APP下载

高浓麦汁改良提高啤酒酵母发酵性能的研究进展

2016-03-27赵伯辰雷宏杰

酿酒科技 2016年10期
关键词:麦汁酿造啤酒

赵伯辰,雷宏杰

(1.西北农林科技大学食品科学与工程学院,陕西杨凌712100;2.雪花啤酒(西安)有限公司,陕西西安710018)

高浓麦汁改良提高啤酒酵母发酵性能的研究进展

赵伯辰1,2,雷宏杰1

(1.西北农林科技大学食品科学与工程学院,陕西杨凌712100;2.雪花啤酒(西安)有限公司,陕西西安710018)

啤酒高浓酿造技术由于可在不增加生产设备的基础上大幅提高啤酒产量、降低能耗和劳动力、改善啤酒口感而深受啤酒酿造商的青睐。但该技术对酵母菌种的要求非常苛刻,高渗透压胁迫和高乙醇毒性导致酵母生长缓慢、细胞活性降低,严重影响到酵母的发酵性能和啤酒品质。目前,多种酵母营养添加物已经应用于高浓麦汁中来改善酵母的发酵性能,包括金属离子、脂肪酸、甾醇和氮源等。改善麦汁营养组成可降低酵母细胞对外界压力的敏感性从而提高其发酵性能。但是,麦汁组成的改变很可能对啤酒口感、酒体稳定性和啤酒泡沫产生不利的影响。系统综述了国内外通过添加多种营养物质优化麦汁组成改善细胞生理特性、酵母发酵性能及啤酒产品质量的研究进展。

啤酒;高浓麦汁;啤酒酵母;啤酒质量

啤酒高浓酿造技术在现代啤酒工业生产中得到了广泛的应用。该技术优势是可大幅提高生产能力及设备利用率、降低能耗及劳动力、减少废水的排放量[1]。尽管大多数啤酒酿造商采用高浓麦汁(16~18°P)进行啤酒生产,但一些半工业规模的试验已经提出了超高浓麦汁酿造的可行性(20~25°P)[2]。超高浓麦汁发酵表现出较低的发酵速度、酯类物质含量显著升高、酵母细胞生长的迟滞期延长、啤酒泡沫稳定性差、啤酒残糖量升高、酵母循环利用次数减少等缺点[3]。超高浓啤酒酿造技术的进一步产业化需要对一系列因素进行逐一优化(酵母细胞的耐受性、发酵性能、发酵过程工艺参数等)。本文综述了通过在麦汁中添加金属离子、脂类及酵母营养剂来改善发酵性能的可行性,并分析了其对啤酒质量的影响。

1 金属离子(Zn2+)

很早就有学者提出Zn2+在麦汁发酵中起到非常关键的作用。目前啤酒酿造工业生产中Zn2+的添加最为普遍。麦汁中通常含有0.1~5.0 mg/L的Zn2+,其含量的大小取决于麦芽的品种及麦汁的制备工艺[4]。麦汁中的Zn2+只代表麦芽中Zn2+的一小部分,大部分Zn2+仍然存在于麦糟中或者参与了蛋白质的沉降及麦汁的澄清[5]。Zn2+在酵母细胞中扮演多重角色,可作为一系列蛋白质(糖酵解和醇类合成途径的蛋白酶)的结构或者催化辅因子[6]。在摇瓶发酵[7]和恒化器培养[8]过程中,Zn2+的缺乏会导致几十个基因的调控发生改变,这是由于大约3%的酵母蛋白组需要Zn2+的参与才能发挥正常的功能[9]。De Nicola等[8]发现:受Zn2+调控其转录的基因扮演着多种多样的生物学角色,包括储存碳水化合物的代谢、线粒体的生物发生学以及通过支链氨基酸合成基因调控风味物质的形成。而且,Zn2+在锌指结构DNA结合蛋白(Msn2p和Msn4p)的形成过程中起着非常重要的作用,此类蛋白质调控酵母细胞对外界压力的响应[10]。

