胆酸酰氧基膦酸酯衍生物的合成及抗肿瘤活性
2016-05-12郭深深代本才霍萃萌刘晓莉赵永德
郭深深,代本才,陈 瑨,霍萃萌,刘晓莉,3,赵永德*
(1.河南大学 天然药物与免疫工程重点实验室, 河南 开封 475004; 2.河南省科学院化学研究所,河南 郑州 450002;
3.河南大学 化学化工学院, 河南 开封 475004)
胆酸酰氧基膦酸酯衍生物的合成及抗肿瘤活性
郭深深1,2,代本才2,陈瑨2,霍萃萌2,刘晓莉2,3,赵永德1,2*
(1.河南大学 天然药物与免疫工程重点实验室, 河南 开封 475004;2.河南省科学院化学研究所,河南 郑州 450002;
3.河南大学 化学化工学院, 河南 开封 475004)
摘要:以胆酸和亚磷酸酯为原料,在缩合剂二环己基碳二亚胺(DCC)和4-二甲基吡啶(DMAP)的催化下进行酯化反应,合成了10个未见报道的胆酸酰氧基膦酸酯衍生物,所有目标化合物均经过TG, IR,1H NMR, (31)P NMR和HRMS对其进行了结构确认. 利用MTT法测定了目标化合物的抗肿瘤活性,结果显示:目标化合物4H, 4I, 4J对人肝癌细胞(HepG2)表现出较好的增殖抑制作用.
关键词:胆酸;α-羟基膦酸酯;酯化反应;抗肿瘤活性
胆酸是在哺乳动物肝脏中合成的一种多羟基羧酸双亲性分子,三个羟基和一个羧基形成亲水的α面,而三个甲基指向另一面形成憎水的β面[1]. 近年来,随着人们对胆酸的探究更加深入,发现胆酸具有抗菌[2]、抗病毒[3]、抗肿瘤[4-6]等活性. 由于胆酸的羟基和羧基的活性非常高,很容易进行修饰,而由胆酸制备的一些衍生物仍然能够体现出胆酸的一些特性,所以胆酸在药物化学[7]、超分子领域[8]以及生物医学[9-10]等领域有着广泛的应用前景.α-羟基膦酸酯作为含磷化合物,在药物合成中扮演着重要角色,相关研究发现膦酸酯类衍生物表现出抗病毒[11]、杀菌[12]、抗肿瘤[13-14]等生物活性. 为了寻找效果更好的抗肿瘤活性分子,通过酯化反应将α-羟基膦酸酯类化合物引入到胆酸分子结构中,设计合成了10个胆酸酰氧基膦酸酯衍生物,这些化合物均未见报道. 通过TG, IR,1H NMR,31P NMR和HRMS对其结构进行了表征,并对该类化合物进行了人白血病细胞(K-562)和人肝癌细胞(HepG2)的抗肿瘤活性研究. 化合物合成路线见图1.
图1 目标化合物4A-4J的合成路线Fig.1 Synthetic routes for target compounds 4A-4J
1实验部分
1.1仪器和试剂
FTS-60型红外光谱仪(美国Bio-Rad公司),KBr压片;Bruker DPX-300型核磁共振仪(德国Bruker公司),溶剂为CDCl3,内标TMS;Bruker Esquire-3000型质谱仪(德国Bruker公司);STA-449C型热重联用分析仪(德国NETSZCH公司).
氟化钾、胆酸、二环己基碳二亚胺(DCC)、4-二甲氨基吡啶(DMAP)、亚磷酸二乙酯和亚磷酸二异丙酯均采购于阿拉丁试剂公司;四氢呋喃用钠和二苯甲酮干燥处理.
1.2实验步骤
1.2.1中间体3的合成
将10 mmol的亚磷酸二乙酯和12 mmol的苯甲醛加入到10 mL的圆底烧瓶中,搅拌均匀后加入20 mmol 的氟化钾做催化剂. 室温搅拌30 min,重结晶得白色固体3A. 同样方法[15]合成中间体3B-3J.
