APP下载

细菌纤维素的生物合成与发酵研究进展

2016-05-30陈华美刘四新李从发

热带作物学报 2016年8期
关键词:发酵研究进展

陈华美 刘四新 李从发

摘 要 细菌纤维素是一种由微生物合成的新型纳米材料,具有化学纯度高、持水性好、杨氏模量高、良好的生物相容性和可降解性等特性,广泛应用于食品、医疗、化工等领域。但发酵工艺落后、产量低、生产成本高一直是限制其应用于高附加值产品生产的瓶颈。本文概述纤维素产生菌及分离改良、发酵培养基优化、发酵条件对纤维素合成和产量的影响,以及发酵方式对BC产量和性能影响等方面的研究进展,并对BC在生产中的不足和未来应用前景进行展望,为开展更深入的研究和实际生产提供一定借鉴。

关键词 细菌纤维素;生物合成;发酵;研究进展

中图分类号 O636.11 文献标识码 A

Abstract Bacterial cellulose(BC)is a new type of nano material synthesized by some microorganisms, with high chemical purity, good water holding capacity, high Youngs modulus, good biocompatibility and biodegradability and so on, widely used in food, medical, chemical and other fields. But the backward fermentation technology, low the yield of BC and high production costs have been to limit its application in the production of high value-added products. The research progress of bacteria producing cellulose and isolation, improved strains, optimization of fermentation culture medium, the influence of fermentation conditions on cellulose synthesis and yield, and the effect of fermentation on the yield and properties of BC were summarized, and the shortage of BC in production and its application prospect in the future are forecasted, which will provide some references for the further research and practical production.

Key words Bacterial cellulose; Biosynthesis; Fermentation; Advances

doi 10.3969/j.issn.1000-2561.2016.08.031

细菌纤维素(Bacterial cellulose,BC),是一种由微生物产生的高纯度三维网状多聚物。因其持水性好、杨氏模量高[1],被广泛应用于食品、化妆品、造纸、音响和光学等方面[2-7]。改良后的BC具有无毒、亲水性强[8]、吸附性好、生物可降解性[9]等特性,应用于医疗行业。研究发现,其在脚手架组织和替代皮肤组织(如软骨、骨软组织血管和角膜)等方面应用时,可吸收药物并控制释放[10-11]。因其流变学特性,可形成水凝胶,广泛用于食品工业,称为Nata,可作为甜点[12];食物和饮料中,作增稠剂、稳定剂和纹理改良剂控制多功能食品的性质[13];还因可食性和生物降解特性,BC可用作食品包装材料[14]。并且高强度纸制品、声音振动膜、人工皮肤、创口贴、绷带、纱布、面膜、贡丸等BC产品已经用于商品化生产,在其他许多方面也具有广泛的商业化应用潜力。其生产不依赖于地理气候条件,控制生产要素就能提高产率;其纯度高,不含木质素或其他污染物,可避免净化的能耗[15];可通过改良菌株的基因来生产具有所需特性的纤维素;农业和工业废物可以用作培养原料以节约经济成本。然而,产量低、成本高,仍是BC实现生产规模化、产业化的一个瓶颈。

基于此现状,将BC合成及发酵方面的研究报道进行分析,拟通过从BC的产生菌及分离改良、发酵培养基优化、发酵条件对BC合成和产量影响以及发酵方式对BC产量和性能影响等方面进行综述,旨在为开展更进一步的研究做好铺垫,为实际生产提供一定借鉴。

1 细菌纤维素的产生菌

早在1886年,英国科学家Brown就发现,酸醋杆菌静置培养时,发酵液的气-液表面会形成一层白色的凝胶状薄膜,经化学分析,确定其成分是纤维素[16-17]。随后,许多微生物被报道能产BC,主要涉及醋杆菌属(Acetobacter)、土壤杆菌属(Agrobaeterium)、无色杆菌属(Achromobacrer)、沙门氏菌属(Salmonella)、肠杆菌属(Enterobacter)、埃希氏菌属(Escherichia)、假单胞菌属(Pseudomonas)、葡糖醋杆菌属(Glucoacetobacter)、驹形氏杆菌属(Komagataeibacter)等17个属[18-20],以驹形氏杆菌属的报道最多,也最深入[21-22]。截止目前,已报道该属中有纤维素合成能力的菌种14个[23],如K. xylinus、K. nataicola、K. rhaeticus、K. europaeus、K. swingsii、K. hansenii等[24-25]。其中,K. xylinus是最早作为BC合成机理、代谢调控等理论研究的模式菌种,也是商业化生产和应用开发最常用的菌种[26]。