Zn2+在啤酒酿造过程中的重要性可反映在发酵开始的几小时内酵母细胞对其的快速吸收[11]。Zn2+通过细胞壁被运输至胞内储存于液泡中[12]。麦汁中Zn2+的水平经常处于波动状态,但常浓麦汁中(12°P)0.2 mg/L的Zn2+浓度可保证最佳的发酵速度,如果低于0.1 mg/L则会影响发酵的正常进行。Zn2+的添加可提高酵母的生长速度,改善其发酵性能[13]。然而,在发酵过程中有很多因素会影响到酵母细胞对Zn2+的需求。Helin和Slaughter[14]研究发现,细胞对Zn2+的需求受到麦汁中Mn2+浓度的影响,当麦汁中Mn2+水平很低(<0.01 mg/L)时,0.6 mg/L的Zn2+对发酵产生抑制作用。但酵母的生理状况不会受到Zn2+浓度的影响(即使达到500 mg/L)[15]。尽管存在菌种特异性,但一般来讲,与上面发酵酵母菌株相比,下面发酵酵母菌株能更好地适应过高浓度的Zn2+。过高浓度的Zn2+所产生的不利影响在超高浓麦汁(20°P)发酵中并不明显,这可能是因为原麦汁中Zn2+水平较低或者Mn2+浓度的不同所致[16]。然而,金属离子之间的相互作用并不局限于Mn2+,其他金属离子(Ca2+、Mg2+、K+和Na+)也会影响Zn2+对酵母发酵性能的促进效果[13]。这些作用可能涉及到多种离子对螯合大分子如麦汁中的氨基酸和肽链上的结合位点存在竞争性的作用。

Zn2+的添加量达到0.5 mg/L时对酵母细胞代谢(高级醇和酯类化合物)会产生较大的影响[13]。添加Zn2+会导致啤酒中异丁醇和异戊醇的浓度升高,酯类物质的合成也会受到高浓度Zn2+的刺激,乙酸乙酯、乙酸异戊酯、己酸乙酯等含量均呈上升趋势。Zn2+对啤酒泡沫特性也有一定的影响,Evans和Sheehan[17]研究表明,麦芽中的多种金属离子浓度(包括Zn2+)和泡沫稳定性之间存在着正相关性。这是因为麦芽蛋白含量改变或麦汁中Zn2+含量的升高(酵母活力)会降低对泡沫不利的物质的释放(如蛋白酶等)。研究发现金属离子对泡沫稳定性的影响与麦芽中的离子含量有关,与啤酒中的离子含量无关,表明离子并不是通过与异α-酸之间的交联作用来稳定啤酒泡沫[18]。

2 脂肪酸

麦汁中的悬浮固形物种类繁多[19],很多研究提出了其中脂肪酸的重要性,特别是软脂酸(16∶0)和亚油酸(18∶2)对发酵以及啤酒特征具有突出的贡献。早期研究表明,纯亚油酸对酵母细胞产生醋酸酯类化合物有着不利的影响[20]。Lentini[21]发现在发酵过程中酵母细胞膜上来源于麦芽的亚油酸与酯类化合物的合成直接相关。其他研究者提出,亚油酸的添加可提高发酵速度,增大酵母细胞生长量以及细胞活性,促进乙醇的生成,但不会提高高级醇的生成[22]。麦汁中添加软脂酸和油酸可增强酵母细胞对氮的吸收,同样在葡萄汁中添加亦可提高酵母的生长速度、改善发酵性能、增强风味化合物的形成[23]。

Moonjai等[22]则致力于通过添加油脂来降低发酵系统对氧气需求量的可行性。在麦汁中充入少量的氧气就可以提高啤酒的风味稳定性,也可以限制酵母细胞中潜在的氧化应激反应。不饱和脂肪酸(UFA)通常是经过耗氧反应生成,UFA的添加可减少酵母细胞对氧的需求。Hull[24]探索了在工业大生产中添加UFA来替代麦汁充氧的可行性,在其研究中,发酵前接种酵母液中添加橄榄油(油酸中的一种)来代替麦汁充氧,对啤酒质量没有大的影响。因此,UFA的添加可作为充氧的替代手段,特别是在氧气溶解很大程度上受到抑制的高浓和超高浓麦汁中具有非常重要的意义[25]。同样,通过在高浓麦汁中添加UFA提高细胞膜的不饱和度也可增强酵母细胞对乙醇的耐受性[26],确保发酵的正常进行。