O,O′-二乙基-α-苯基-α-羟基甲基膦酸酯(3A): 白色固体2.39 g,产率98.1%;m.p. 83~84℃;IR (KBr,cm-1): 3 262.3, 2 989.6, 1 492.0, 1 449.7, 1 227.7, 1 049.6, 978.7,701.6, 560.2;1H NMR (CDCl3, 300 MHz)δ:7.43 (d,J=7.8 Hz, 2H, ArH), 7.25~7.35 (m, 3H, ArH), 6.18 (d,J=7.5 Hz, 1H, OH), 4.92 (d,J=13.5 Hz, 1H, CH), 3.33~3.99 (m, 4H, 2OCH2), 1.18 (t,J=2.4 Hz, 6H, 2CH3);31P NMR (40.5 MHz, CDCl3)δ:17.756; HRMS:m/z267.079 0 [M+Na]+(计算值C11H17O4PNa, 267.076 2).
1.2.2目标化合物4的合成
将10 mmol的中间体3和15 mmol的胆酸加入到100 mL的圆底烧瓶中,加入40 mL干燥的四氢呋喃溶解. 冰水浴下15 min内滴加催化剂(12 mmol的DCC和3 mmol的DMAP溶于20 mL四氢呋喃中). 45 ℃下回流,TLC监测反应进程,16 h结束反应. 减压蒸去溶剂,得白色固体. 常压柱层析[V(乙酸乙酯)∶V(石油醚)=1∶5]分离,即得产物.
O,O′-二乙基-α-苯基-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4A): 白色固体4.99 g,产率78.8%;热分解温度: 254.8 ℃; IR (KBr,cm-1): 3 435.4, 2 932.5, 1 747.9, 1 637.8, 1 472.8, 1 249.1, 1 026.6;1H NMR (CDCl3, 300 MHz)δ: 7.48 (d,J=7.8 Hz, 2H, ArH), 7.34~7.36 (m, 3H, ArH), 6.15 (d,J=13.5 Hz, 1H, CH), 4.05~4.10 (m, 4H, 2OCH2), 3.96 (s, 1H, OCH), 3.84 (s, 1H, OCH), 3.40~3.55 (m, 1H, OCH), 1.25~2.25 (m, 27H, steroidal H), 1.24 (t,J=2.1 Hz, 6H, 2CH3), 0.97 (s, 3H, CH3), 0.90 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ:18.158; HRMS:m/z657.351 4 [M+Na]+(计算值C35H55O8PNa, 657.353 2).
O,O′-二异丙基-α-苯基-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4B):白色固体5.05 g,产率76.3%;热分解温度: 227.8 ℃; IR (KBr,cm-1): 3 434.0, 2 933.2, 1 748.1, 1 638.1, 1 453.4, 1 248.2, 999.5;1H NMR (CDCl3, 300 MHz)δ:7.48 (d,J=6.6 Hz, 2H, ArH), 7.34~7.36 (m, 3H, ArH), 6.08 (d,J=13.8 Hz, 1H, CH), 4.58~4.66 (m, 2H, 2OCH), 3.95 (s, 1H, OCH), 3.84 (s, 1H, OCH), 3.44~3.65 (m, 1H, OCH), 1.34~2.38 (m, 27H, steroidal H), 1.28 (d,J=6.3 Hz, 6H, 2CH3), 1.23 (d,J=6.3 Hz, 3H, CH3), 1.09 (d,J=6 Hz, 3H, CH3), 0.97 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.64 (s, 3H, CH3);31P NMR (40.5 MHz,CDCl3)δ:16.248; HRMS:m/z685.381 5 [M+Na]+(计算值C37H59O8PNa, 685.384 5).
O,O′-二乙基-α-(4-甲基苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4C):白色固体4.57 g,产率70.6%;热分解温度: 238.6 ℃; IR (KBr,cm-1): 3 433.7, 2 933.1, 1 747.8, 1 637.7, 1 446.6, 1 249.8, 1 023.9;1H NMR (CDCl3, 300 MHz)δ:7.38 (q,J1=8.1 Hz,J2=1.8 Hz, 2H, ArH), 7.17 (d,J=8.1 Hz, 2H, ArH), 6.11 (d,J=12.9 Hz, 1H, CH), 4.04~4.10 (m, 4H, 2OCH2), 3.96 (s, 1H, OCH), 3.84 (s, 1H, OCH), 3.40~3.55 (m, 1H, OCH), 2.34 (s, 3H, CH3), 1.30~2.25 (m, 27H, steroidal H), 1.24 (t,J=2.1 Hz, 6H, 2CH3), 0.97 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ:18.319; HRMS:m/z671.368 0 [M+Na]+(计算值C35H57O8PNa, 671.368 0).
