APP下载

羌塘盆地南部布曲组含油白云岩中自生文石胶结物的鉴定及其成因探讨

2016-04-26伊海生夏国清梁定勇

石油实验地质 2016年6期
关键词:文石微区羌塘

张 帅,伊海生,夏国清,梁定勇

(1.成都理工大学地球科学学院,成都 610059;2.油气藏地质及开发工程国家重点实验室,成都 610059; 3.成都理工大学沉积地质研究院,成都 610059;4.海南省地质调查院,海口 570226)

羌塘盆地南部布曲组含油白云岩中自生文石胶结物的鉴定及其成因探讨

张 帅1,伊海生2,3,夏国清3,梁定勇4

(1.成都理工大学地球科学学院,成都 610059;2.油气藏地质及开发工程国家重点实验室,成都 610059; 3.成都理工大学沉积地质研究院,成都 610059;4.海南省地质调查院,海口 570226)

在羌塘盆地南部隆鄂尼地区中侏罗统布曲组砂糖状白云岩中首次发现针柱状胶结物,分布于沥青充填的溶蚀孔隙中。显微结构、微区X射线衍射以及电子探针分析表明,胶结物类型为自生文石,呈针柱状晶形,簇状、放射状集合体,MgO和SrO质量分数呈正相关。微区同位素测试显示,文石胶结物δ13CPDB值为3.5‰~3.98‰,δ18OPDB值介于-11.63‰~-9.98‰。文石在地质历史时期形成的碳酸盐岩中很少发现,常通过新生变形作用或溶解作用转变为低镁方解石。砂糖状白云岩中自生文石碳氧同位素组成与现代海洋沉积和大气淡水成因的文石存在较大差异,其形成过程中淡水淋滤作用影响较小,δ18O值的负偏主要受埋藏期地温梯度控制。储层成岩序列显示文石胶结物形成于埋藏白云石化作用之后,有机酸溶蚀伴随着碳酸钙自生矿物沉淀,烃类充注抑制了文石向方解石的转化。文石胶结物形成于晚成岩阶段,属于埋藏环境下碳酸盐矿物溶解再沉淀的产物,烃类充注可能对文石的保存起重要的控制作用。

文石;微区X射线衍射;碳氧同位素;中侏罗统;羌塘盆地

文石是CaCO3的同质多象不稳定变体,属斜方晶系,主要形成于温暖浅海、岩溶洞穴以及高压变质带中[1]。现代浅海环境沉积成因的文石主要包括等厚环边针状胶结物,发散状纹层以及碳酸盐颗粒(鲕粒、球粒及团粒等)[2-6];生物成因的文石包括珊瑚、藻类等生物礁沉积中的文石质有机显微结构和胶结物[7-8],以及一些双壳类、腹足类生物相的贝壳和骨骼[9-10]。岩溶洞穴主要发育文石笋,也可见葡萄状或皮壳状文石产出[11-14]。它形的粒间文石以及微米级的文石包裹体形成于高压低温变质作用[15-16]。

常温常压条件下文石处于亚稳态,通过新生变形作用或溶解作用可以转变为低镁方解石,因此在地质历史时期形成的碳酸盐岩中很少发现[17-19]。然而,在羌塘盆地南部中侏罗统布曲组古油藏中发现了罕见的针柱状自生文石胶结物,目前尚未见到相关文献报道。布曲组白云岩储层一直以来都是学者关注的热点[20-22],早期研究以雾心亮边白云石作为矿物学标志,利用混合水白云石化模式解释其成因[23-25]。最新证据表明砂糖状白云岩可能是埋藏白云石化作用的产物[26]。自生文石胶结物的发现对于解释白云石化作用模式以及储层成因具有一定的参考价值。本文介绍了文石胶结物的鉴定过程,借助扫描电镜、电子探针以及微区X衍射等分析方法对其成因进行了探讨。

