九种不同能量玉米副产物的膳食纤维组成与能量、粗纤维和猪氨基酸消化率的关系(续)
2016-05-18GutierrezSeraoKerrZijlstraPatience爱荷华州立大学动物科技学院埃姆斯500美国农业部农业与环境国家实验室埃姆斯爱荷华州500阿尔伯塔大学农业食品与营养科学系加拿大埃德蒙顿ABT6GP5
N.A.Gutierrez,N.V.L.Serao,B.J.Kerr,R.T.Zijlstra,J.F.Patience(.爱荷华州立大学,动物科技学院,埃姆斯,500;.美国农业部农业与环境国家实验室,埃姆斯,爱荷华州,500;.阿尔伯塔大学,农业食品与营养科学系,加拿大,埃德蒙顿,AB T6G P5)
九种不同能量玉米副产物的膳食纤维组成与能量、粗纤维和猪氨基酸消化率的关系(续)
N.A.Gutierrez1,N.V.L.Serao1,B.J.Kerr2,R.T.Zijlstra3,J.F.Patience1
(1.爱荷华州立大学,动物科技学院,埃姆斯,50011;2.美国农业部农业与环境国家实验室,埃姆斯,爱荷华州,50011;3.阿尔伯塔大学,农业食品与营养科学系,加拿大,埃德蒙顿,AB T6G 2P5)
中国猪营养国际论坛是由美国动物科学学会、上海亘泰实业集团和上海优久生物科技有限公司联合主办,以“凝聚全球科研力量,驱动猪业创新思维”为宗旨,力邀全球一流的机构、专家和学者,倾力打造一个动物营养领域具有国际性、前沿性和权威性的论坛。该论坛每两年举办一届,聚焦行业发展中的热点、难点,通过专家学者和企业领导者之间进行开放建设性的学术探讨、理论研究和实践经验交流,整合全球动物营养领域前沿的技术和研究成果,推动行业发展,创造和提升产业价值。www.asaschina.org2013;Stein等,2006)。然而,HP-DDG中GE和DM的ATTD,比先前报道值小(Kim等,2009;Widmer等,2007),这可能是本试验中使用的HPDDG中加入玉米皮导致DF的含量偏高。
另一方面,不同原料的NDF回肠表观消化率无明显差异(P=0.11),但全肠道表观消化率有明显差异(P<0.05)。3种DDGS原料中NDF的AID和ATTD有差异,表明大约18%的NDF在后肠发酵,这与Urriola等(2010)报道的数据一致。但在CB-S和CB中,NDF的ATTD值低于AID值。先前研究报道,麦麸(Jorgensen等,1996)和中低纤维日粮(Wilfart等,2007)的DF值不稳定,这归因于取样或分析误差,以及相对高的变异造成。部分DF组分和Cr2O3进入消化道被分离,也可能对DF消化率估计值的可靠性产生不利影响(Graham等,1986)。此外,DDC中NDF的ATTD值是136.8%,远超过100%。被测原料中营养物质含量较低时,很难准确地确定其AID和ATTD,因为其营养值由差值计算,且分析方法可能不足以精确测定低含量养分的值。
所有原料的必需氨基酸AID差异显著(P<0.05)。本试验中,DDGS中必需氨基酸的AID值与此前公布的数据(NRC,2012;Urriola等,2009;Stein等,2006)相近。CGMM和CGnM中必需氨基酸的AID与先前公布的值相同(NRC,2012;Almeida等,2011),但比欧洲国家研究的值稍小(Sauvant等,2004)。此外,HP-DDG中必需氨基酸的AID都小于Kim等(2009)和Widmer等(2007)的研究结果,这可能是由于不同来源的HP-DDG的营养物质组成不同,导致与此前报道的结果有差异。
不同原料的DE和ME值有明显差异(P<0.05)(表5)。DDC和CGnM的DE和ME值最大,因为其DF含量较低,淀粉和蛋白质含量较高。与此相反,CB的DF含量较高,淀粉和粗脂肪含量较低,导致其DE和ME要比其他玉米副产品小(P<0.05)。另一方面,CB-S中高含量的粗脂肪,导致其DE和ME含量高于CB(P<0.05),并与CGmM接近。HP-DDG的DE和ME与DDGS-CV和DDGS BPX的值接近。DDGS-RO的粗脂肪含量较DDGSCV低,因此DE和ME也比DDGS少(P<0.05)。Anderson等(2012)测定相同来源不同批次的玉米副产物的DE和ME含量,CB-S,CB,DDGS-RO,HP-DDG和CGmM的值都比本试验中的值大。可能是由于Anderson等(2012)是通过收集育肥猪的全尿液和粪便获得的数据,而本研究是通过Cr2O3内标法定点采生长猪的粪便样品。尽管如此,本试验所用原料的DE和ME值与。Sauvant等(2004),Pedersen等(2007)研究结果一致。