2 菌种的分离和改良

尽管能够产BC的种属和菌株很多,但自身合成BC能力差异很大,总体来说产BC的能力不高,远不能满足实际生产应用的需要。目前,对K. xylinus的研究比较全面,但一般的菌株产量较低、多次传代后极易衰退而且生产性能不稳定。因此,选育稳定高产的BC产生菌株非常有必要。现主要从筛选野生稳定高产菌株、物理化学生物等方法诱变育种、基因工程法改良育种三方面研究,以获得既能满足生产需要又能降低生产成本的优良菌株。

2.1 野生高产菌株的分离

BC的产生菌株主要从天然资源中分离得到,然后通过传统的驯化方法将其改良。Kim等[27]从果蔬、酸菜、酸米酒以及菜园土等150个样品中分离到26株,其中醋酸杆菌属(Acetobacter pasteutinus subsp. xylinum)产量最高可达14 g/L,还有一株A. hansenii的BC产量更高(16 g/L)。周伶俐等[28]从残次水果中筛选出A. xylinum NUST4通过紫外灯照射的物理方法诱变育种,不但产量高(静态产量为10.99 g/L)而且生产性能稳定。

另一些学者从传统生产中分离出产BC的菌株。冯劲等[29]从红茶菌液里筛选出一株BC产生菌株,经鉴定是中间葡糖酸醋杆菌(G. intermedius),产生纤维素I型晶体,其纯度达91.32%,湿膜含水率达99.16%,每克干膜能吸28.59 g水。苏俊霞等[30]在传统固态发酵食醋醋醅中分离得到5株产BC的菌株,经鉴定均属于G. intermedius,只有一株BC产量较高,通过对其培养条件(温度、培养时间、碳源、初始pH)优化,BC的产量可从3.90 g/L增加至7.90 g/L。王雪奇等[31]从黄酒和市售红茶菌中筛选和鉴定,得到2株产BC的菌株,在其最适生长pH(4~5、5~6)时,BC产量分别是2.0和1.7 g/L。

2.2 菌株的改良

自然界中筛选的菌株,往往产BC能力较差,为获得稳定高产的菌株,通常采用一系列传统手段及基因工程方法对其进行改良。

2.2.1 传统方法改良 对于纤维素生产菌株而言,现已报道的传统改良方法主要有物理、化学等三方面诱变育种。

物理:摇瓶培养时,通常使纤维素合成阴性菌株(Cel-)产生致BC产量减少;换回静态培养时,突变体产BC的能力亦可恢复[32]。Ayd1n等[33]发现,搅拌型反应器中能产生突变体,其BC产率和产量增加到3.25 g/L和17.20%。静水高压处理也可得到突变体[34],Feng等[35]用该法将G. hansenii产BC的量增加到7.02 g/L。另外,研究紫外线诱变的学者也比较多,但通常将其与化学试剂进行复合诱变。Hungund等[36]用紫外辐射和甲基磺酸乙酯(EMS)对G. xylinus NCIM 2526进行改良,经紫外辐射后获得3株BC产量较高的突变体,其中GHUV4产量最高(3.92 g/L),比野生型提高了30%;对其进行甲基磺酸乙酯(EMS)处理,得到的突变体(GHEM4)产BC的量(5.96 g/L)比亲本和野生型产量分别多50%、98%。

化学:用亚硝基胍(NTG)、硫酸二乙酯(DS)、甲基磺酸乙酯(EMS)等化学物质对BC产生菌进行诱变。Premjet等[37]将野生型菌体(NU4)经亚硝基胍诱变得到突变体(NU4-NTG30-51),BC产量分别是对照菌(A. xylinum ATCC 10245)和亲本菌株的54.68%和43.69%;再将NU4-NTG30-51进行紫外诱变得到突变体(NU4-UV40-07),产量分别是其50.59%和39.60%,且后者的结晶度比前者低。邓毛程等[38]将紫外线和硫酸二乙酯对木葡糖酸醋杆菌进行复合诱变,得到一株遗传性稳定的突变菌株,BC产量达15.6 g/L,比亲本菌株产量提高44.4%。