啤酒泡沫的泡持性和挂壁会受到长链脂肪酸的影响,而受到短链脂肪酸(≤C10)的影响较小。但麦汁中的长链脂肪酸浓度非常低,对泡沫的影响不大[27]。据研究表明,如果麦汁中加入对泡沫不利的油脂,其作用会暂时受到限制,当时间充分时,这种不利的影响会通过油脂与油脂结合蛋白之间的相互作用而消失[28]。固定化油脂结合蛋白的使用可增强很多商业啤酒的泡沫稳定性[29]。事实上油脂也可能对啤酒泡沫特性产生好的影响。Furukubo等[30]发现,碱性氨基酸与促进起泡的异α-酸之间相互作用而导致啤酒泡沫变差,但可通过添加UFA提高细胞对氨基酸的吸收而得到缓解[23]。

3 甾醇

甾醇在酵母细胞膜中影响多重生物学过程[31],但与UFA一样,在高浓酿造中缓解细胞压力上起到了重要的作用。然而当酵母细胞在乙醇存在的情况下甾醇含量却较低,麦角固醇含量较高[32]。而且细胞膜上高浓度的麦角固醇与细胞对乙醇的耐受性呈现明显的正相关[33]。麦角固醇的保护作用机制是降低细胞膜的流动性[34]。酵母细胞无法在无氧条件下合成麦角固醇,可通过促进扩散从麦汁中吸收[35]。在无氧的高浓麦汁中添加麦角固醇可提高发酵速度、生产力、氨基氮的消耗和细胞生长及活性[36]。此外,麦角固醇的添加还可以提高酵母的循环利用次数至5次且发酵性能没有明显的降低[37]。

培养基中添加多种甾醇可提高酵母细胞对高渗透压的耐受性,麦角固醇和豆甾醇的效果最佳[38]。另外,当酵母细胞受到盐的压力胁迫时细胞膜上的麦角固醇含量也会升高[39]。因此,高浓酿造条件下麦角固醇也可能参与到保护细胞免受渗透压破坏的过程中。

4 酵母营养剂(酵母膏)

已经有人证实,在培养基中加入酵母膏或者由酵母膏制成的营养剂均可改善酵母发酵性能。该培养基包括:富含葡萄糖的培养基[40]、龙舌兰汁[41]、高浓及超高浓麦汁[36]。酵母膏的使用可提高酵母的生长及细胞活性、提高糖的利用率及乙醇产量[41]。在使用酵母营养剂时,不仅是游离氨基氮水平,其氨基酸组成也是非常关键的因素。不同的氨基酸对发酵性能的影响不同,例如脯氨酸在发酵过程中就不会被酵母利用,但在保护酵母细胞抵抗高乙醇或高渗透压胁迫的过程中起到了很重要的作用[42]。Thomas等[43]发现,谷氨酸(3 g/L)可改善小麦芽糖化液的发酵性能,但甘氨酸的作用却是相反的,赖氨酸的添加降低了细胞活性和发酵性能,与单一的氮源相比,复杂的氮源(酪蛋白水解物)则更有利于提高酵母的发酵性能。Ingledew等[44]认为,酵母营养剂改善发酵性能不仅提高了氮源的利用率,而且还为酵母细胞提供了维生素和金属离子。很多研究表明,酵母膏或者营养剂中含有Mg2+,有助于提高酵母的发酵性能[45]。

常浓麦汁中添加酵母营养剂会刺激高级醇和酯类化合物的合成,这是因为营养剂提高了酵母对麦汁中氨基酸的吸收率[46]。Casey等[47]则发现,在超高浓麦汁中添加酵母膏会降低啤酒中的高级醇浓度,提高酯类化合物的浓度,乙酸乙酯和乙酸异戊酯的含量可分别提高40%和80%。研究表明,酵母膏的添加对高辅料麦汁更加有利,由40%大米辅料的麦汁发酵生产的啤酒感官品评较差,双乙酰含量较高、口感较差。而酵母膏的添加可明显改善以上问题,几乎和全麦芽麦汁发酵的啤酒口感相同[48]。酵母膏和营养剂成分的复杂性导致人们对啤酒风味物质及感官品评结果难以进行解释。风味物质可能更大程度上跟添加物的氨基酸组成有关,众所周知,酵母膏的氨基酸组成含量因原料问题经常波动较大,进而会影响到高级醇、酯和SO2的生成[49]。

