APP下载

牙槽突裂治疗方法的研究进展

2016-03-10徐雪杨超刘坤黄宁郑谦石冰

国际口腔医学杂志 2016年4期
关键词:上颌骨尖牙植骨

徐雪杨超刘坤黄宁郑谦石冰

1.口腔疾病研究国家重点实验室 华西口腔医院唇腭裂外科(四川大学);2.正畸科 成都 610041

牙槽突裂治疗方法的研究进展

徐雪1杨超1刘坤1黄宁2郑谦1石冰1

1.口腔疾病研究国家重点实验室 华西口腔医院唇腭裂外科(四川大学);2.正畸科 成都 610041

牙槽突裂整复术现已成为唇腭裂序列治疗的重要环节,上颌骨裂隙骨移植在20世纪初就已提出,但至今,对牙槽突裂的治疗方法仍存在许多争议,本文就牙槽突裂整复术的手术时机、植入物选择、手术方法、术前术后正畸干预等方面的研究进展作一综述。

牙槽突裂; 植骨术; 手术

自1901年,Eiselsberg首次报道应用自体小指指骨修复牙槽突裂以来,各国学者[1-6]均开始对牙槽突裂整复术进行研究,先后提出了初期牙槽突裂植骨及牙龈骨膜成形术,由于这2种整复方法均影响上颌骨生长发育,故许多学者不再使用这2种方法。直到20世纪70年代,Boyne和Sands[7-8]提出了移植髂骨松质骨来修复牙槽突裂,并提出植骨手术一定要在尖牙萌出前,且用自体髂骨松质骨。Boyne和Sands[8]用该方法治疗了10例患者,发现植骨术后有正常的牙槽间隔形成,尖牙萌出,并可通过正畸将尖牙调整到正常位置。另有其他治疗中心[9-14]使用该方法,也取得了较好的效果。自此,在混合牙列期移植髂骨的骨松质来修补牙槽突裂,被广泛使用[15]。

牙槽突裂整复术现已成为唇腭裂序列治疗的重要环节。上颌骨裂隙骨移植在 20 世纪初就已提出,但半个世纪后才被广泛认识[16]。至今,对牙

槽突裂的治疗方法仍存在许多争议,本文就牙槽突裂整复术的手术时机、植入物选择、手术方法、术前术后正畸干预等方面的研究进展作一综述。

1 手术时机

由于行一期植骨的单侧唇腭裂患者的大部分植入骨被吸收,牙槽突仍存在裂隙,上颌骨的生长受到抑制,患者前牙反和面中份凹陷畸形的比例较高[17],故多数学者不提倡一期植骨。

现学者[18]普遍认同在恒牙列建立过程中,面中1/3发育完成后,年龄在9~11岁,恒尖牙萌出前,尖牙牙根已形成1/2~3/4时,行牙槽突裂植骨术。此时植骨后裂隙两侧的尖牙或侧切牙萌出,牙齿萌出和咬合刺激植入骨质,减少移植骨的吸收;上颌骨横向及纵向生长迅速阶段发生在6~7岁,8岁时颌骨前部横向和矢状向的生长已基本结束,8岁以后进行植骨手术,不会对上颌骨的生长发育产生不良影响[19]。

近些年学者提出,可将牙槽突裂植骨年龄提前到5~7岁[20],在中切牙和侧切牙萌出前进行,从而为中切牙和侧切牙的萌出提供骨支持[21-23],但提前行植骨手术是否会影响上颌骨发育,目前还没有足够的研究。

2 植入材料的选择

牙槽突裂植入骨质通常采用自体骨,如髂骨、颅骨、下颌骨、胫骨、肋骨,也有使用异体胚胎骨和生物材料的报道。适宜供区的选择取决于供骨成活和尖牙在植骨区萌出的难易程度。目前仍首选髂骨作为供骨区,因为髂骨有丰富的纯粹骨松质的骨源,颗粒状骨松质比块状骨松质移植表面积大,接触面大,有利于术后血管化,其取骨方法也较简便。

使用自体骨移植,组织相容性好,但对于移植骨供区有一定的损害。近年来,学者们对牙槽突裂植入骨的替代品及生物材料做了很多研究。这些替代品及生物材料的应用可缩短手术时间,减少对患者的损害及其并发症的发生。