2.2.2 基因工程法改良 Deng等[39]利用Tn5转座子对G. hansenii ATCC 23769进行插入突变研究,得到6个不产纤维素的突变菌株。同时,可利用转座子对细菌的一些代谢旁路进行突变,比如葡萄糖酸和Acetan的代谢途径等,这也有效提高BC产量的方法。Kuo等[40]敲出K. xylinus体中的葡萄糖脱氢酶(GDH)基因获得不产葡萄糖酸的突变体,以增加BC的产量。John等[41]在K. hansenii细胞内提取异源二聚体-acsb ACSA,蛋白经纯化、翻译后加工,形成活性异源二聚体-acsb ACSA。最后经诱变作用,研究CSC酶 AcsC、AcsD和CcAx三个亚基的作用。但目前用基因工程法改良纤维素产生菌还未获得真正的基因构建菌[42-43]。

3 发酵培养基的优化

培养基类型和组成对微生物生长和代谢产物的积累影响很大。对于BC生产,不同菌株的营养要求不尽相同,但对已经或能够用于BC大规模生产的菌种而言,有一些基本的规律可寻。

3.1 碳源优化

BC的合成是一个受多种酶共同调控、耗能的复杂代谢途径,培养基组成的不同对生产菌株生长、BC合成、副产物积累有较大影响。由于碳源直接影响BC的合成,因此研究报道较多。

Chao等[44]考察了A. xylinum BPR2001在不同浓度果糖中合成BC的能力,得到果糖浓度60~70 g/L时,合成BC的产量最高,达10.4 g/L。Mckenna等[45]用葡萄糖、甘露醇、甘油、果糖、蔗糖、半乳糖充当HS培养基中的碳源培养G. xylinus ATCC 53524发现,其较偏爱于蔗糖和甘油,产量分别可达3.83和3.75 g/L。同时还发现,碳源种类不能影响BC的结构特性。Mohammadkazemi等[46]利用糖浆、葡萄糖、蔗糖、食品级蔗糖等替换掉HS、Yamanaka(Y)、Zhou(Z)三种培养基中的碳源,发现糖浆和食品级蔗糖不适合K. xylinus PTCC 1734生长,且合成BC的量也较差。同时,Dayal[47]、Santos[48]、Liu[49]等也对培养基的组成进行了报道。

实际生产中,单一碳源或培养基糖转换率低、生产成本较高。因此,不少学者还对寻找廉价的原料作为BC的生产培养基进行研究,如使用农业[50-51]和工业废物[52-53]为原料,其中玉米浆[54-55]、糖蜜[56-58]、醋[59-60]、果皮[61-62]、果汁[63-64]、小麦秸秆酸水解[65]和玉米芯水解液[66]已报道。Algar等[67]使用工业菠萝残渣来发酵G. medellinensis产BC。Gomes等[68]使用橄榄油残渣来培养G. sacchari。Huang等先后利用脂质废水[69]、玉米芯酸水解液[66]培养K. xylinus CH001,Bilgi使用工业角豆和扁豆废液培养K. xylinus产BC[70]。

3.2 氮源

菌株的生长需要特定的氮源以满足菌体繁殖对核苷酸、氨基酸等的需求。酵母提取物和蛋白胨是BC生产中最常用的氮源,因为他们能够为生产菌株提供氮源和生长因子。因其成本较高,由此一些学者正努力寻找合适的替代物。Noro等[71]发现玉米浆(Corn steep liquor,CSL)是最有效的培养基,并在CSL中添加乳酸和蛋氨酸效果会更好,CSL可以对pH有缓冲作用,可将生产过程中pH控制在最佳范围。Jung等[72]利用糖蜜做碳源和玉米浆做氮源来生产BC。与HS培养基相比,BC产量从1.53 g/L提高至3.12 g/L。李飞等[55]将玉米浆作氮源时,BC的产量为9.2 g/L,其成本只是对照组的15%。

3.3 生长因子

除碳源、氮源等主要营养成分外,生长因子对BC合成也有较大影响。

早在1980年,Gosselé等[73]就对95株Gluconobacter sp.所需生长因子的状况进行了调查,表明有58%只缺泛酸,28%缺泛酸和烟酸,6%的菌株除了缺泛酸和烟酸外,还缺维生素B1。一些成分如胆碱衍生物、甜菜碱、脂肪酸(盐和酯类)以及一些氨基酸如蛋氨酸、谷氨酸等会影响菌株产BC的能力[74]。Lin等[75]用啤酒废酵母液考察K. hansenii CGMCC 3917生产纤维素的能力。常冬妹等[76]研究不同浓度烟酸和生物素对A. xylinum静态培养产BC的影响,发现加烟酸浓度为1 mg/L时,产BC的量为2.842 g/L,是对照的1.88倍;而添加25 mg/L的生物素,BC产量(3.118 g/L)为对照的2.06倍。