5 结论

国内外研究学者尽管历经数十年的研究探索,超高浓麦汁酿造技术(≥20°P)迄今为止并未在工业生产中得到应用。目前所关注的能耗问题及原辅材料的可利用程度给予了我们新的研究方向。本文论述了高浓麦汁中营养物质的补充对改善酵母发酵性能的促进作用以及对啤酒质量的影响。多种多样的添加物已经广泛地应用于生物乙醇的超高浓发酵过程中,并且近几年人们对此有了进一步的了解。然而啤酒酿造过程因多种因素的限制变得更为复杂(发酵过程参数、风味、泡沫、酵母活力),因此在啤酒酿造中添加营养物质的时候必须综合各项因素考虑。超高浓麦汁酿造技术的成功应用势必具有非常大的优势,特别是在降低环境污染及节约能源方面。但是,需要设计出一套完善的方案,不仅仅是优化麦汁的营养组成,还要对酿造工艺参数进行调整,并且筛选出具有良好发酵性能的酵母菌种。

[1]Stewart G G.High-gravity brewing and distilling-past experiences and future prospects[J].Journal of theAmerican Society of Brewing Chemists,2010,68:1-9.

[2]McCaig R,McKee J,Pfisterer EA,et al.Very high gravity brewing-laboratory and pilot plant trials[J].Journal of the American Society of Brewing Chemists,1992,50:18-26.

[3]Cahill G,Murray D M,Walsh P K,et al.Effect of the concentration of propagation wort on yeast cell volume and fermentation performance[J].Journal of theAmerican Society of Brewing Chemists,2000,58:14-20.

[4]Kühbeck F,Schütz M,Thiele F,et al.Influence of lauter turbidity and hot trub on wort composition,fermentation,and beer quality[J].Journal of theAmerican Society of Brewing Chemists,2006,64:16-28.

[5]LentiniA,Rogers P,Higgins V,et al.The impact of ethanol stress on yeast physiology[M]//Smart K.Brewing Yeast Fermentation Performance.2nd ed.Wiley-Blackwell,2002:25-38.

[6]De Smidt O,Du Preez J C,Albertyn J.The alcohol dehydrogenases of Saccharomyces cerevisiae:a comprehensive review[J].FEMS Yeast Research,2008,8:967-978.

[7]Higgins V J,Rogers P J,Dawes I W.Application of genome-wide expression analysis to identify molecular markers useful in monitoring industrial fermentations[J]. Applied and Environmental Microbiology,2003,69:7535-7540.

[8]De Nicola R,Hazelwood LA,De Hulster EAF,et al. Physiological and transcriptional responses of Saccharomycescerevisiae to zinc limitation in chemostat cultures[J].Applied and Environmental Microbiology,2007,73:7680-7692.

[9]Eide D J.Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae[J].Journal of Nutrition,2003,133:1532S-1535S.

[10]Martinez-Pastor M T,Marchler G,Schuller C,et al.The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element(STRE)[J].EMBO Journal,1996,15:2227-2235.

[11]PoredaA,Antkiewicz P,Tuszyński T,et al.Accumulation and release of metal ions by brewer's yeast during successive fermentations[J].Journal of the Institute of Brewing,2009,115:78-83.

[12]De Nicola R,Walker G M.Accumulation and cellular distribution of zinc by brewing yeast[J].Enzyme and Microbial Technology,2009,44:210-216.

[13]TosunA,Ergun M.Use of experimental design method to investigate metal ion effects in yeast fermentations[J].Journal of Chemical Technology and Biotechnology,2007,82:11-15.

[14]Helin T,Slaughter J C.Minimum requirements for zinc and manganese in brewer's wort[J].Journal of the Institute of Brewing,1977,83:17-19.

[15]Frey S W,Dewitt W G,Bellomy B R.The effect of several trace metals on fermentation[J].Journal of theAmerican Society of Brewing Chemists,1967,199-205.