O,O′-二异丙基-α-(4-甲基苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4D):白色固体5.10 g,产率75.4%;热分解温度: 240.8 ℃; IR (KBr,cm-1): 3 434.3, 2 931.9, 1 747.5, 1 637.8, 1 451.3, 1 375.9, 1 249. 0, 1 144.4, 998.7;1H NMR(CDCl3, 300 MHz)δ: 7.37 (q,J1=8.1 Hz,J2=1.8 Hz, 2H, ArH), 7.15 (d,J=8.1 Hz, 2H, ArH), 6.05 (d,J=14.1 Hz, 1H, CH), 4.51~4.60 (m, 2H, OCH), 3.97 (s, 1H, OCH), 3.86 (s, 1H, OCH), 3.83~3.85 (m, 1H, OCH), 2.34 (s, 3H, CH3), 1.34~1.94 (m, 27H, steroidal H), 1.28 (d,J=6.3 Hz, 6H, 2CH3), 1.24 (d,J=6.3 Hz, 3H, CH3), 1.10 (d,J=6.3 Hz, 3H, CH3), 0.97 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ: 16.438;HRMS:m/z699.399 6 [M+Na]+(计算值C38H61O8PNa, 699.400 2).
O,O′-二乙基-α-(2-氟苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4E):白色固体4.10 g,产率62.9%;热分解温度: 235.1 ℃; IR (KBr,cm-1): 3 431.1, 2 935.1, 2 867.7, 1 751.5, 1 617.1, 1 492.7, 1 236.2, 1 028.2;1H NMR (CDCl3, 300 MHz)δ: 7.52~7.55 (m, 1H, ArH), 7.21~7.22 (m, 1H, ArH), 7.19~7.20 (m, 1H, ArH), 7.06~7.07 (m, 1H, ArH), 6.47 (d,J=13.8 Hz, 1H, CH), 3.97~4.18 (m, 4H, 2OCH2), 3.92 (s, 1H, OCH), 3.87 (s, 1H, OCH), 3.40~3.55 (m, 1H, OCH), 1.25~2.21 (m, 27H, steroidal H), 1.23 (t,J=2.1 Hz, 6H, 2CH3), 0.97 (s, 3H, CH3), 0.90 (s, 3H, CH3), 0.66 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ: 16.438; HRMS:m/z675.343 7 [M+Na]+(计算值C35H54FO8PNa, 675.343 8).
O,O′-二异丙基-α-(2-氟苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4F):白色固体3.95 g,产率58.1%;热分解温度: 232.3 ℃; IR (KBr,cm-1): 3 430.3, 2 934.4, 2 868.3, 1 751.7, 1 617.4, 1 492.9, 1 384.9, 1 236.6;1H NMR (CDCl3, 300 MHz)δ: 7.56~7.58 (m, 1H, ArH), 7.26~7.28 (m, 1H, ArH), 7.16 (t,J=7.5Hz, 1H, ArH), 7.06 (t,J=9.6Hz, 1H, ArH), 6.39 (d,J=14.1Hz, 1H, CH), 4.74~4.75 (m, 2H, 2OCH), 4.60~4.61 (m, 1H, OCH), 3.94 (s, 1H, OCH), 3.83 (s, 1H, OCH), 1.33~2.46 (m, 27H, steroidal H), 1.27 (m, 6H, 2CH3), 1.24 (d,J=6.3 Hz, 3H, CH3), 1.10 (d,J=6.3 Hz, 3H, CH3), 0.97 (s, 3H, CH3), 0.88 (s, 3H, CH3), 0.64 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ: 15.581;HRMS:m/z703.373 4 [M+Na]+(计算值C37H58FO8PNa, 703.375 1).