1 采样位置

羌塘盆地南部隆鄂尼—昂达尔错古油藏带油气显示丰富,地表出露的砂糖状白云岩中可见浸润状液态油苗。样品采自隆鄂尼地区格鲁关那含油层剖面(图1),采样层位为剖面第11层(图2)。地层岩性主要为砂糖状白云岩、介壳灰岩、鲕粒灰岩以及生物碎屑灰岩。含油层为褐黄色、灰黑色砂糖状白云岩,中—厚层状构造,中—细晶粒状镶嵌结构。砂糖状白云岩成岩组构主要有不等粒结构、雾心亮边结构等,受白云石化作用和重结晶作用影响,原始沉积组构消失殆尽。

2 分析方法

室内分析中首先磨制普通薄片观察岩石结构和矿物类型,在初步鉴定的基础上选择胶结物含量较高、晶体形态较好的样品磨制探针片,分别进行微区X衍射、电子探针和碳氧同位素分析。扫描电镜及能谱分析由成都理工大学四川省矿物学岩石学矿床学重点学科实验室完成,测试仪器为Nova Nano SEM 450场发射扫描电子显微镜以及EDAX公司AXE-650电制冷能谱与电子背散射衍射(EBSD)一体化系统。测试条件:电压20 kV,温度21℃,相对湿度35%。

微区X射线衍射由中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,采用加装附件的X’Pert PRO衍射仪在岩石薄片上选定的区域进行测试。实验条件:电压40 kV,电流40 mA,Cu靶,Ni滤波。实验流程详见参考文献[28]。

电子探针分析由中国地质科学院矿产综合利用研究所电子探针实验室完成,测试仪器为日本岛津EMPA-1720型电子探针分析仪。测试条件:加速电压15 kV,束流强度20 nA,束斑直径5 μm。

图1 羌塘盆地南部隆鄂尼地区构造单元及剖面位置Fig.1 Tectonic unit and section location in Longeni area,southern Qiangtang Basin

图2 羌塘盆地南部隆鄂尼地区布曲组含油层剖面柱状图Fig.2 Comprehensive stratigraphic column of the oil-bearing horizons in Longeni area,southern Qiangtang Basin

激光微区同位素测试由西南油气田分公司完成,使用Nd:YAG激光器(束斑直径小于20 μm)加热分解取样,CO2气样采用 Finnigan公司MAT252型稳定同位素质谱仪检测。测试精度δ<0.2‰,PDB标准。实验流程详见参考文献[29]。

3 文石胶结物的鉴定

3.1 显微结构

偏光显微镜下文石呈针状或针柱状晶形,簇状、放射状集合体,具有高级白干涉色;负低至正高突起以及明显的闪突起,主要产出于沥青充填的溶蚀孔隙(图3a,b)。文石晶体细小,镜下与硬石膏(CaSO4)、片钠铝石[NaAlCO3(OH)2]较难区分。扫描电镜分析可见白云石粒间溶孔中,文石胶结物呈针簇状垂直或斜交孔隙壁生长,针状晶体长度一般10~15 μm,宽度3~5 μm;顶部较尖锐,形态不规则(图3c,d)。能谱分析显示其主要成分为Ca,O和C,谱线特征有效排除了CaSO4成分。

3.2 晶体形态

样品中针柱状胶结物含量较低,常规衍射方法不适用于矿物相分析,本次研究采用了原位微区X射线衍射精确判别胶结物类型。首先在岩石薄片上获取待测矿物的衍射图,通过多次实验获得重复性较好的数据;其次使用MDI Jade5软件进行谱图分析,将处理后的衍射谱图与标准卡片对比。衍射峰位置及强度对应关系较好,基本确定胶结物类型为自生文石(图4)。通过实测值与PDF标准卡片对比发现,d值(晶面间距)偏差小于0.01,相对强度存在一定差异(表1)。标准卡片的衍射峰是对成千上万的小颗粒粉末进行衍射形成的,测试结果可以避免定向性,而微区衍射束斑直径仅为0.1 mm,颗粒数量有限产生定向性,导致衍射强度出现偏差。

图3 羌塘盆地南部隆鄂尼地区文石显微结构及扫描电镜照片Fig.3 Microscopic photos and SEM photomicrographs of aragonite in Longeni area,southern Qiangtang Basin

图4 羌塘盆地南部隆鄂尼地区文石胶结物微区X射线衍射谱Fig.4 In situ X-ray diffraction pattern of aragonite cements in Longeni area,southern Qiangtang Basin