3.4 金属离子

Christen和Julien等[77-78]指出,金属离子对BC的合成有也影响。Mg2+可以促进二鸟苷酸环化酶活性,间接影响纤维素合酶的活性。磷酸二酯酶催化c-di-GMP分解为pGpG的反应,Mg2+、Mn2+和Co2+可以促进其催化活性,但Ca2+、Fe2+和Ni+起抑制作用,间接影响纤维素合酶的活性。此外,细菌细胞的新陈代谢还取决于对氧的利用,氧气、二氧化碳分压同样会影响BC产率[79],因此,培养过程中通气很重要[80]。

3.5 其他添加物

除原料外,不少学者还探索通过在培养基中添加其它物质来增加BC产量,如乙醇[81-82],VC[83]、有机酸[74]、水溶性多糖[72]和木素磺酸盐[84]等。其中,以添加乙醇的研究最多、促进效果也明显。乙醇可以从多方面影响BC生物合成,可为连续发酵合成BC过程中提供能量[85];还可抑制磷酸转乙酰酶活性,使碳流经TCA循环通量和Pta-Ack途径流量减少[86]。Keshka等[83]报道了VC对4株G. xylinus产BC的量和晶体结构的影响。因VC具有抗氧化性,可降低菌株产葡萄糖酸的能力,因此当其浓度为0.5%(w/w)时所有菌株产BC的量都增加,平均为0.016 g/mL,是对照组的2倍。

4 发酵条件对纤维素合成和产量的影响

培养基的初始pH值、温度、氧浓度[87]、菌种状态(种龄、接种量等)及转速等发酵参数都能影响BC产量和结构性质。Jagannath等[88]指出,以椰子水为原料静态发酵产BC时pH对其厚度有影响。pH3.5时,即使培养20 d也无明显的BC膜出现;pH4.0时,可得最大厚度10.2 mm的BC膜。同时,许多研究报道表明,菌株产BC的最适温度范围为28~30 ℃,其不仅影响BC产量,还对BC性质(聚合度和亲水能力)有影响。30 ℃条件下的BC比25 ℃和35 ℃的聚合度低(约10 000)和亲水能力高(约164%)。

种子液培养条件应与BC生产发酵相对应,若用静态发酵方式生产,二级种子通过静态培养获得,而动态发酵方式生产BC,二级种子相应为动态培养。Hu等[89]研究了不同转速对A. xylinum JCM 9730(ATCC 700178)对产BC形貌的影响。150 mL的三角瓶盛100 mL HS培养基,当转速为150 r/min时,能产生球形BC颗粒,直径大小为10 mm;转速为200 r/min时,产生的颗粒直径大小为7~8 mm。

5 发酵方式对纤维素产量和性能的影响

BC的培养方式主要有静置法和动态法(摇瓶、搅拌或者气升式),各具特色。静置培养能更好地保持BC的正常形态[90],能产出均匀光滑的BC产品。这种方法需要更多的生产空间和劳动力,规模化生产成本高。动态培养主要有振荡器、摇床、搅拌式发酵罐和气升式发酵罐等,产生BC的形貌差异较大,有丝状、球形、星状、絮状或团块状等。但搅拌时需空间和劳动力少,因此减少了工业生产成本。然而,一些传统的方法如震动玻璃瓶和搅拌棒的利用,可以诱导产突变菌株,使BC产量降低[91]。同时,BC产品易吸附于反应器的轴上,使其很难收集,并且不易清理[92]。为缓解此问题,近日,一些学者在动态培养条件下探索设计更有效的BC生产反应器,其中,以球泡罩塔型生物反应器[93]、气升式反应器[94]和改良后气升式反应器罐[87]尤为著名。Cheng等[92]使用羧甲基纤维素(CMC)塑料复合生物膜反应器用于BC生产,以便随时采样和连续生产。

另一方面,有的反应装置可在“相对静止”条件下发酵生产片状和膜状的BC,如旋转圆盘反应器、旋转生物膜反应器、气溶胶生物反应器、膜生物反应器和水平式提升反应器[95]。相比于传统静态发酵,使用旋转圆盘反应器可以提高BC产率。事实上,据Kim等[96]报道,使用旋转下生物膜接触器优化培养条件,BC产量可以达到6.17 g/L。虽然使用气溶胶生物反应器生产BC的聚合度(DP)较低,但可改善其膜学性能[97]。Kralisch等[98]利用水平提升反应器(HoLiR)生产BC,尽管不能使其产量增加较多,仍然在5~15 g/L,但可生产有效控制长度和可调厚度的平面纤维素薄膜。尽管如此,进一步增加BC产量和降低商业化大规模生产成本,是一项具有挑战性的目标。