O,O′-二乙基-α-(3-氟苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4G):白色固体4.45 g,产率68.2%;热分解温度: 240.3 ℃;IR (KBr,cm-1): 3 433.5, 2 934.7, 2 867.6, 1 750.9, 1 592.7, 1 448.7, 1 248.3, 1 142.8, 1 026.0;1H NMR (CDCl3, 300 MHz)δ: 7.33~7.35 (m, 1H, ArH), 7.21~7.27 (m, 2H, ArH), 7.03 (t,J=8.1 Hz, 1H, ArH), 6.13 (d,J=13.8 Hz, 1H, CH), 4.02~4.11 (m, 4H, 2OCH2), 3.96 (s, 1H, OCH), 3.84 (s, 1H, OCH), 3.40~3.55 (m, 1H, OCH), 1.25~2.25 (m, 27H, steroidal H), 1.25 (t,J=2.1 Hz, 6H, 2CH3), 0.97 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ:17.413; HRMS:m/z675.343 3 [M+Na]+(计算值C35H54FO8PNa, 675.343 8).
O,O′-二异丙基-α-(3-氟苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4H):白色固体5.03 g,产率73.9%;热分解温度: 238.8 ℃; IR (KBr,cm-1): 3 437.8, 2 865.3,1 751.3, 1 592.6, 1 450.1, 1 382.6, 1 245.9, 1 142.6, 999.4;1H NMR (CDCl3, 300 MHz)δ: 7.21~7.33 (m, 3H, ArH), 7.09 (t,J=7.5 Hz, 1H, ArH), 6.06 (d,J=14.1 Hz, 1H, CH), 4.63~4.66 (m, 2H, 2OCH), 3.85~3.96 (m, 2H, 2OCH), 3.44~3.46 (m, 1H, OCH), 1.34~2.38 (m, 27H, steroidal H), 1.29 (d,J=6.3 Hz, 6H, 2CH3), 1.23 (d,J=6.3 Hz, 3H, CH3), 1.14 (d,J=6.3 Hz, 3H, CH3), 0.97 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ: 15.237; HRMS:m/z703.374 7 [M+Na]+(计算值C37H58FO8PNa, 703.375 1).
O,O′-二乙基-α-(4-氟苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4I):白色固体4.59 g,产率70.4%;热分解温度: 229.8 ℃; IR (KBr,cm-1): 3 427.0, 2 934.2, 2 867.8, 1 749.3, 1 606.4, 1 510.3, 1 376.1, 1 248.5, 1 027.0;1H NMR (CDCl3, 300 MHz)δ: 7.47 (t,J=1.8Hz, 2H, 2OCH), 7.05 (t,J=8.7Hz, 2H, ArH), 6.11 (d,J=13.5Hz, 1H, CH), 4.00~4.12 (m, 4H, 2OCH2), 3.93 (s, 1H, OCH), 3.84 (s, 1H, OCH), 3.43~3.49 (m, 1H, OCH), 1.25~2.25 (m, 27H, steroidal H), 1.28 (t,J=2.1 Hz, 6H, 2CH3), 0.98 (s, 3H, CH3), 0.89 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ: 17.546;HRMS:m/z675.340 7 [M+Na]+(计算值C35H54FO8PNa, 675.343 8).
O,O′-二异丙基-α-(4-氟苯基)-α-(3,7,12-三羟基胆甾烷酰氧基)-甲基膦酸酯(4J):白色固体5.13g, 产率75.5%;热分解温度: 240.6 ℃; IR (KBr,cm-1): 3 436.0, 2 934.6, 2 868.1, 1 749.5, 1 606.5, 1 510.3, 1 466.1, 1 376.1, 1 230.3, 999.2;1H NMR (CDCl3, 300 MHz)δ: 7.47 (q,J1=6.6Hz,J2=1.5Hz, 2H, ArH), 7.04 (t,J=9.3Hz, 2H, ArH), 6.04 (d,J=14.1Hz, 1H, CH), 4.60~4.70 (m, 2H, 2OCH), 3.95 (s, 1H, OCH), 3.85 (s, 1H, OCH), 3.43~3.47 (m, 1H, OCH), 1.34~2.38 (m, 27H, steroidal H), 1.29 (m, 6H, 2CH3), 1.24 (d,J=6.3 Hz, 3H, CH3), 1.09 (d,J=6.3 Hz, 3H, CH3), 0.98 (s, 3H, CH3), 0.90 (s, 3H, CH3), 0.65 (s, 3H, CH3);31P NMR (40.5 MHz, CDCl3)δ: 16.004; HRMS:m/z703.374 7 [M+Na]+(计算值C37H58FO8PNa, 703.375 1).