3.3 成分分析

文石胶结物电子探针分析结果显示,不同测点CaO的质量分数均非常接近 CaCO3的理论值,K2O,Na2O以及Al2O3的质量分数较低,表明胶结物受长石、黏土矿物等陆源组分影响较小,MgO和SrO质量分数具有较好的相关性(表2)。

综上所述,矿物形态特征、晶体结构以及成分分析充分表明,针柱状胶结物为自生文石,排除了孔隙中可能存在的片钠铝石和硬石膏。

表1 羌塘盆地南部隆鄂尼地区文石胶结物微区X衍射分析数据Table 1 XRD data of aragonite cements compared to PDF standard card in Longeni area,southern Qiangtang Basin

表2 羌塘盆地南部隆鄂尼地区文石胶结物常量元素含量Table 2 Content of major elements of aragonite cements in Longeni area,southern Qiangtang Basin %

4 成因讨论

文石碳、氧同位素组成的研究以洞穴石笋和浅海胶结物最为普遍,其中受大气淡水影响的洞穴碳酸钙(文石笋)δ13C值通常表现为显著负偏[30-31]。太平洋巴哈马台地和加勒比海伯利兹斜坡边缘海文石胶结物δ13C值大致为-2‰~6‰,δ18O值介于-6‰~3‰之间[4]。大西洋巴巴多斯岛放射状文石胶结物形成于海水和大气环流地下水混合的孔隙流体中,其δ13C值介于-3.48‰~-0.91‰,δ18O值介于-2.88‰~-1.59‰[32]。本次研究采用了激光微区取样的方法,分析结果显示自生文石胶结物δ13CPDB平均值为3.78‰,δ18OPDB平均值为-10.77‰(表3)。对比全球范围中侏罗世海相无脊椎动物及碳酸盐胶结物δ13C和δ18O值(-1.6‰~3.1‰和-3.6‰~0.8‰[33]),文石胶结物 δ13C值略高于同期海水,δ18O值明显偏负。根据海相灰岩和淡水灰岩的经验公式[34]:

表3 羌塘盆地南部隆鄂尼地区文石胶结物与白云岩碳氧同位素分析结果Table 3 Carbon and oxygen isotope analysis result of aragonite cements and surrounding rock in Longeni area,southern Qiangtang Basin

图5 羌塘盆地南部布曲组白云岩储层成岩序列Fig.5 Diagenetic sequence of dolomite reservoirs of Buqu Formation,southern Qiangtang Basin

式中:δ标准为PDB,Z>120为海相灰岩,Z=120为未定型灰岩,Z<120为淡水灰岩。推算得出文石胶结物古盐度Z值分布于128.68~130.48,平均值129.67,暗示其形成环境淡水淋滤作用影响较小。

周根陶[35]通过模拟实验与理论计算得出0~70℃范围内文石—水体系氧同位素平衡分馏方程:103lnα文石-水=20.41×103/T-41.42。假设流体δ18OSMOW为0‰,在50~70℃区间,温度每升高5℃,δ18OPDB值平均降低0.92‰。文石胶结物δ18O值的负偏可能受埋藏期地温梯度影响。模拟实验同时证实了Mg2+的存在有利于亚稳态文石的形成。

布曲组碳酸盐岩镜质组反射率Ro介于0.62%~2.15%,平均值1.35%,烃源岩处于成熟—生油高峰阶段。结合前人研究成果[36-37],建立了布曲组白云岩储层成岩演化序列(图5)。晚成岩阶段埋藏白云石化作用形成自形程度较高的晶粒白云岩。随着地层埋藏深度的增大,有机质成熟排出大量有机酸,部分白云岩晶间微孔发生扩溶,同时溶解未彻底白云石化的方解石和高镁方解石。封闭条件下地层流体过饱和,在孔隙中沉淀形成自生碳酸盐胶结物。

佘敏[38]通过表生到深埋藏环境的模拟实验证实,25~210℃以及1~52.5 MPa范围内有机酸对碳酸盐岩溶蚀不仅产生孔隙,同时也伴随着碳酸钙自生矿物的沉淀,其中包括针状的文石晶体。碳酸盐矿物溶解动力学过程受3个平行反应控制(Me代表Ca或Mg):