6 展望

虽然BC在食品、医疗、化工等领域的应用前景十分看好,但尚未充分利用。目前还有许多困难需要克服:(1)产量和品质的进一步提高,商业化规模生产成本的降低;(2)探索新的方法和技术,如高静水压技术、分子结构,扩大其生产应用。因此,进一步选育或构建纤维素高产菌株、优化培养基组成、改善发酵条件、设计高效的BC生产反应器以提高BC的产率、增加底物转化率及BC的生物降解性和安全性,仍是未来研究工作的方向。

参考文献

[1] Ashori A, Sheykhnazari S, Tabarsa T, et al. Bacterial cellulose/silica nanocomposites: Preparation and characterization[J]. Carbohydrate Polymers, 2012, 90(1): 413-418.

[2] Goncalves S, Padrao J, Rodrigues I P, et al. Bacterial cellulose as a support for the growth of retinal pigment epithelium[J]. Biomacromolecules, 2015, 16(4): 1 341-1 351.

[3] Kwak M H, Kim J E, Go J, et al. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications[J]. Carbohydrate Polymers, 2015(122): 387-398.

[4] Lee K Y, Buldum G, Mantalaris A, et al. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites[J]. Macromolecular Bioscience, 2014, 14(1): 10-32.

[5] Li Y, Wang S, Huang R, et al. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip[J]. Biomacromolecules, 2015, 16(3): 780-789.

[6] Rajwade J M, Paknikar K M, Kumbhar J V. Applications of bacterial cellulose and its composites in biomedicine[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2 491-2 511.

[7] Xiao C, Fan-shu Y, Heng Z, et al. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials[J]. Journal of Materials Science, 2016, 51(12): 5 573-5 588.

[8] Silva R, Sierakowski M R, Bassani H P, et al. Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft[J]. Int J Biol Macromol, 2016, 86: 599-605.

[9] Jin L, Zeng Z, Kuddannaya S, et al. Biocompatible, free-standing film composed of bacterial cellulose nanofibers-graphene composite[J]. ACS Appl Mater Interfaces, 2016, 8(1): 1 011-1 018.

[10] Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angew Chem Int Ed Engl, 2005, 44(22): 3 358-3 393.

[11] Petersen N, Gatenholm P. Bacterial cellulose-based materials and medical devices: current state and perspectives[J]. Applied Microbiology and Biotechno-logy, 2011, 91(5): 1 277-1 286.

[12] Lin D, Lopez-Sanchez P, Li R, et al. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source[J]. Bioresource Technology, 2014, 151: 113-119.

[13] Paximada P, Tsouko E, Kopsahelis N, et al. Bacterial cellulose as stabilizer of o/w emulsions[J]. Food Hydrocolloids, 2016, 53: 225-232.

[14] Padrao J, Goncalves S, Silva J P, et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging[J]. Food Hydrocolloids, 2016, 58: 126-140.

[15] Nishihara M, Koga Y. Quantitative conversion of diether or tetraether phospholipids to glycerophosphoesters by dealkylation with boron trichloride: a tool for structural analysis of archaebacterial lipids[J]. Journal of Lipid Research, 1988, 29(3): 384-388.

[16] Brown A J. XIX. -The chemical action of pure cultivations of bacterium aceti[J]. Journal of the Chemical Society, Transactions, 1886a, 49: 172-187.

[17] Brown A J. XLIII. -On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society, Transactions, 1886b, 49: 432-439.

[18] Bi J C, Liu S X, Li C F, et al. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture[J]. Journal of Applied Microbiology, 2014, 117(5): 1 305-1 311.

[19] Fujiwara T, Komoda K, Sakurai N, et al. The c-di-GMP recognition mechanism of the PilZ domain of bacterial cellulose synthase subunit A[J]. Biochemical and Biophysical Research Communications, 2013, 431(4): 802-807.

[20] Serra D O, Richter A M, Hengge R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms[J]. Journal of Bacteriology, 2013, 195(24): 5 540-5 554.

[21] Shi Z, Zhang Y, Phillips G O, et al. Utilization of bacterial cellulose in food[J]. Food Hydrocolloids, 2014, 35: 539-545.