1.2.3目标化合物的抗肿瘤活性测试
通过MTT法测试目标化合物对人白血病细胞(K-562)和人肝癌细胞(HepG2)的抗肿瘤活性,对照实验为安菲奈特.
将对数生长期的细胞制成单细胞悬液,调整细胞个数为5×103个/mL,加到96孔培养板中使其贴壁培养过夜,24 h后加入不同浓度的样品液,48 h后加入MTT溶液,每孔100 μL;在37 ℃条件下于培养箱中培养4 h,再除去细胞上清液,将每孔细胞结晶用150 μL DMSO溶解. 分别将样品组、对照组(不加样品)和空白组(只有培养基,无细胞),在酶标仪上测量波长570 nm处得的光密度(OD)值. 测得光密度值后由下面的公式计算出不同样品浓度下的肿瘤细胞抑制率.
肿瘤抑制率=(对照组OD值-样品组OD值)/
2结果与讨论
2.1目标化合物的合成
由于α-羟基膦酸酯是一种活性较弱的亲核试剂,空间位阻较大,使得酯化反应不易进行. 因此,采用不同的催化体系和溶剂来探索最佳反应条件. 以4A为例:分别采用三种催化体系(DMAP、DCC、DCC/DMAP)来催化反应. 结果表明:以DCC/DMAP做催化剂时产率高达78.8%(见表1). 同时又探索了不同溶剂对该反应的影响:分别采用环己烷、氯仿、四氢呋喃和甲苯四种不同溶剂进行反应,发现四氢呋喃和氯仿做溶剂时产率较高(见表2). 从表2中可以看出,采用中等极性溶剂,反应产率要大于较大或较小极性的溶剂.
表1 不同催化体系对4A产率的影响
表2 不同溶剂对4A产率的影响
2.2谱图解析
在IR谱中,酯基中C=O伸缩振动吸收接近1 735 cm-1,苯环在1 450~1 600 cm-1之间有中等强度的骨架振动吸收峰,P=O在1 220~1 600 cm-1之间有有较强的伸缩振动吸收峰. 通过1H NMR发现,在7.0~7.6之间有四个或五个氢,符合取代苯的质子吸收规律;另外,与磷原子相连的次甲基上的H由于受到磷原子的影响,在6.0~6.5之间出现一个标准的双峰;而磷谱中P的化学位移出现在16.0~18.5之间,这与文献报道一致. HRMS进一步证明了目标化合物的结构.
2.3目标化合物的抗肿瘤活性
从表3可以看出,目标化合物对人白血病细胞(K-562)表现出较弱的增殖抑制活性,但是生长抑制率并不随着目标物浓度的增高而明显的增高;且不难发现,伴随着目标化合物官能团的改变,癌细胞生长抑制率没有明显的变化.
表4显示,目标化合物对人肝癌细胞(HepG2)表现出了一定的增殖抑制活性. 首先, 随着目标化合物浓度的增大,对HepG2细胞的生长抑制率也相应的增高;其次,随着取代基R1的变化,不同目标化合物表现出不同的抑制活性. 显然,含F 的化合物如4E、4F、4G、4H、4I和4J显示出了更好的抗肿瘤活性. 它对HepG2细胞的生长抑制率已经接近甚至超过对照药安菲奈特的效果. 通过4A与4B,4C与4D,4E与4F,4G与4H,4I与4J的细胞生长抑制率的对比,官能团R2为异丙基的目标化合物抗肿瘤活性要高于乙基.
总的来说,从表3和表4对比可以得出,目标化合物对K-562细胞没有明显的肿瘤细胞抑制活性. 但是对HepG2细胞则体现出一定的增殖抑制活性.
表3 目标化合物对K-562细胞的生长抑制率
表4 目标化合物对HepG2细胞的生长抑制率
3结论
以胆酸和中间体α-羟基膦酸酯类化合物为原料,采用DCC/DMAP的催化体系进行酯化反应,合成了10个结构新颖的胆酸酰氧基膦酸酯类衍生物. 考察了催化剂,溶剂等条件对反应的影响,得到合适简便的反应路线,并且研究了目标化合物对肿瘤细胞的抑制活性,结果 4H、4I、4J显示出了较好的抗肿瘤活性.
致谢:感谢新乡医学院检验学院王明永老师及其团队在目标化合物抗肿瘤活性检测方面给予的帮助.