受碳酸盐溶解作用的影响,地层处于弱酸性条件,Ca2+浓度远超的浓度,倾向于先沉淀文石再逐步转变为方解石[21]。

文石胶结物沉淀析出后,烃类充注改变了孔隙流体性质及介质条件,抑制了文石向方解石的转化,导致古老地层中出现文石残余[39-40]。根据白云岩成岩序列以及自生文石形态特征,结合碳氧同位素分析结果,初步推断研究区文石胶结物为晚成岩阶段埋藏环境下碳酸盐岩溶解再沉淀的产物。

5 结论

(1)隆鄂尼地区布曲组砂糖状白云岩溶蚀孔隙中充填有针柱状文石胶结物,CaO的质量分数均接近CaCO3的理论值,MgO和SrO呈正相关。

(2)自生文石胶结物 δ13CPDB值为 3.5‰~3.98‰,略高于同期海水;δ18OPDB值介于-11.63‰~-9.98‰,受埋藏期地温梯度影响明显偏负。

(3)文石胶结物形成于埋藏白云石化作用之后,与封闭条件下碳酸盐岩矿物的溶解再沉淀有关;孔隙沥青与自生文石之间有一定的依存关系,烃类充注可能对文石的保存起重要的控制作用。

[1]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986: 158-168.

Zeng Yunfu,Xia Wenjie.Sedimentary petrology[M].Beijing:Geology Publishing House,1986:158-168.

[2]Mazzullo S J.Calcite pseudospar replacive of marine acicular aragonite,and implications for aragonite cement diagenesis[J].Journal of Sedimentary Research,1980,50(2):409-422.

[3]Wilkinson B H,Owen R M,Carroll A R.Submarine hydrothermal weathering,global eustasy,and carbonate polymorphism in Phanerozoic marine oolites[J].Journal of Sedimentary Research,1985,55(2):171-183.

[4]Grammer G M,Ginsburg R N,Swart P K,et al.Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits,Bahamas and Belize[J].Journal of Sedimentary Research,1993,63(5):983-989.

[5]Adabi M H.A re-evaluation of aragonite versus calcite seas[J].Carbonates and Evaporites,2004,19(2):133-141.

[6]赵希涛,沙庆安,冯文科.海南岛全新世海滩岩[J].地质科学,1978,13(2):163-173.

Zhao Xitao,Sha Qing’an,Feng Wenke.Holocene beachrocks at Hainan island[J].Chinese Journal of Geology,1978,13(2):163-173.

[7]Delaney M L,Linn L J,Davies P J.Trace and minor element ratios in Halimeda aragonite from the Great Barrier Reef[J].Coral Reefs,1996,15(3):181-189.

[8]Frank T D,Titschack J,Thierens M.Aragonite loss in a cold-water coral mound:Mechanisms and implications[J].Sedimentology,2011,58(3):670-690.

[9]张河清.川中侏罗系大安寨组中保存的骨骼文石[J].天然气工业,1984,4(1):22-26.

Zhang Heqing.Skeletal aragonite preserved in Daanzhai limestone of Jurassic,central Sichuan[J].Natural Gas Industry,1984,4(1):22-26.

[10]Brachert T C,Dullo W C.Shallow burial diagenesis of skeletal carbonates:Selective loss of aragonite shell material(Miocene to recent,Queensland Plateau and Queensland Trough,NE Australia):Implications for shallow cool-water carbonates[J].Sedimentary Geology,2000,136(3/4):169-187.

[11]Aissaoui D M.Botryoidal aragonite and its diagenesis[J].Sedimentology,1985,32(3):345-361.

[12]林玉石,黄新耀,张美良,等.中国南方发现大型文石笋[J].地学前缘,2007,14(2):236-241.

Lin Yushi,Huang Xinyao,Zhang Meiliang,et al.Large aragonite stalagmites found in South China[J].Earth Science Frontiers,2007,14(2):236-241.