[22] Yamada Y, Yukphan P, Lan V H, et al. Description of Komagataeibacter gen. nov. with proposals of new combinations (Acetobacteraceae)[J]. Journal of General & Applied Microbiology, 2012, 58(5): 397-404.

[23] Yamada Y. Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov[J]. Int J Syst Evol Microbiol, 2014, 64(5): 1 670-1 672.

[24] Akasaka N, Ishii Y, Hidese R, et al. Enhanced production of branched-chain amino acids by Gluconacetobacter europaeus with a specific regional deletion in a leucine responsive regulator[J]. Journal of Bioscience and Bioengineering, 2014, 118(6): 607-615.

[25] Mohite B V, Patil S V. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529[J]. Carbohydrate Polymers, 2014, 106: 132-141.

[26] Tanskul S, Amornthatree K, Jaturonlak N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions[J]. Carbohydrate Polymers, 2013, 92(1): 421-428.

[27] Kim S Y, Kim J N, Wee Y J, et al. Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar[J]. Applied Biochemistry and Biotechnology, 2006, 131(1): 705-715.

[28] 周伶俐. 细菌纤维素生产菌的筛选、 发酵及应用的研究[D]. 南京: 南京理工大学, 2008.

[29] 冯 劲, 施庆珊, 冯 静, 等. 一株产细菌纤维素菌株的筛选鉴定及其产物分析[J]. 生物技术通报, 2012(7): 140-145.

[30] 苏俊霞, 陆震鸣, 王宗敏, 等. 产细菌纤维素菌株中间葡糖醋杆菌的分离与发酵条件优化[J]. 食品与生物技术学报, 2015, 34(2): 145-150.

[31] 王雪奇, 应以坚, 金亚倩. 黄酒等食品中产细菌纤维素菌的筛选与鉴定[J]. 轻工科技, 2015(11): 6-8.

[32] Nguyen V T, Flanagan B, Mikkelsen D, et al. Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha[J]. Carbohydrate Polymers, 2010, 80(2): 337-343.

[33] Ayd1n Y A, Aksoy N D. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A[J]. Applied Microbiology and Biotechnology, 2013, 98(3): 1 065-1 075.

[34] Wu R Q, Li Z X, Yang J P, et al. Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain[J]. Cellulose, 2010, 17(2): 399-405.

[35] Feng X, Ullah N, Wang X, et al. Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917[J]. Journal of Food Science, 2015, 80(10): 2 217-2 227.

[36] Hungund B S, Gupta S G. Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production[J]. African Journal of Biotechnology, 2010, 9(32): 5 170-5 172.

[37] Premjet S, Srisawat C, Premjet D. Enhanced cellulose production by ultraviolet(UV)irradiation and N-methyl-N'-nitro-N-nitrosoguanidine(NTG)mutagenesis of an Acetobacter species isolate[J]. African Journal of Biotechnology, 2012, 11(6): 1 433-1 442.

[38] 邓毛程, 李 静, 王 瑶, 等. 细菌纤维素产生菌选育与突变株发酵特性的研究[J]. 食品工业科技, 2015, 36(4): 159-162.

[39] Deng Y, Nagachar N, Xiao C, et al. Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis[J]. Journal of Bacteriology, 2013, 195(22): 5 072-5 083.

[40] Kuo C H, Teng H Y, Lee C K. Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement[J]. Biotechnology and Bioprocess Engineering, 2015, 20(1): 18-25.

[41] John B M, Ying D, Nivedita N, et al. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769[J]. Enzyme and Microbial Technology, 2016, 82: 58-65.

[42] Zhu H, Jia S, Yang H, et al. Establishment on management plan of environmental noise with noise map[J]. Computational Biomechanics Riken Symposium, 2002, 2011, 20(2): 33-44.

[43] 钟 成, 郑欣桐, 朱会霞, 等. 转化条件对木葡糖酸醋杆菌电转化效率影响的研究[C]. 工业生物过程优化与控制研讨会, 2012.

[44] Chao Y, Sugano Y, Shoda M. Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor[J]. Applied Microbiology and Biotechnology, 2001, 55(6): 673-679.

[45] Mckenna B A, Mikkelsen D, Wehr J B, et al. Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524[J]. Cellulose, 2009, 16(6): 1 047-1 055.

[46] Mohammadkazemi F, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media[J]. Carbohydrate Polymers, 2015, 117: 518-523.

[47] Dayal M S, Goswami N, Sahai A, et al. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623[J]. Carbohydrate Polymers, 2013, 94(1): 12-16.

