动量守恒和机械能守恒的比较及应用
2016-05-30许海俊
许海俊
动量守恒定律和机械能守恒定律都是高中物理中的重点和难点,它们的综合应用是近年高考压轴题所考查的重要知识点.认清两守恒定律的相似之处和不同点,才能更好地掌握两定律,以便在解题时能灵活运用.
一、两守恒定律的比较
1.相似之处
(1)两个定律都是用“守恒量”表示自然界的变化规律,研究对象均为物体系.应用“守恒量”表示物体系运动状态变化规律是物理研究中的重要方面.我们学习物理,就要学会用守恒定律处理问题.
(2)两个守恒定律均是在一定条件下才成立,它们都是用运动前、后两个状态的守恒量的相等来表示物体系的规律特征的,因此,它们的表达式是相似的,且它们的表达式均有多种形式.
(3)运用守恒定律解题都要注意其系统性(不是其中一个物体)、相对性(表达式的速度和其他有关物理量必须对同一参考系)、同时性(物体系内各物体的动量和机械能都是同一时刻的)、阶段性(满足条件后,各过程的始末守恒).求解问题时,都只需考虑运动的初状态和末状态,而不必考虑两个状态之间的过程细节.
(4)两个定律都可用实验加以验证,都可用理论进行论证.动量守恒定律是将动量定理用于相互作用的物体,在物体系不受外力的条件下推导出来的;机械能守恒定律是将动能定理用于物体系(物体和地球组成的系统),在只有重力做功的条件下推导而成的.
2.不同之处
(1)守恒量不同.动量守恒定律的守恒量是动量,机械能守恒定律的守恒量是机械能,因此,它们所表征的守恒规律是有本质区别的,动量守恒时,机械能可能守恒,也可能不守恒;反之亦然.
(2)守恒条件不同.动量守恒定律的适用条件是系统不受外力(或某一方向系统不受外力),或系统所受的合外力等于零,或者系统所受的合外力远小于系统之间的内力.机械能守恒定律适用的条件是只有重力或弹力做功;或者只有重力或弹力做功,受其他力,但其他力不做功.
(3)表达式不同.动量守恒定律的表达式是矢量式,不论是m1v1+m2v2=m1v1′+m2v2′,还是p1+p2=p1′+p2′,或者Δp1=-Δp2均是矢量式,对于在一直线上运动的物体系,只要规定正方向,动量守恒定律可表示为代数式.机械能守恒定律的表达式为标量式,一般它表示为Ek1+EP1=Ek2+EP2,或ΔEP=-ΔEK;或者ΔEa=-ΔEb(将系统分成a、b两部分来研究).二、两守恒定律的应用 要正确解答物理问题,就须先对题目所提供的物理情景、物理过程进行认真细致的分析.只要过程分析正确了,解题就是水到渠成、顺理成章的事——应用有关的公式、定理、定律等进行运算.因此在解答习题中应将“重心”放在分析物理过程上.下面通过分析三个例子来说明两守恒定律的应用.
例1如图1所示,用长为l的轻细绳拴住一个质量为m的小球后,另一端固定在O点,将绳拉直后,将小球分别从位置Ⅰ、Ⅱ、Ⅲ由静止开始释放,求小球经过最低点时的速度及绳对小球的拉力.
图1讲析在运用机械能守恒定律解决问题时,关键是判断机械能是否守恒,根本依据是过程中物体受力情况及各力做功情况.
本题中,当小球分别从Ⅰ、Ⅱ释放后,绳就对小球有拉力作用,运动过程中小球只受重力和绳的拉力作用,但绳的拉力对小球不做功,只有重力做功,故过程中小球的机械能守恒.先用机械能守恒定律求出小球经过最低点的速度,再根据牛顿第二定律可求出绳在最低点的拉力.