[13]张海伟,蔡演军,谭亮成.石笋矿物类型、成因及其对气候和环境的指示[J].中国岩溶,2010,29(3):222-228.

Zhang Haiwei,Cai Yanjun,Tan Liangcheng.Phase composition and formation of stalagmite minerals:Indications of climate and environment[J].Carsologica Sinica,2010,29(3):222-228.

[14]Lachniet M S,Bernal J P,Asmerom Y,et al.Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite[J].Quaternary Geochronology,2012,14:26-37.

[15]赵文俞,刘嵘,王勤燕,等.木兰山蓝片岩中两种文石的产出特征及其动力学意义[J].地球科学(中国地质大学学报),2001,26(6):568-573.

Zhao Wenyu,Liu Rong,Wang Qinyan,et al.Aragonite from Mulanshan glaucophane schist:Implications for regional evolution of southwestern Dabie Mountains,central China[J].Earth Science(Journal of China University of Geosciences),2001,26(6):568-573.

[16]邱海峻,许志琴,张泽明,等.苏北高压变质带绿片岩中石榴石内文石包裹体的发现[J].地质通报,2002,21(10):617-624.

Qiu Haijun,Xu Zhiqin,Zhang Zeming,et al.New mineral evidence of high-pressure metamorphism of the Subei high-pressure belt: Aragonite inclusions in garnet from greenschist[J].Geological Bulletin of China,2002,21(10):617-624.

[17]戈莹.四川会理的文石晶体[J].矿物岩石,1992,12(1):8-11.

Ge Ying.A study on aragonite from Huili,Sichuan province[J].Mineralogy and Petrology,1992,12(1):8-11.

[18]武永强,潘永信.太原西山奥陶系文石的成因[J].山西矿业学院学报,1995,13(1):23-29.

Wu Yongqiang,Pan Yongxin.Origin of aragonite in Ordovician carbonates of Taiyuan Xishan[J].Shanxi Mining Institute Learned Journal,1995,13(1):23-29.

[19]Sandberg P.Aragonite cements and their occurrence in ancient limestones[M]//Schneidermann N,Harris P M.Carbonate Cements.[s.l.]:SEPM Special Publications,1985,36:33-57.

[20]王成善,伊海生,刘池洋,等.西藏羌塘盆地古油藏发现及其意义[J].石油与天然气地质,2004,25(2):139-143.

Wang Chengshan,Yi Haisheng,Liu Chiyang,et al.Discovery of paleo-oil-reservoir in Qiangtang Basin in Tibet and its geological significance[J].Oil&Gas Geology,2004,25(2):139-143.

[21]秦建中.青藏高原羌塘盆地油气资源潜力分析[J].石油实验地质,2006,28(6):566-573.

Qin Jianzhong.Study on the petroleum resource potential in the Qiangtang Basin,Qinghai-Tibet Plateau[J].Petroleum Geology&Experiment,2006,28(6):566-573.

[22]南征兵,李永铁,郭祖军.羌塘盆地油气显示及油源对比[J].石油实验地质,2008,30(5):503-507.

Nan Zhengbing,Li Yongtie,Guo Zujun.Hydrocarbon show and correlation between oil and source rock in the Qiangtang Basin[J].Petroleum Geology&Experiment,2008,30(5):503-507.

[23]张立强,纪友亮,李永铁.羌塘盆地侏罗系白云岩储层特征研究[J].石油实验地质,2001,23(4):384-389.

Zhang Liqiang,Ji Youliang,Li Yongtie.Reservoir characteristics of the Jurassic dolomite in the Qiangtang Basin[J].Petroleum Geology&Experiment,2001,23(4):384-389.

[24]伊海生,高春文,张小青,等.羌塘盆地双湖地区古油藏白云岩储层的显微成岩组构特征及意义[J].成都理工大学学报(自然科学版),2004,31(6):611-615.

Yi Haisheng,Gao Chunwen,Zhang Xiaoqing,et al.Microscopic diagenetic fabrics of dolomite reservoir from Shuanghu paleo-oil pool of Qiangtang Basin and its petroleum exploration implications[J].Journal of Chengdu University of Technology(Science&Technology Edition),2004,31(6):611-615.