3.4 不同性状类别最佳纤维组分最佳纤维组分可以解释每种原料的DF含量差异。对11种选定的纤维成分的各种性状的拟合优度进行评估和排名,发现玉米副产物中DE和ME的AID和ATTD的变化可以通过NSP单糖残基的含量来解释(表6),主要是木糖和阿拉伯糖以及它们的聚合物阿拉伯木聚糖。这一发现表明与分析原料的粗纤维组成(ADF、NDF和TDF)相比,玉米副产物中组成粗纤维的单糖是预测营养物质组成的良好指标。
表5 分析各玉米副产物的消化能和代谢能值(以日粮为基础)
玉米及其副产物中,葡萄糖和木糖的聚合物含有丰富的NSP,并且分别以纤维素和阿拉伯木聚糖的形式存在(Knudsen,2001、1997)。纤维素是葡萄糖聚合物,是玉米细胞壁中最丰富的多糖。尽管NSP中葡萄糖含量很高,但它仅仅是NDF的ATTD的最佳拟合模型。葡萄糖含量对NDF中ATTD的影响可能与纤维素聚合物的高级结构有关,这些结构是不溶于水的。因此,在谷物中纤维素一般比阿拉伯木聚糖难降解,但在玉米颗粒的不同结构组成之间,纤维素的降解率有很大的差异(比如:麸皮纤维素与胚乳纤维素)。木糖是阿拉伯木聚糖的骨架,并不同程度取代了阿拉伯糖。对于大部分营养特性,木糖比葡萄糖或半纤维素更适合作为拟合指标。这意味着相对于纤维素或半纤维素,木糖在DF中的含量与玉米副产物的营养价值更具相关性。纤维素和半纤维素已经用来预测猪(Anderson等,2012)和鸡(Rochell等,2011)日粮中的代谢能。玉米籽粒中不同部位的阿拉伯木聚糖的微生物降解率差异很大,在果皮和种皮中几乎不降解,在胚乳中达到85%~90%(Bach Knudsen,1997)。阿拉伯木聚糖在玉米的糊粉层可包裹脂质和蛋白质(Benamrouche等,2002),这可以解释为何NSP木糖和阿拉伯木聚糖是饲料原料消化率和能量值性状最合适的拟合指标。对于赖氨酸和平均水平的非必需氨基酸的AID,半乳糖是最适合的NSP单糖,但对于其余的氨基酸半乳糖排名不如NSP木糖。另一方面,甘露糖是甘露聚糖的骨架,但在谷物中含量很少(Choct,1997),因此玉米副产品中的含量很低。相较于其他的单糖,NSP半乳糖和NSP甘露糖的排名较低,可能与它们形成的多糖的低含量和功能相关。
为了简化评估DF含量的影响以及通过DF含量充分预测饲料成分的营养价值,每个类别都选择一个最佳拟合的DF组分(表7)。阿拉伯木聚糖含量是GE,DM,NDF和DF的AID最佳拟合的DF组分。对于剩下的3个类别,NSP木糖残基是最适合的DF组分,包括GE,DM,NDF的ATTD,AA,DE和ME的AID。Zijlstra等(1999)报道,木聚糖比NDF能更好地预测小麦样品之间的差异。通过比较DF含量和Ingred模型的拟合优度,发现Ingred比DF含量能更好地解释大部分特性的变异性。但是,DF含量用于预测GE(550.3)和DM(562.2)的AID模型时,比Ingred(GE 555.4和DM 570.1,)更合适。Ingred在模型中的影响包括其他分析组分如粗蛋白质,粗脂肪,淀粉,矿物质,和DF含量的综合作用,这些组分一起描述原料特性的多样性,比单独用DF含量描述更好。在预测猪饲料原料中DE和ME值的公式中,Noblet和Perez(1993)报道ME值随着蛋白和粗脂肪含量升高而升高,随着矿物质、粗纤维、NDF或半纤维素的含量降低而降低。随着模型中加入的化学组分越多,预测的可靠性越高。其他饲料原料化学组分的营养消化值和能量值预测模型也已被开发出来(Urriola等,2013;Anderson等,2012)。
表6 膳食纤维不同性状的最佳拟合排名
虽然DF含量解释原料特性多变性的效果不如Ingred,但是DF含量对大部分特性的预测效果显著(表8)。例如,阿拉伯木聚糖的含量对GE(P= 0.02)和DM(P=0.04)的AID,NSP木糖含量对GE和DM的ATTD呈三次方相关(P<0.01);蛋氨酸、蛋氨酸+胱氨酸、色氨酸和平均必需氨基酸的AID(P<0.05),以及ME值(P<0.01)均呈三次方相关。此外,NSP木糖含量与DE呈线性相关(P=0.02)。这一发现与以前的数据相同,能量、DM的ATTD和全日粮中CP含量呈线性下降,同日粮中不溶性DF呈线性增加(Le Goff和Noblet,2001)。在本试验中,赖氨酸和苏氨酸的AID不会受到NSP木聚糖含量的影响(P>0.05)。NSP木糖含量对NDF的AID和ATTD影响效果不同。研究发现,NDF的AIID不受NSP含量影响(P>0.05),但NDF的ATTD受到NSP木糖含量的影响呈三次方(P<0.01)。