如果认为小球从位置Ⅲ开始运动,机械能还守恒就大错特错了.小球从位置Ⅲ开始下落后,在一段时间内,绳对小球没有作用力(这时绳没有被拉直),小球做自由落体运动!(需要注意临界条件,从Ⅱ位置以下的各位置开始运动,机械能均守恒,从Ⅱ位置以上的各位置开始运动,出现了新情况,这时要认真研究因量变而发生质变的新情况)待小球下落了一个l长后,即小球到达位置Ⅰ时,绳开始对小球有作用力.所以,要注意临界条件往往会因量变而引起质变.在小球刚落至位置Ⅰ时,速度方向为竖直向下,大小为2gl (根据自由落体运动的公式v2t=2gl可得).由于绳的拉力作用,同时绳不可伸长,小球其后的运动,只能是圆周运动.这意味着其后不可能保留沿绳方向的速度,但这一速度在刚到达Ⅰ是存在的.这一项分速度的大小为122gl(根据速度分解如图1中所示,沿绳方向的分速度为vtcos60°=122gl),这一速度在绳拉力作用下迅速减为零.因此小球开始做圆周运动时的速度不是2gl,而是322gl
(垂直于绳方向的分速度为vtsin60°=322gl).换言之,小球在这一极短时间内,机械能有了损失.当小球从Ⅰ再运动至最低点时,机械能重新守恒.同样应用机械能守恒定律和牛顿第二定律可求出小球运动至最低点的速度及受到的拉力.(附答案:v1=gl,v2=2gl,v3=52gl,F1=2mg,F2=3mg,F3=3.5mg)
图2例2质量为M的斜劈A放在水平地面上,斜劈的斜面顶端放上一个质量为m的滑块B,如图2所示,当滑块从顶端滑向底端的过程中,如果不计一切摩擦,斜劈与滑块组成的系统动量是否守恒?
讲析本题研究对象是A和B组成的系统.在B沿A的斜面下滑时,系统所受的外力为A与B的重力及地面对A的支持力.有的学生在分析这个过程时,认为A与B的重力及地面对A的支持力相互平衡,因而系统所受合外力为零,进而合外力的冲量为零,所以系统的动量守恒,这种判断是缺乏根据的.当滑块B沿斜面下滑时是加速下滑,这时将发生失重现象.因此,水平地面对A的支持力将小于A与B的重力,系统所受合外力并不为零,系统的动量并不守恒!
应该看到,动量守恒定律反映的是矢量间的关系.当系统所受合外力不为零,系统的动量不守恒,但这时并不防碍在垂直于合外力的方向上的冲量为零,在这一特定的方向上动量是守恒的.在本题中,重力也好,支持力也罢,均为竖直方向上的外力.在水平方向上,系统是不受外力的,因此,系统在水平方向上的动量是守恒的.当B沿斜面下滑时,因A、B之间的弹力作用(此为内力),A将沿水平方向运动,A、B在水平方向的动量始终守恒.B在竖直方向的动量一直增加,系统在竖直方向的动量一直增加,并不守恒.所以,从总体上说,动量并不守恒,但在水平方向上动量是守恒的.
可见,今后在处理问题时,应该注意区分系统的动量守恒及系统在某个方向的动量守恒.图3例3如图3所示,质量为M的摆被两根长为l的轻细绳悬挂起来.一颗质量为m的子弹,以一定的速度水平射人摆内,并留在摆中,摆与子弹摆过的最大角为θ,求子弹的速度.
讲析在子弹射人摆的过程中,子弹与摆之间存在相互作用.这种作用既改变了子弹的动量也改变了摆的动量.实际上,这一作用时间是很短的,对于在这一极短时间内摆的运动可以忽略不计,因此,子弹与摆组成的系统在水平方向所受外力的冲量忽略不计,系统在水平方向的动量守恒.这一过程的最终结果是子弹与摆具有相同速度.但在这一过程中,系统的机械能不守恒,因为此过程中子弹克服巨大阻力做功,大量的机械能转化为内能.在子弹与摆以相同速度摆动过程中,系统所受外力为重力及绳拉力,但只有重力做功,拉力不做功,系统的动能转化为重力势能,机械能守恒.在这个过程中,因绳拉力的冲量作用,系统总动量减少,系统的动量不守恒.
前一阶段(子弹打入摆的过程),系统动量守恒而机械能不守恒;后一阶段(摆与子弹摆动过程)又发生了相反的情况,系统的机械能守恒而动量不再守恒.这种结果并不奇怪,是由于这两个守恒定律有着不同的守恒条件.
清楚了系统中物体的运动过程及其所遵循的规律,运用相应的定律就可解出.答案:v0=m+Mm2gl(1-cosθ)