[25]刘建清,杨平,陈文彬,等.羌塘盆地中央隆起带南侧隆额尼—昂达尔错布曲组古油藏白云岩特征及成因机制[J].地学前缘,2010,17(1):311-321.

Liu Jianqing,Yang Ping,Chen Wenbin,et al.The characteristicsof Longeni-Angdaercuo paleo-oil dolomite in southern part of the central uplift zone of Qiangtang Basin and its forming mechanism[J].Earth Science Frontiers,2010,17(1):311-321.

[26]伊海生,陈志勇,季长军,等.羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据[J].岩石学报,2014,30(3): 737-746.

Yi Haisheng,Chen Zhiyong,Ji Changjun,et al.New evidence for deep burial origin of sucrosic dolomites from Middle Jurrasic Buqu Formation in southern Qiangtang Basin[J].Acta Petrologica Sinica,2014,30(3):737-746.

[27]陈明,王剑,谭富文,等.藏北北羌塘坳陷中西部地区布曲组碳酸盐岩烃源岩分布特征[J].石油实验地质,2010,32(2): 181-185.

Chen Ming,Wang Jian,Tan Fuwen,et al.The distributed characteristic of middle Jurassic Buqu Formation carbonate source rock in midwest area of north Qiangtang Depression[J].Petroleum Geology&Experiment,2010,32(2):181-185.

[28]何道清.碳酸盐岩碳、氧同位素分析激光微取样技术[J].西南石油学院学报,2003,25(1):12-15.

He Daoqing.The laser micro-sampling technique for analysis of C and O isotope in carbonate[J].Journal of Southwest Petroleum Institute,2003,25(1):12-15.

[29]肖平,陆琦,于吉顺.采用X射线粉晶衍射仪实现岩石薄片中矿物的原位微区分析[J].矿物岩石,2014,34(1):6-9.

Xiao Ping,Lu Qi,Yu Jishun.Using X-Ray powder diffractometer to analyze in situ diffraction for mineral in rock thin section[J].Journal of Mineralogy and Petrology,2014,34(1):6-9.

[30]Frisia S,Borsato A,Fairchild I J,et al.Aragonite-calcite relationships in speleothems(Grotte de Clamouse,France):Environment,fabrics,and carbonate geochemistry[J].Journal of Sedimentary Research,2002,72(5):687-699.

[31]张海伟,蔡演军,安芷生,等.石笋矿物由文石转变为方解石后碳、氧同位素组成的变化[J].矿物岩石地球化学通报,2014,33(1):31-37.

Zhang Haiwei,Cai Yanjun,An Zhisheng,et al.Variation of oxygen and carbon isotope compositions in transformation of speleothem primary aragonite to secondary calcite[J].Bulletin of Mineralogy,Petrology and Geochemistry,2014,33(1):31-37.

[32]Kimbell T N,Humphrey J D.Geochemistry and crystal morphology of aragonite cements of mixing-zone origin,Barbados,West-Indies[J].Journal of Sedimentary Research,1994,64(3a):604-614.

[33]Allan J R,Wiggins W D.Dolomite reservoirs:Geochemical techniques for evaluating origin and distribution[M].Tulsa:American Association of Petroleum Geologists,1993.

[34]张秀莲.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J].沉积学报,1985,3(4):17-30.

Zhang Xiulian.Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J].Acta Sedimentologica Sinica,1985,3(4): 17-30.

[35]周根陶,郑永飞.文石—水体系氧同位素分馏系数的低温实验研究[J].高校地质学报,2000,6(1):89-105.

Zhou Gentao,Zheng Yongfei.Experimental studies of oxygen isotope fractionation factors between aragonite and water at low temperatures[J].Geological Journal of China Universities,2000,6(1):89-105.

[36]王兴涛,张庆石,张吉,等.青藏高原中生界白云岩特征研究及成因分析[J].沉积学报,2000,18(4):555-559.

Wang Xingtao,Zhang Qingshi,Zhang Ji,et al.Character study and analysis of dolomite of Mesozoic in Qingzang Plateau[J].Acta Sedimentologica Sinica,2000,18(4):555-559.