Nique等[24]应用异体骨治疗牙槽突裂,术后牙槽突裂隙处出现骨性连接,术前未萌出的牙齿长入移植骨内。有学者尝试采用冻干异体骨、脱钙异体骨以及羟磷灰石、磷酸三钙等生物材料取代自体骨,并取得较为满意的效果。但另有学者认为,冻干骨存在延迟创口愈合、使骨移植材料部分丢失以及使前颌骨不稳定性延长等并发症。

在自体移植骨中加入各种生长因子,能有效减少骨吸收、促进骨生长。Segura-Castillo等[25]在植入的自体骨中加入纤维蛋白黏合剂,3个月后骨吸收率较对照组低,且骨密度较高。Carstens等[26]和Chin等[27]在髂骨的骨松质中加入重组人骨形态发生蛋白-2(recombinated human bone morphogenetic protein-2,rhBMP-2)后发现,绝大多数患者裂隙区形成了骨联合,新骨可行使与自身正常骨相同的功能,可促使天然牙萌出和正畸牙移动,且新骨具有与天然骨相同的结构。骨形态发生蛋白(bone morphogenetic protein,BMP)在体内促进人骨髓间充质细胞分化的能力远大于在体外,且将高质量浓度的BMP置于羟磷灰石支架材料上,促进骨形成的作用更强[28]。由于rhBMP-2诱导的骨再生过程将由周围组织的血管提供营养,所以血供及缺损范围对这一技术的应用效果有很大的影响[26]。BMP具有异位成骨性,加大剂量后会促进局部的血液循环,从而在术后早期加剧肿胀的不良反应,所以BMP在生长发育期的患者中应慎用。BMP临床应用的时间相对较短,其长期的致瘤性等不良反应尚不清楚[29]。

1998年,Marx等[30]首次将富含血小板的血浆(platelet-rich plasma,PRP)技术用于肿瘤术后患者的下颌重建。2011年,Marukawa等[31]将PRP混合骨松质以及骨髓,移植修复了14例牙槽突裂患者,结果表明,PRP能促进骨再生,PRP混合植骨患者的骨质吸收明显低于单纯骨松质移植患者。PRP能促进骨修复主要是由其释放的多种高浓度生长因子的联合作用所致。PRP来源于自体,制取容易,富含大量生长因子,在凝血酶作用下易生成凝胶,形成的三维凝胶纤维成为骨诱导的支架结构,提供细胞生长以及成骨分化的细胞外基质,为骨成熟提供良好的环境。

使用患者自身骨髓基质干细胞(bone marrow derived stroma cell,BMSC)修复牙槽突裂,可以在体内形成稳定的组织工程化骨组织,无明显的骨吸收现象,临床治疗效果稳定[32],且减少了患者的创伤及术后疼痛。BMSC亦已应用于临床修复牙槽裂骨缺损[33-34]。

组织工程支架材料为细胞在裂隙区的生长、分化、黏附、移行提供了支架。理想的支架材料应具有良好的生物相容性和降解性,能引导成骨细胞和血管长入,具有良好的骨传导作用和一定的骨诱导作用,多孔结构能适应一定范围的应力变化。羟磷灰石有较好的生物相容性,能促进骨祖细胞分化为成骨细胞[35],但由于其不可吸收并缺乏形变,会妨碍牙的萌出及正畸治疗所需要的骨移动[27,36],愈合期受力时容易移位[37]。用生物活性玻璃类材料修复牙槽突裂,术后尖牙可向移植区移动萌出[38],但有些病例的移植人工骨材料与自体骨界限明显,未能很好地融合。此外,也有用其他支架材料,如PRP中的纤维蛋白原、可吸收牛胶原基质[39]、β-磷酸三钙陶瓷(tricalcium phosphate ceramic,TCPC)[40]等修复牙槽突裂的病例报道。人工合成的多聚物的代谢产物影响细胞代谢,易导致植骨区炎症及支架过早降解。