[48] Santos S M, Carbajo J M, Villar J C. The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration[J]. BioResources, 2013, 8(3): 3 630-3 645.

[49] Liu P, Oksman K, Mathew A P. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media[J]. Journal of Colloid and Interface Science, 2016, 464: 175-182.

[50] 贾静静, 杨 颖, 邢建荣, 等. 以柑橘果渣为主要原料生产细菌纤维素的研究[J]. 中国食品学报, 2012, 12(5): 22-28.

[51] 马 霞, 董炎炎, 于海燕. 酒糟浸出液发酵产细菌纤维素工艺优化[J]. 农业工程学报, 2015, 31(8): 302-307.

[52] Tsouko E, Kourmentza C, Ladakis D, et al. Bacterial cellulose production from industrial waste and by-product streams[J]. International Journal of Molecular Sciences, 2015, 16(7): 14 832-14 849.

[53] 郭 香, 张 硕, 唐敬玉, 等. 纸浆废料生物炼制细菌纤维素的研究[J]. 工业微生物, 2015, 45(1): 1-5.

[54] Dayal M S, Catchmark J M. Mechanical and structural property analysis of bacterial cellulose composites[J]. Carbohydrate Polymers, 2016, 144: 447-453.

[55] 李 飞, 陈 琳, 唐晓燕, 等. 以玉米浆和木薯为原料机械搅拌发酵制备细菌纤维素的研究[J]. 工业微生物, 2014, 44(2): 7-13.

[56] Cakar F, Ozer I, Aytekin A O, et al. Improvement production of bacterial cellulose by semi-continuous process in molasses medium[J]. Carbohydrate Polymers, 2014, 106(1): 7-13.

[57] Tyagi N, Suresh S. Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & amp; characterization[J]. Journal of Cleaner Production, 2016, 112: 71-80.

[58] 陈 军, 杨雪霞, 陈 琳, 等. 利用糖蜜制备细菌纤维素的研究[J]. 纤维素科学与技术, 2013, 21(2): 15-21.

[59] Karahan A G, Ako?lu A, ?ak?r ?, et al. Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from Turkish vinegar[J]. Journal of Applied Polymer Science, 2011, 121(3): 1 823-1 831.

[60] Kuo C H, Chen J H, Liou B K, et al. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids, 2016, 53: 98-105.

[61] Kumbhar J V, Rajwade J M, Paknikar K M. Fruit peels support higher yield and superior quality bacterial cellulose production[J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6 677-6 691.

[62] Taokaew S, Nunkaew N, Siripong P, et al. Characteristics and anticancer properties of bacterial cellulose films containing ethanolic extract of mangosteen peel[J]. Journal of Biomaterials Science Polymer Edition, 2014, 25(9): 907-922.

[63] Flávera C P, Juliano D D L, Juliana I, et al. Development and evaluation of a fermented coconut water beverage with potential health benefits[J]. Journal of Functional Foods, 2015, 12: 489-497.

[64] Yang X Y, Huang C, Guo H J, et al. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus[J]. Preparative Biochemistry & Biotechnology, 2016, 46(1): 39-43.

[65] Hong F, Zhu Y X, Yang G, et al. Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(5): 675-680.

[66] Huang C, Guo H J, Xiong L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Carbohydrate Polymers, 2016, 136: 198-202.

[67] Algar I, Fernandes S C M, Mondragon G, et al. Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies[J]. Journal of Applied Polymer Science, 2015, 132(1): 42 137.

[68] Gomes F P, Silva N H C S, Trovatti E, et al. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue[J]. Biomass and Bioenergy, 2013, 55: 205-211.

[69] Huang C, Yang X Y, Xiong L, et al. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus[J]. Letters in Applied Microbiology, 2015, 60(5): 491-496.

[70] Bilgi E, Bayir E, Sendemir-Urkmez A, et al. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean[J]. International Journal of Biological Macromolecules, 2016, http: //dx.doi.org/10.1016/j.ijbiomac.2016.

02.052.

[71] Noro N, Sugano Y, Shoda M. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum[J]. Applied Microbiology and Biotechnology, 2004, 64(2): 199-205.

[72] Jung J Y, Park J K, Chang H N. Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells[J]. Enzyme and Microbial Technology, 2005, 37(3): 347-354.

[73] Gosselé F, Swings J, De Ley J. Growth factor requirements of Gluconobacter[J]. Zentralblatt für Bakteriologie: I Abt Originale C: Allgemeine, angewandte und okologische Mikrobiologie, 1980, 1(4): 348-350.