[16]Rees E M R,Stewart G G.Strain specific response of brewer's yeast strains to zinc concentrations in conventional and high gravity worts[J].Journal of the Institute of Brewing,1998,104:221-228.

[17]Evans D E,Sheehan M C.Don't be fobbed off:the substance of beer foam-a review[J].Journal of theAmerican Society of Brewing Chemists,2002,60:47-57.

[18]Hughes P S,Simpson W J.Interactions between hop bitter acids and metal cations assessed by ultra-violet spectrophotometry[J].Cerevisia,1995,20:35-39.

[19]Narziß L.Die Technologie der Wurzebereitung[M].7th ed. Stuttgart:Ferdinand Enke Verlag,1992.

[20]Thurston PA,Quain D E,Tubb R S.Lipid metabolism and the regulation of volatile ester synthesis in Saccharomyces cerevisiae[J].Journal of the Institute of Brewing,1982,88:90-94.

[21]LentiniA,Takis S,Hawthorne D B,et al.The influence of trub on fermentation and flavour development[J].Institute of Brewing,1994,23:89-95.

[22]Moonjai N,Verstrepen K J,Shen H Y,et al.Linoleic acid supplementation of a cropped brewing lager strain:effects on subsequent fermentation performance with serial repitching[J].Journal of the Institute of Brewing,2003,109:262-272.

[23]Stewart G G,Martin SA.Wort clarity:effects on fermentation[J].Technical Quarterly-Master BrewersAssociation of America,2004,41:18-26.

[24]Hull G.Olive oil addition to yeast as an alternative to wort aeration[J].Technical Quarterly-Master BrewersAssociation ofAmerica,2008,45:17-23.

[25]Baker C,Morton S.Oxygen levels in air-saturated worts[J]. Journal of the Institute of Brewing,1977,83:348-349.

[26]RoseAH.The role of oxygen in lipid metabolism and yeast activity during fermentation[J].European Brewery Convention Mongraph,Verlag Hans Carl Getränke-Fachverlag:Nürnberg,1978,5:96-107.

[27]Heintz O E.Aspects of beer foam formation and head retention[J].Technical Quarterly-Master BrewersAssociation of America,1987,24:58-60.

[28]Bamforth C W,Jackson G.Aspects of foam lacing[C]// Proceedings of the European Brewery Convention.London: IRL Press,1983:331-338.

[29]Dickie K H,Cann C,Norman E C,et al.Foam-negative materials[J].Journal of theAmerican Society of Brewing Chemists,2001,59:17-23.

[30]Furukubo S,Shobayashi M,Fukui N,et al.Anew factor which affects the foam adhesion of beer[J].Technical Quarterly-Master BrewersAssociation ofAmerica,1993,30:155-158.

[31]Daum G,Lees N D,Bard M,et al.Biochemistry,cell biology and molecular biology of lipids of Saccharomyces cerevisiae[J].Yeast,1998,14:1471-1510.

[32]Arneborg N,Høy C E,Jørgensen O B.The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat[J].Yeast,1995,11:953-959.

[33]Aguilera F,Peinado RA,Millán C,et al.Relationship between ethanol tolerance,H+ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains[J].International Journal of Food Microbiology,2006,110:34-42.

[34]Russell N J.Functions of lipids:Structural roles and membrane functions[M]//Microbial Lipids.London: Academic Press,1989:279-365.

[35]Nes W R,Dhanuka I C,Pinto W J.Evidence for facilitated transport in the absorption of sterols by Saccharomyces cerevisiae[J].Lipids,1986,21:102-106.

[36]Dragone G,Silva D P,Almeida e Silva J B,et al. Improvement of ethanol productivity in a high-gravity brewing at pilot plant scale[J].Biotechnology Letters,2003,25:1171-1174.

[37]Casey G P,Ingledew W M.Reevaluation of alcohol synthesis and tolerance in brewer's[J].Journal of theAmerican Societyof Brewing Chemists,1985,43:75-83.

[38]Hossack JA,RoseAH.Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols[J]. Journal of Bacteriology,1976,127:67-75.

[39]Hosono K.Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerance yeast Zygosaccharomyces rouxii[J].Journal of General andApplied Microbiology,1992,138:91-96.