[37]张小青.羌塘盆地双湖地区侏罗系白云岩成因及储集性研究[D].成都:成都理工大学,2005.

Zhang Xiaoqing.Study on the genesis and reservoir characteristics of Jurassic dolomites in Shuanghu area,Qiangtang Basin[D].Chengdu:Chengdu University of Technology,2005.

[38]佘敏,寿建峰,沈安江,等.从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J].地球化学,2014,43(3):276-286.

She Min,Shou Jianfeng,Shen Anjiang,et al.Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J].Geochimica,2014,43(3):276-286.

[39]Dodd J R.Processes of conversion of aragonite to calcite with examples from the Cretaceous of Texas[J].Journal of Sedimentary Research,1966,36(3):733-741.

[40]Wendt J.Aragonite in Permian reefs[J].Nature,1977,267 (5609):335-337.

(编辑 黄 娟)

Mineral and genesis study of authigenic aragonite in sucrosic dolomites from Middle Jurassic Buqu Formation in southern Qiangtang Basin,Tibet

Zhang Shuai1,Yi Haisheng2,3,Xia Guoqing3,Liang Dingyong4
(1.School of Earth Science,Chengdu University of Technology,Chengdu,Sichuan 610059,China;2.State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Chengdu,Sichuan 610059,China;3.Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu,Sichuan 610059,China;4.Hainan Institute of Geological Survey,Haikou,Hainan 570226,China)

Columnar-acicular cement has been discovered in the Middle Jurassic Buqu Formation of Longeni area in the southern Qiangtang Basin of Tibet,distributed in saccharoidal dolomite in dissolution pores filled with bitumen.As demonstrated by microstructure,in situ X-ray diffraction(XRD)and electron microprobe analysis(EMPA),mineralogical investigations have confirmed the emergence of authigenic aragonite.It occurs as bundles and radiating clusters consisting of needle crystals.Major elements show that MgO and SrO have a positive correlation.In situ isotopic analysis indicates that δ13C values range from 3.5‰PDB to 3.98‰PDB and δ18O ranges from-9.98‰PDB to-11.63‰PDB.Aragonite is rarely found in carbonate rocks formed during geological times because of the conversion of aragonite to low-Mg-calcite through neomorphism or dissolution.Oxygen and carbon isotopic composition of aragonite cements in saccharoidal dolomite has greater variability compared with aragonite formed in modern marine or meteoric diagenesis.In the formation process meteoric water leaching has less influence and a negative excursion of δ18O is mainly controlled by geothermal gradient during burial.The reservoir diagenetic sequence shows that aragonite cements formed after burial dolomitization.Authigenic mineral precipitates with organic acid dissolution,and hydrocarbon filling has largely inhibited the conversion of aragonite to calcite.The comprehensive analysis suggests that aragonite cements were precipitated from a dissolution-reprecipitation process of carbonate minerals during late diagenesis.Hydrocarbon filling played an important role controlling the preservation of aragonite cements.

aragonite;micro X-ray diffraction;carbon and oxygen isotopes;Middle Jurassic;Qiangtang Basin

TE12<2.2 class="emphasis_bold">2.2 文献标识码:A2.2

A

1001-6112(2016)06-0772-07

10.11781/sysydz201606772

2015-12-10;

2016-08-25。

张帅(1985—),男,博士研究生,从事储层矿物岩石学研究。E-mail:zsdolomite@gmail.com。

伊海生(1959—),男,教授,博士生导师,从事沉积地质学教学和科研工作。E-mail:yhs@cdut.edu.cn。

国家自然科学基金(41572089)和国土资源部沉积盆地与油气资源重点实验室开放基金(zdsys2014002)资助。

猜你喜欢

文石微区羌塘
醍醐灌顶
文石瑰意琦行,皴纹超然出众
——详解淄博文石皴纹及赏石文化
羌塘禁区
论电子元器件微区的焊接质量和可靠性
文石韵
羌塘盆地油气二维地震勘探进展综述
文雅清虚 淄博文石
羌塘盆地可控震源采集试验分析
微区电沉积技术及其研究进展*
X荧光微区分析在岩矿鉴定工作中的应用