[74] Lin S-P, Loira Calvar I, Catchmark J, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose, 2013, 20(5): 2 191-2 219.

[75] Lin D, Lopez-Sanchez P, Li R, et al. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source[J]. Bioresource Technology, 2014, 151: 113-119.

[76] 常冬妹, 卢红梅, 陈 莉, 等. 木醋杆菌合成细菌纤维素增效因子的筛选[J]. 中国酿造, 2015, 34(5): 35-39.

[77] Christen B, Christen M, Paul R, et al. Allosteric control of cyclic di-GMP signaling[J]. The Journal of Biological Chemistry, 2006, 281(42): 32 015-32 024.

[78] Julien R P, Sylvie N L, Stéphane R. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG[J]. PloS One, 2012, 7(12): 1-13.

[79] Kouda T, Naritomi T, Yano H, et al. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture[J]. Journal of Fermentation and Bioengineering, 1997, 84(2): 124-127.

[80] Kim S J, Li H X, Oh I K, et al. Effect of viscosity-inducing factors on oxygen transfer in production culture of bacterial cellulose[J]. Korean Journal of Chemical Engineering, 2012, 29(6): 792-797.

[81] Li Y, Tian C, Tian H, et al. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved[J]. Applied Microbiology and Biotechnology, 2012, 96(6): 1 479-1 487.

[82] Takaaki N, Tohru K, Hisato Y, et al. Effect of ethanol on bacterial cellulose production fromfructose in continuous culture[J]. Journal of Fermentation and Bioengineering, 1998, 85(6): 598-603.

[83] Keshk S M. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus[J]. Carbohydrate Polymers, 2014, 99: 98-100.

[84] Keshk S, Sameshima K. Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture[J]. Enzyme and Microbial Technology, 2006, 40(1): 4-8.

[85] Matsuoka M, Tsuchida T, Matsushita K, et al. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans[J]. Bioscience Biotechnology & Biochemistry, 1996, 60(4): 575-579.

[86] Liu M, Zhong C, Wu X Y, et al. Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures[J]. Biochemical Engineering Journal, 2015, 101: 85-98.

[87] Song H, Clarke W P. Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor[J]. Bioresource Technology, 2009, 100(3): 1 268-1 273.

[88] Jagannath A, Kumar M, Raju P S, et al. Nisin based stabilization of novel fruit and vegetable functional juices containing bacterial cellulose at ambient temperature[J]. Journal of Food Science and Technology, 2014, 51(6): 1 218-1 222.

[89] Hu Y, Catchmark J M. Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain[J]. Biomacromolecules, 2010, 11(7): 1 727-1 734.

[90] Shezad O, Khan S, Khan T, et al. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy[J]. Carbohydrate Polymers, 2010, 82(1): 173-180.

[91] Hestrin S, Schramn M. Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose[J]. Cellulose Synthesis, 1954, 58: 345-352.

[92] Cheng K C, Catchmark J M, Demirci A. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis[J]. Biomacromolecules, 2011, 12(3): 730-736.

[93] Song H, Li H, Seo J, et al. Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 141-146.

[94] Wu S C, Li M H. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus[J]. Journal of Bioscience and Bioengineering, 2015, 120(4): 444-449.

[95] Kralisch D, Hessler N, Klemm D, et al. White biotechnology for cellulose manufacturing--the HoLiR concept[J]. Biotechnology and Bioengineering, 2010, 105(4): 740-747.

[96] Kim Y, Kim J, Wee Y, et al. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor[J]. Applied Biochemistry and Biotechnology, 2007, 137(1): 529-537.

[97] Hornung M, Ludwig M, Schmauder H P. Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle(part 3)[J]. Engineering in Life Sciences, 2006, 7(1): 35-41.

[98] Kralisch D, Hessler N, Klemm D, et al. White biotechnology for cellulose manufacturing The HoLiR concept[J]. Biotechnology and Bioengineering, 2009, 105(4): 740-747.

猜你喜欢

发酵研究进展
MiRNA-145在消化系统恶性肿瘤中的研究进展
离子束抛光研究进展
独脚金的研究进展
固定化微生物发酵技术制备果醋的研究进展
酵母发酵法去除魔芋飞粉中三甲胺的研究
一株放线菌蓝色素的提取及相关研究
发酵工艺对苦荞酿茶中黄酮浸出量影响的研究
EVA的阻燃研究进展
一株植物内生放线菌次级代谢产物的提取及抑菌活性研究
乳酸菌的分离及酸奶制备