3 牙槽突裂手术方法进展

各手术方法的不同主要集中在瓣的设计上,相同的是要将带有附着龈的黏骨膜瓣覆盖在植骨区边缘,因为这样可为裂隙区附近牙齿提供正常的牙周环境。常用的牙槽突裂植骨术有Turvey等[10]的唇侧和腭侧双切口术式和Abyholm等[9]的唇侧单切口术式。目前,国内外常用的牙槽突裂植骨术切口设计存在以下不足:1)牙槽骨断端腭侧骨边缘暴露不充分;2)唇侧黏膜剩余组织量少,需要大范围松弛切口,减张缝合或利用转移瓣关闭创面;3)牙槽突植骨床鼻底平面和腭侧平面交界处暴露不充分;4)植骨术后裂隙处前庭沟变浅,红唇变短。故杨超和石冰[41]于2012年提出了腭侧入路修复牙槽突裂的术式:沿牙槽突腭侧裂隙两侧做切口,再从腭侧裂隙牙槽嵴顶沿两侧龈乳头做水平切口,在裂隙两侧形成2个蒂在后的腭瓣;沿裂隙牙槽突裂两端唇侧附着龈向两侧做水平切开约2个牙位,并将唇侧切口与腭侧切口在牙槽突顶联通;在牙槽突裂隙断端侧壁,自前下至后上切开,形成2个蒂在后的裂隙鼻腔瓣。腭瓣关闭腭侧裂隙,唇瓣关闭唇侧裂隙,两侧鼻腔瓣向上翻转关闭鼻底,缝合裂隙两侧腭瓣和唇瓣尖端以关闭牙槽突裂面,形成理想的梯形袋。杨超等[42]认为该术式有如下优点:1)无张力状态下关闭裂隙;2)唇侧辅助切口范围局限,避免损伤牙胚;3)植骨范围暴露充分,植入骨量充分,避免唇腭侧黏膜组织对植入骨的挤压;4)解剖范围局限,不会改变唇系带附着的位置,不会出现前庭沟变浅,红唇变短的现象。

随着学者们对牙槽突裂植入骨的替代品及生物材料研究的不断深入,许多骨替代品及生物材料相继应用于临床治疗。用骨替代品及生物材料修复牙槽突裂与用自体骨修复牙槽突裂的区别在于,自体骨取出后直接移植入牙槽突裂隙区,而骨替代品及生物材料需行植入前的预处理。目前常用的是rhBMP-2和组织工程成骨材料(tissueengineered osteogenic material,TEOM)。

以rhBMP-2修复牙槽突裂需用载体,现载体常为胶原海绵。将rhBMP-2与蒸馏水混合成1.5 g·L-1的浓度,将胶原海绵浸入该溶液20 min[29,43],胶原海绵中含3.2~4.2 mg rhBMP-2[44],然后将浸有rhBMP-2的胶原海绵置于牙槽突裂隙内,关闭软组织,封闭裂隙。也有报道[45]在术前3 h将rhBMP-2制成50 μg·mL-1或250 μg·mL-1的凝胶,于4 ℃保存备用,术中植入牙槽突裂隙。美国食品药品监督管理局已批准将其应用于临床[46]。

TEOM由PRP和自体间质干细胞组成[34],PRP中含血小板衍生生长因子(platelet-derived growth factor,PDGF)、胰岛素样生长因子(insulin-like growth factor,IGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、内皮细胞生长因子、表皮生长因子等众多生长因子[47],可以诱导骨形成,从全血中提取PRP,术前将PRP与骨髓基质细胞(marrow stroma cell,MSC)和氯化钙混合成凝胶,术中将该凝胶与髂骨骨松质混合,植入牙槽突裂隙区,上覆PRP膜,关闭软组织,手术完成。