总之,不同的玉米副产品中能量、日粮纤维、必需氨基酸消化率、消化能和代谢能之间存在很大变化,部分变化是由于原料中的DF含量差异。阿拉伯木聚糖和NSP木糖残基是DF的组分,可以很好解释由DF含量导致的变异和玉米副产品中能量、DM、NDF的消化率和DE、ME值,而没有严重的预见丢失。玉米副产品中赖氨酸和多数氨基酸的AID不适合用DF含量模型预测。
表8 不同营养指标中适合最佳拟合的膳食纤维(DF)的回归系数和模型
[1]Adeola,O.Digestion and balance techniques in pigs.In:A.J.Lewis and L.L. Southern,editors,Swine nutrition.2nd ed[M].CRC Press,Boca Raton,2001:903~916.
[2]Almeida FN,Petersen GI,Stein HH.Digestibility of amino acids in corn,corn coproducts,and bakery meal fed to growing pigs[J].Journal of Animal Science,2011,89(12):4109~4115.
[3]Anderson P V,Kerr B J,Weber T E,et al.Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs[J].Journal of Animal Science,2011,90(4):1242~1254.
[4]AOAC.Offcial methods of analysis of AOAC Int.18th ed[M].AOAC Int.,Gaithersburg,MD.2007.
[5]Association of Offcial Analytical Chemists(AOAC).Offcial methods of analysis.15th ed[M].AOAC,Arlington,VA.1990.
[6]Almeida FN,Petersen GI,Stein HH.Digestibility of amino acids in corn,corn coproducts,and bakery meal fed to growing pigs[J].Journal of Animal Science,2011,89(12):4109~4115.
[7]Anderson PV,Kerr BJ,Weber TE,et al.Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs[J].Journal of Animal Science,2011,90(4):1242~1254.
[8]Aman HGP.Circadian variation in composition of duodenal and ileal digesta from pigs fitted with T-cannulas[J].Animal Production,1986,43(1):133~140. [9]Bagamboula C F,Uyttendaele M,Debevere J.Acid tolerance of Shigella sonnei and Shigella flexneri[J].Journal of Applied Microbiology,2002,93(3):479~486.
[10]Benamrouche S,Cr?nier D,Debeire P,et al.A Chemical and Histological Study on the Effect of(1→4)-β-endo-xylanase Treatment on Wheat Bran [J].Journal of Cereal Science,2002,36(2):253~260.
[11]Bolker BM,Brooks ME,Clark CJ,et al.Generalized linear mixed models:a practical guide for ecology and evolution[J].Trends in Ecology&Evolution,2009,24(3):127~135.
