关键技术综述[J].南方电网技术,2010,4(3).

[3] 杨德昌,李勇,C.Rehtanz,等.中国式智能电网的构成和发展规划研究[J].电网技术,2009,33(20).

[4] 王德文,宋亚奇,朱永利.基于云计算的智能电网信息平台[J].电力系统自动化,2010,34(22).

[5] 彭小圣,邓迪元,程时杰,等.面向智能电网应用的电力大数据关键技术[J].中国电机工程学报,2015,35(3).

[6] 宋亚奇,周国亮,朱永利.智能电网大数据处理技术现状与挑战[J].电网技术,2013,37(4).

[7] 张东霞,苗新,刘丽萍,等.智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1).

[8] 金华,王民,昝涛,等.基于数字图像处理的输电线路状态智能识别技术[J].微计算机信息,2012,28(4).

[9] 韩祯祥,文福拴,张琦.人工智能在电力系统中的应用[J].电力系统自动化,2000,24(2).

[10] 杨勇.人工神经网络在电力系统中的应用与展望[J].电力系统及其自动化学报,2001,13(1).

[11] 王振江,盛肆清,顾雪平.专家系统及其在电力系统中的应用[J].西北电力技术,2000,(5).

[12] 朱福喜.人工智能基础教程(第二版)[M].北京:清华大学出版社,2011.

(责任编辑:蒋建华)

猜你喜欢

数据挖掘电网人工智能
穿越电网
人工智能与就业
基于并行计算的大数据挖掘在电网中的应用
电网也有春天
一种基于Hadoop的大数据挖掘云服务及应用
一个电网人的环保路
电网环保知多少
基于GPGPU的离散数据挖掘研究