4 术前术后正畸干预

在20世纪,学者们普遍认为牙槽突裂植骨术前应行术前扩弓,然后行牙槽突裂植骨手术,术后植入骨可稳定扩弓后不稳定的上颌骨弓,并防止骨段塌陷[48-51],且术前扩弓可减少尖牙阻生概率。对牙槽突裂两断端错位的患者,应术前纠正错位的骨段[52],因为术后很难将错位的骨段调整到正常位置。有研究[53]表明,行牙槽突裂植骨术前扩弓的患者,植骨成功率高达91%。近来,有学者[22]提倡术后行扩弓,而术前不扩弓,因为术后扩弓产生的力可以对植骨块产生牵拉作用,更有利于植入骨的成活及成骨。且术前扩弓导致的裂隙越宽,就需要越多的骨组织和软组织封闭裂隙,使植骨的成功率难以保证。而对于双侧完全性唇裂伴腭裂及牙槽突裂的患者,术前应用弓丝来稳定前颌骨,术中将弓丝取下,术毕再将弓丝重新放入以稳定前颌骨[54]。

由于裂隙侧切牙可能向裂隙内倾斜而影响植骨术入路,故应在术前4~5个月行术前正畸以纠正倾斜的切牙,为手术提供良好的入路。但也有学者认为,术前不需移动裂隙附近的牙齿,因为裂隙区附近的牙齿牙根周围骨质菲薄,移动牙齿易导致骨开裂或骨开窗,而术后移动裂隙区附近牙齿对植入骨的刺激,利于植入骨成活及成骨,且不会导致牙根移出牙槽骨外。

对于术后开始正畸治疗的时间,各学者看法并未统一。一般认为牙槽突裂术后应用正畸方法继续稳定牙弓3~6个月,再行正畸牵引或扩弓治疗。但Craven等[55]认为,植骨术后稳定牙弓6周即可行正畸牵引,此时若尖牙未正位萌出,则正畸牵引尖牙至裂隙区植骨处。Precious[22]认为,应在术后2~3月再行正畸扩弓。da Silva Filho等[52]和Habel等[56]认为,术后用弓丝稳定牙弓3个月,然后才可行正畸治疗。

5 牙槽突裂植骨术后的效果评价及评价指标

植骨术疗效评价主要是从植骨区骨量恢复的情况、鼻唇外形的矫正程度、尖牙向植骨区移动萌出情况、口鼻瘘关闭情况和植骨部位唇颊沟深度等方面进行。在这些评价指标中,裂隙处的骨量恢复情况是最重要的指标,现一般采用二维影像学方法进行评价[57]。

Bergland等[11]于1986年提出通过比较植入牙槽骨间隙的高度与正常牙槽骨高度的比例来评价植骨效果,分为:Ⅰ型,与正常牙槽嵴高度一致;Ⅱ型,达到正常牙槽嵴高度的3/4以上;Ⅲ型,少于正常牙槽嵴高度的3/4;Ⅳ型,缺损区无骨桥形成。这一方法是现在被广泛接受的金标准,但该方法对鼻底部植骨评价不足,于是Hynes 和Earley[58]对Bergland标准进行改进,提出了改良的Bergland评价标准为:Ⅰ型为正常牙槽嵴高度,Ⅱ型为植入骨的牙槽嵴高度达到总的牙槽高度(即鼻底到釉牙骨质界的高度)的3/4以上,Ⅲ型为植入骨的牙槽嵴高度少于总的牙槽高度(即鼻底到釉牙骨质界的高度)的3/4,Ⅳ型为牙槽突裂裂隙内没有植入骨的骨桥存在。

Witherow等[59]认为,Bergland的评价方法过于依赖尖牙的萌出,于是针对尖牙未完全萌出的混合牙列期患者提出了Chelsea标准,根据植骨的位置以及骨量,分为6级:A,裂隙区近远中牙体釉牙骨质界间有骨桥形成,且75%以上根面被骨质覆盖;B,裂隙区近远中牙体釉牙骨质界间有骨桥形成,且从釉牙骨质界起25%以上根面被骨质覆盖;C,裂隙区从根方起至少75%根面有骨桥形成;D,裂隙区从根方起至少50%根面有骨桥形成;E,裂隙区根方或冠方无骨桥形成,仅中份有骨桥存在;F,裂隙区从根方起仅25%或少于25%根面有骨桥形成。该方法可在混合牙列期对裂隙部位牙槽突高度及形态进行评估,同时对于骨桥的具体位置及量进行记录。但也有学者认为,裂隙部位邻近牙根面所覆盖骨质,尤其是近中中切牙根面覆盖骨质,多为天然骨,而非移植骨,这些骨给植骨术的评估带来一定的误差。