[12]Campbell J M,Flickinger E A,Fahey G C.A comparative study of dietary fber methodologies using pulsed electrochemical detection of monosaccharide constituents[J].Semin Food Anal,1997,2:43~53.
[13]Choct M.Feed non-starch polysaccharides:Chemical structures and nutritional signifcance[J].Feed Milling,1997,6:13~26.
[14]Choct M,Mcnab JM,Boorman K N.Non-starch polysaccharides:effect on nutritive value[J].Poultry Feedstuffs Supply Composition&Nutritive Value,2002.
[15]Englyst HN,Hudson GJ.Colorimetric method for routine measurement of dietary fibre as non-starch polysaccharides.A comparison with gas-liquid chromatography[J].Food Chemistry,1987,24(1):63~76.
[16]Fairbairn S L,Patience J F,Classen H L,et al.The energy content of barley fed to growing pigs:characterizing the nature of its variability and developing prediction equations for its estimation[J].Journal of Animal Science,1999,77(6):1502~1512.
[17]Farrell D J.Digestibility by pigs of the major chemical components of diets high in plant cell-wall constituents[J].Animal Production,1973,16(1):43~47.
[18]Fenton T W,Fenton M.An improved procedure for the determination of chromic oxide in feed and feces[J].Canadian Journal of Animal Science,1979,59(3):631~634.
[19]Goering H K,Soest P J V.Forage fiber analyses(apparatus,reagents,procedures,and some applications)[J].Usda Agr Handb,1970.
[20]Graham H,Hesselman K,Aman P.The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet[J].Journal of Nutrition,1986,116(2):242~251.
[21]Huisman J,Hartog L A,H Boer,et al.The effect of various carbohydrate sources on the ileal and faecal digestibility of protein and amino acids in pigs [J].Beretning Fra Statens Husdyrbrugsforsoeg,1985:
[22]Jacobs B M,Patience J F,Stalder K J,et al.Effects of drying methods on nitrogen and energy concentrations in pig feces and urine,and poultry excreta [J].Journal of Animal Science,2011,89(8):2624~2630
[23]Jaworski N.Carbohydrate composition,in vitro digestion,and effects of xylanase and phytase on nutrient and energy digestibility by pigs in grains and grain coproducts[J].International Journal of Antimicrobial Agents,2013,35(4):415~416
[24]Jφrgensen H,Zhao X Q,Eggum B O.The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract,digestibility,degree of fermentation in the hind-gut and energy metabolism in pigs[J].British Journal of Nutrition,1996,75(3):365~378.
[25]Knudsen K E B.Knudsen K E B.Carbohydrate and lignin contents of plant materials used in animal feeding.Animal Feed Sci Technol 67,319-338 [J].Animal Feed Science&Technology,1997,67(4):319~338.
[[26]Knudsen KEB.The nutritional significance of“dietary fibre”analysis[J]. Animal Feed Science&Technology,2001,90(1-2):3~20.
[27]Kim B G,Petersen G I,Hinson R B,et al.Amino acid digestibility and energy concentration in a novel source of high-protein distillers dried grains and their effects on growth performance of pigs[J].Journal of Animal Science,2009,87(12):4013~4021.
[28]Le G G,Noblet J.Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows[J].Journal of Animal Science,2001,79(9):2418~2427.
[29]Liu P,Huang Y.Prediction of the concentration of standardized ileal digestible amino acids in distillers dried grains with solubles[J].Journal of Animal Science,2013,91(9):4389~4396.
[30]Miller E R,Ullrey D E.Selenium and vitamin E in swine nutrition.ed.1971.
[31]Nakagawa S,Schielzeth H.A general and simple method for obtaining R 2 from generalized linear mixed-effects models[J].Methods in Ecology&Evolution,2013,4(2):133~142.
[32]NRC.Nutrient Requirements of Swine:10th Revised Edition[M].1998.
[33]NRC.Nutrient Requirements of Swine:11th Revised Edition[M].2012.
[34]Oresanya T F,Beaulieu A D,Patience J F.Investigations of energy metabolism in weanling barrows:the interaction of dietary energy concentration and daily feed(energy)intake[J].Journal of Animal Science,2008,86(2):348~363.