[40]Bafrncová P,Šmorovičová D,Sláviková I,et al.Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae[J]. Biotechnology Letters,1999,21:337-341.

[41]Díaz-Montaño D M,Favela-Torres E,Córdova J. Improvement of growth,fermentative efficiency and ethanol tolerance of Kloeckera africana during the fermentation of Agave tequilana juice by addition of yeast extract[J].Journal of the Science of Food andAgriculture,2009,90:321-328.

[42]Takagi H,Takaoka M,KawaguchiA,et al.Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,2005,71:8656-8662.

[43]Thomas K C,Hynes S H,Ingledew W M.Effects of particulate materials and osmoprotectants on very-highgravity ethanolic fermentation by Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,1994,60:1519-1524.

[44]Ingledew M L,Sosulski F W,Magnus CA.An assessment of yeast foods and their utility in brewing and enology[J]. Journal of theAmerican Society of Brewing Chemists,1986,44:166-170.

[45]D'Amore T,Panchal C J,Russell I,et al.Osmotic pressure effects and intracellular accumulation of ethanol in yeast during fermentation[J].Journal of Industrial Microbiology,1988,2:365-372.

[46]Kruger L,PickerellAT W,Axcell B.The sensitivity of different brewing yeast strains to carbon dioxide inhibition: fermentation and production of flavour-active volatile compound[J].Journal of the Institute of Brewing,1992,98:133-138.

[47]Casey G P,Chen E C H,Ingledew W M.High-gravity brewing:production of high levels of ethanol without excessive concentrations of esters and fusel alcohols[J]. Journal of theAmerican Society of Brewing Chemists,1985,43:179-182.

[48]Le Van V M,Strehaiano P,Nguyen D L,et al.Microbial protease of yeast extract-alternative additions for improvement of fermentation performance and quality of beer brewed with a high rice content[J].Journal of theAmerican Society of Brewing Chemists,2001,59:10-16.

[49]Verstrepen K J,Derdelinckx G,Dufour J P,et al.Flavor active esters:adding fruitiness to beer[J].Journal of Bioscience and Bioengineering,2003,96:110-118.

Research Progress in High-Gravity Wort to Improve the Fermenting Performance of Beer Yeast

ZHAO Bochen1,2and LEI Hongjie1
(1.College of Food Science&Engineering,NorthwestA&F University,Yangling,Shaanxi 712100;2.Snow Beer(Xi'an)Co.Ltd.,Xi'an,Shaanxi 710018,China)

High-gravity brewing technology of beer is quite popular among breweries because it could greatly increase beer yield,reduce energy consumption and labor force,and improve beer taste without any addition of production equipments.However,such technology has extreme requirements for beer yeast species because osmotic stress and high-alcohol toxicity would result in slow growth of yeast and low cell activity which would further deteriorate yeast fermenting performance and beer quality.At present,multiple yeast nutritional additives including metal ions,fatty acids,sterol and nitrogen source etc.are used in high-gravity wort to improve the fermenting performance of yeast.The change in wort nutritional composition could decrease the sensitivity of yeast cells to ambient pressure and further improve yeast fermenting performance.However,the change in wort nutritional composition would possibly damage beer taste,beer stability and beer foam.In this paper,the research progress in the change of wort nutritional composition by adding multiple nutritional substances to improve yeast fermenting performance and beer quality at home and abroad was reviewed.(Trans.By YUE Yang)

beer;high-gravity wort;beer yeast;beer quality

TS262.5;TS262.54;TS262.57

A

1001-9286(2016)10-0094-05

10.13746/j.njkj.2016157

2016-05-09

优先数字出版时间:2016-07-11;地址:http://www.cnki.net/kcms/detail/52.1051.TS.20160711.1043.001.html。

猜你喜欢

麦汁酿造啤酒
探究未过滤麦汁浊度的控制措施
玫瑰花红曲酒酿造工艺的初步探索
小巧有力的糖化设计
“新冠牌”啤酒真倒霉:60天赔了20个亿
黄昏十月末
《啤酒》
哼哼猪买啤酒
啤酒和麦汁中反-2-壬烯醛前体物质检测方法的优化及应用
阳朔啤酒鱼
高蛋白含量大麦甘啤4号酿造特性