牙片、咬合片及全景片等二维检查方法均无统一标准,投照角度无法固定,易使图像放大畸变,许多解剖结构重叠,难以判断结构间的三维关系,无法反映术后骨质空间及体积的变化,而且二维影像学检查往往夸大了植骨的效果[60-62]。于是,近年出现了以三维CT为媒介来判定牙槽突裂植骨术后效果。

如何进行CT测量,目前尚无公认的方法。van der Meij等[63-64]对患者裂隙部位进行CT扫描,并根据骨性解剖标志从裂隙中心区域选定3个层面,将该3个层面术后即刻图像与术后1年影像相比较,通过影像面积变化计算术后1年移植骨的存留比例,以评价植骨术的疗效。Feichtinger等[65]和Kawakami等[66]亦采用与此相似的方法,将裂隙区分层测量来评估植骨术后效果。

尽管三维CT比二维X线片能提供立体、清晰的图像,但是由于其辐射量大、照射时间长、清晰度不能满足口腔检查的要求,近年来,锥形束CT越来越多的被应用于口腔临床检查以及研究中。锥形束CT检查的体素可达0.125 mm[11,67],分辨率可以达到2.0 lp·mm-3,一次锥形束CT检查的放射剂量相当于拍摄一张全景片,照射时间短,故可广泛推广。

Oberoi等[68]定义了一个矢状位的矩形植骨范围,并且在每张矢状图像上测量骨组织图像的面积以及缺隙的面积,将所有有关植骨区的截面再次进行重建,即可算出骨组织的体积及未充填的体积,从而得出骨质的充填率,通过对比手术后不同时间点的充填率来评价手术的效果。

吴军和王国民[69]利用锥形束CT,将牙槽突裂隙假定为长方体,将该长方体在三维方向进行分割(在X轴方向及Z轴方向均分为3等分,将Y轴方向均分为4等分),分割后形成不同平面,再根据平面上是否有骨桥,来判断植入骨的量并进行定位分析。此外,吴军等[70]还利用锥形束CT,将不同垂直高度上的裂隙的横断面进行截图,然后进行人工圈定,记算不同层面上裂隙的横断面的面积,然后将不同高度的值和面积的值来计算牙槽突裂的缺损体积。

6 影响术后效果的因素

牙槽突裂隙宽度、裂隙类型、术者、植骨时机、植入骨密度、植入骨与宿主骨关系、植骨区黏膜封闭情况、口腔卫生等均对牙槽突裂植骨效果有一定影响。

多数学者观察单、双侧牙槽突裂隙植骨的术后效果发现,单侧裂术后植骨效果较双侧裂好[63,71]。但也有学者[54]研究表明双侧裂术后植骨效果较单侧裂好。

一般认为,在混合牙列期行牙槽突裂植骨手术,术后效果较好,成功率较高[23,72-73]。有研究发现,若以植骨后形成骨桥的高度高于牙槽嵴的3/4为成功标准,那么在裂隙侧尖牙萌出前植骨的成功率为96%,尖牙萌出后植骨的成功率约85%。故在裂隙侧尖牙萌出前植骨效果较好[11,74-75]。

植入骨是否负重是影响骨重建最重要的因素,在植骨区域行正畸干预或种植牙修复可减少植入骨的吸收。正畸移动裂隙区附近牙根入裂隙区或未萌牙在植骨区萌出,不仅对植入骨有功能性刺激,并且利于植入骨成骨,防止植入骨吸收[76]。Feichtinger等[65]的研究表明,植骨区缺乏应力刺激将导致1年内骨质吸收可高达95%,而骨植入有负重的区域可减少吸收,且可以增加骨密度。Takahashi等[77]的长期随访研究发现,在植骨区种植牙能够保持植入骨质不被吸收。将骨植入无负重的区域,会导致骨吸收增加[78]。Feichtinger等[79]通过三维CT行术前、术后的比较后发现,1年后有尖牙萌出的患者的移植骨吸收在67%左右;尖牙与侧切牙同时萌出的患者,移植骨吸收只有13%,而没有牙萌出的患者,移植骨吸收达90%。