参考文献:
[1] HU M X, LI J N, ZHANG S L, et al. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid [J]. Colloids Surf B, 2014, 123: 809-813.
[2] QUILLIN S J, SCHWARTZ K T, LEBER J H. The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT [J]. Mol Microbiol, 2011, 81(1): 129-142.
[3] LAKE A D, NOVAK P, SHIPKOVA P, et al. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease [J]. Toxicol Appl Pharmacol, 2013, 268(2): 132-140.
[4] WU D, JI S, YAN W, et al. Design, synthesis and antitumor activity of bile acid-polyamine-nucleoside conjugates [J]. Bioorg Med Chem Lett, 2007, 17(11): 2983-2986.
[5] PASCHKE R, KALBITZ J, PAETZ C. Novel spacer linked bile acid-cisplatin compounds as a model for specific drug delivery, synthesis and characterization [J]. Inorg Chim Acta, 2000, 304(2): 241-249.
[6] SREEKANTH V, BANSAL S, MOTIANI R K, et al. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy [J]. Bioconjugate Chem, 2013, 24(9): 1468-1484.
[7] 胡祥正, 陆伟. 胆酸甲酯羟基酰化反应活性研究[J]. 化学研究, 2006, 17: 44-46.
[8] DAVIS A P. Cheminform Abstract: bile acid scaffolds in supramolecular chemistry: the interplay of design and synthesis [J]. Cheminform, 2009, 40(4): 2106-2122.
[9] HE J, LI J, ZHANG Y M, et al. Simultaneous determination of four major conjugated cholic acids in dry bile of sus scrofa domestica brisson by MEKC [J]. Chromatogr Sci Ser, 2010, 71(9/10): 947-951.
[10]ZHAO Y, ZHONG Z Q. Oligomeric cholates: amphiphilic foldamers with nanometer-sized hydrophilic cavities [J]. J Am Chem Soc, 2005, 127(50): 17894-17901.
[11] GIOFRE S, ROMEO R, CHIACCHIO U, et al. Phosphonated N, O-nucleosides: synthesis and biological evaluation [J]. Mini-Rev Org Chem, 2015, 12(9): 249-257.
[12] KATZ M J, MOON S Y, MONDLOCH J E, et al. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2[J]. Chem Sci, 2015, 6: 2286-2291.
[13] BUBENIK M, REJ R, NGUYEN-BA N, et al. Novel nucleotide phosphonate analogues with potent antitumor activity [J]. Cheminform, 2002, 34(9): 3063-3066.
[14] RAO XP, SONG ZQ, HE L. Synthesis and antitumor activity of novelα-aminophosphonates from diterpenic dehydroabietylamine [J]. Heteroat Chem, 2008, 19(5): 512-516.
[15] TEXIER-BOULLET F, FOUCAUD A. A convenient synthesis of dialkyl 1-hydroxyalkanephosphonates using potassium or caesium fluoride without solvent [J]. Synthesis, 1982, 1982(2): 165-166.
[责任编辑:任铁钢]
Synthesis and antitumor activity of cholic acid-phosphonate derivatives
GUO Shenshen1,2, DAI Bencai2, CHEN Jin2, HUO Cuimeng2, LIU Xiaoli2,3, ZHAO Yongde1,2*
(1.KeyLaboratoryofNaturalMedicineandImmuneEngineering,HenanUniversity,Kaifeng475004,Henan,China;2.InstituteofChemistry,HenanAcademyofSciences,Zhengzhou450002,Henan,China;3.CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)
Abstract:10 cholic acid-phosphonate derivatives based on cholic acid and α-hydroxyphosphonate have been synthesized by using DCC/DMAP condition. These compounds were reported for the first time and confirmed by TG, IR,1H NMR, (31)P NMR and HRMS. And the antitumor activity of the cholic acid derivatives have been measured by MTT assay method. The results showed that the target compounds exhibited certain antitumor activity against HepG2, especially 4H, 4I, 4J.
Keywords:cholic acid; α-hydroxyphosphonate; esterification reaction; antitumor activity
文章编号:1008-1011(2016)02-0183-06
中图分类号:O629.2
文献标志码:A
作者简介:郭深深(1990-),男,硕士生,研究方向为药物合成. *通讯联系人, E-mail:963339210@qq.com.
收稿日期:2015-10-25.