[35]Pedersen C,Boersma M G,Stein H H.Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs[J].Journal of Animal Science,2007,85(5):1168~1176.
[36]Prosky L,Asp N G,Furda I,,et al..Determination of total dietary fiber in foods and food products:collaborative study[J].Journal-Association of Official Analytical Chemists,1983,68(4):677~679.
[37]Robinson P H,Karges K,Gibson M L.Nutritional evaluation of four coproduct feedstuffs from the motor fuel ethanol distillation industry in the Midwestern USA[J].Animal Feed Science&Technology,2008,146(3-4):345~352.
[38]Rochell S J.Energy determination of corn co-products fed to broiler chicks from 15 to 24 days of age,and use of composition analysis to predict nitrogen-corrected apparent metabolizable energy[J].Poultry Science,2011,90(9):1999~2007.
[39]Rojas O J,Liu Y,Stein H H.Phosphorus digestibility and concentration of digestible and metabolizable energy in corn,corn coproducts,and bakery meal fed to growing pigs[J].Journal of Animal Science,2013,91(11):5326~5335.
[40]Sauvant D,Perez JM,Tran G.Tables of Composition and Nutritional Value of Feed Materials:Pig,Poultry,Sheep,Goats,Rabbits,Horses,Fish[J].2004.
[41]Stawski R S.Multilevel Analysis:An Introduction to Basic and Advanced Multilevel Modeling(2nd Edition)[J].Structural Equation Modeling A Multidisciplinary Journal,2013,20(3):541~550.
[42]Souffrant W B.Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig[J].Animal Feed Science&Technology,2001,90(1):93~102.
[43]Spiehs M,Whitney M H,Shurson G C.Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota[J].Journal of Animal Science,2002,80(80):2639~2645.
[44]Stein H H,Gibson M L,Pedersen C,et al.Amino acid and energy digestibility in ten samples of distillers dried grain with solubles fed to growing pigs[J].Journal of Animal Science,2006,84(4):853~860.
[45]Stein H H,Shipley C F,Easter R A.Technical note:a technique for inserting a T-cannula into the distal ileum of pregnant sows[J].Journal of Animal Science,1998,76(5):1433~1436.
[46]Soest P J V,Robertson J B.Systems of analysis for evaluating fibrous feeds [J].Proc,1980.
[47]Theander O,Aman P,Westerlund E,et al.Total dietary fiber determined as neutral sugar residues,uronic acid residues,and Klason lignin(the Uppsala method):collaborative study[J].Journal of Aoac International,1995,78(4):1030~1044.
[48]Urriola P E,Hoehler D,Pedersen C,et al.Amino acid digestibility of distillers dried grains with solubles,produced from sorghum,a sorghum-corn blend,and corn fed to growing pigs[J].Journal of Animal Science,2009,87(8):2574~2580.
[49]Urriola P E,Shurson G C,Stein H H.Digestibility of dietary fiber in distillers coproducts fed to growing pigs[J].Journal of Animal Science,2010,88(7):2373~2381.
[50]Vol.N.Official Methods of Analysis of AOAC International(16th edn)(Patricia A.Cunniff,ed.)[J].Trends in food science and technology:an official journal of the European Federation of Food Science and Technology(EFFoST)and the International Union of Food Science and Technology(IUFoST),1995,6.
[51]Widmer M R,Mcginnis L M,Stein H H.Energy,phosphorus,and amino acid digestibility of high-protein distillers dried grains and corn germ fed to growing pigs[J].Journal of Animal Science,2007,85(11):2994~3003.
[52]Widyaratne G P,Zijlstra R T.Nutritional value of wheat and corn distiller’s dried grains with solubles:Digestibility and digestible contents of energy,amino acids and phosphorus,nutrient excretion and growth performance of grower-fnisher pigs[J].Journal of Animal Science,2007,87:103~114.
[53]Wilfart A,Montagne L,Simmins PH,et al.Sites of nutrient digestion in growing pigs:effect of dietary fiber[J].Journal of Animal Science,2007,85(4):976~983..
[54]Zijlstra R T,Cfm D L,Patience J F.Nutritional value of wheat for growing pigs:chemical composition and digestible energy content[J].Canadian Veterinary Journal La Revue Veterinaire Canadienne,1999,79(2):187~194.■
(全文完)