植入骨与裂隙区的骨及骨膜紧密接触可使宿主骨及骨膜中的血液和成骨细胞渗透到植入骨中,假如植入骨与植骨床接触不紧密,即会影响成骨的效果[54]。

植入骨的改建发生在植入骨与宿主骨的交界面,植入骨与宿主骨间不稳定会影响成骨,并会引起骨吸收和感染。双侧裂植骨区的血供差、氧分压低会使成骨延迟甚至阻止骨形成[80]。此外,双侧裂植骨区局部条件差,软组织缺乏,导致张力增加,易引起植入骨暴露,继而影响植骨效果。但也有报道称,即使创口部分裂开,也仅有表层暴露的骨颗粒脱落,在有轻度感染时,植入骨能较好地存活[19]。

此外,植入骨的密度跟术后骨质吸收的关系密切,>3.0 g·cm-3的植骨密度成功率高[81],裂隙窄的患者较裂隙宽的患者术后效果好,激素及营养失衡、先天性疾病(如Turner综合征)会减慢或阻止骨形成。而无张力封闭鼻底,封闭口鼻瘘;无张力、严密封闭受区创面;保持口腔卫生,均可以减少术后植入骨的吸收。

7 对生长发育的影响

早期的初期骨移植采取广泛硬腭解剖,围绕和穿过犁骨前颌骨缝合以及内置骨移植,常继发面中部后缩、牙弓形态差等。初期骨移植不仅影响上颌骨矢状向生长[82],而且影响其垂直向[83-84]及水平向[2,4,85]生长。不论在行初期唇裂整复术的同时还是初期腭裂整复术的同时行牙龈骨膜成形术,均会导致患儿上颌骨发育严重受限[86-87],增加后期需行Le Fort Ⅰ截骨的比率[88],于是许多治疗中心停止开展牙槽突裂植骨术。但有学者[4,89-90]认为,在初期植骨术中若不损伤犁骨-前颌骨缝,则无明显上颌骨发育障碍,不需行正颌手术。Rosenstein等[91-93]对初期骨移植进行了术式改良,结果显示:骨移植对面中部生长无明显影响,没有降低上颌骨的生长潜力,患者结合正畸治疗即可形成较好的咬合关系。Trotman等[82]研究发现,尽管行一期植骨的患者的上颌骨凸度较未植骨患者的明显降低,但下颌骨代偿性地向后下方旋转,掩饰了面中部的发育不足[94],下颌骨良好的代偿作用可以降低前牙反率[83],患者并未出现上下颌骨间骨性Ⅲ类关系[3]。

牙龈骨膜成形术后,成骨量在10%~100%之间[7-8],口鼻瘘发生率较高,且影响上颌骨生长发育[4-6,95-97],故许多学者不再使用该术式。

对于混合牙列中后期的二期植骨术,多数学者认为其对上颌骨矢状向及垂直向发育均无不利影响[19,97-99],仅影响牙槽突裂隙周围局部牙槽骨的形态[100]。Enemark等[14]的研究结果示,尖牙萌出前植骨组的前上面高明显较未植骨组减少。但尖牙的萌出能刺激牙槽嵴骨质的沉积,增加上颌骨的垂直高度[99]。

[1] Kriens O. Primary osteoplasty in patients with clefts of lip, alveolus and palate[J]. Acta Otorhinolaryngol Belg, 1968, 22(6):687-696.

[2] Robertson NR, Jolleys A. Effects of early bone grafting in complete clefts of lip and palate[J]. Plast Reconstr Surg, 1968, 42(5):414-421.

[3] Rehrmann AH, Koberg WR, Koch H. Long-term postoperative results of primary and secondary bonegrafting in complete clefts of lip and palate[J]. Cleft Palate J, 1970, 7:206-221.

[4] Friede H, Johanson B. A follow-up study of cleft children treated with primary bone grafting. 1. Orthodontic aspects[J]. Scand J Plast Reconstr Surg, 1974, 8(1/2):88-103.

[5] Matic DB, Power SM. The effects of gingivoperiosteoplasty following alveolar molding with a pinretained Latham appliance versus secondary bone grafting on midfacial growth in patients with unilateral clefts[J]. Plast Reconstr Surg, 2008, 122(3):863- 870; discussion 871-873.

[6] Power SM, Matic DB. Gingivoperiosteoplasty following alveolar molding with a Latham appliance versus secondary bone grafting: the effects on bone production and midfacial growth in patients with bilateral clefts[J]. Plast Reconstr Surg, 2009, 124(2): 573-582.

[7] Boyne PJ, Sands NR. Secondary bone grafting of residual alveolar and palatal clefts[J]. J Oral Surg, 1972, 30(2):87-92.

[8] Boyne PJ, Sands NR. Combined orthodontic-surgical management of residual palato-alveolar cleft defects [J]. Am J Orthod, 1976, 70(1):20-37.

[9] Abyholm FE, Bergland O, Semb G. Secondary bone grafting of alveolar clefts. A surgical/orthodontic treatment enabling a non-prosthodontic rehabilitation in cleft lip and palate patients[J]. Scand J Plast Reconstr Surg, 1981, 15(2):127-140.

[10] Turvey TA, Vig K, Moriarty J, et al. Delayed bone grafting in the cleft maxilla and palate: a retrospective multidisciplinary analysis[J]. Am J Orthod, 1984, 86(3):244-256.

[11] Bergland O, Semb G, Abyholm FE. Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment[J]. Cleft Palate J, 1986, 23(3):175-205.

[12] Lilja J, Möller M, Friede H, et al. Bone grafting at the stage of mixed dentition in cleft lip and palate patients[J]. Scand J Plast Reconstr Surg Hand Surg, 1987, 21(1):73-79.

[13] Paulin G, Astrand P, Rosenquist JB, et al. Intermediate bone grafting of alveolar clefts[J]. J Craniomaxillofac Surg, 1988, 16(1):2-7.

[14] Enemark H, Sindet-Pedersen S, Bundgaard M. Longterm results after secondary bone grafting of alveolar clefts[J]. J Oral Maxillofac Surg, 1987, 45(11):913- 919.

[15] Murthy AS, Lehman JA. Evaluation of alveolar bone grafting: a survey of ACPA teams[J]. Cleft Palate Craniofac J, 2005, 42(1):99-101.

[16] Lexer E. The classic: the use of free osteoplasty together with trials on arthrodesis and joint transplantation[J]. Clin Orthop Relat Res, 2008, 466(8):1771- 1776.

[17] Robertson NR, Jolleys A. An 11-year follow-up of the effects of early bone grafting in infants born with complete clefts of the lip and palate[J]. Br J Plast Surg, 1983, 36(4):438-443.

[18] 石冰. 唇腭裂修复外科学[M]. 成都: 四川大学出版社, 2004:391-404. Shi B. Surgery of cleft lip and palate repair[M]. Chengdu: Sichuan University Publishing House, 2004:391-404.

[19] Daskalogiannakis J, Ross RB. Effect of alveolar bone grafting in the mixed dentition on maxillary growth in complete unilateral cleft lip and palate patients[J]. Cleft Palate Craniofac J, 1997, 34(5):455-458.

[20] Ozawa T, Omura S, Fukuyama E, et al. Factors influencing secondary alveolar bone grafting in cleft lip and palate patients: prospective analysis using CT image analyzer[J]. Cleft Palate Craniofac J, 2007, 44 (3):286-291.

[21] Lilja J, Kalaaji A, Friede H, et al. Combined bone grafting and delayed closure of the hard palate in patients with unilateral cleft lip and palate: facilitation of lateral incisor eruption and evaluation of indicators for timing of the procedure[J]. Cleft Palate Craniofac J, 2000, 37(1):98-105.

[22] Precious DS. A new reliable method for alveolar bone grafting at about 6 years of age[J]. J Oral Maxillofac Surg, 2009, 67(10):2045-2053.

[23] Enemark H, Jensen J, Bosch C. Mandibular bone graft material for reconstruction of alveolar cleft defects: long-term results[J]. Cleft Palate Craniofac J, 2001, 38(2):155-163.

[24] Nique T, Fonseca RJ, Upton LG, et al. Particulate allogeneic bone grafts into maxillary alveolar cleftsin humans: a preliminary report[J]. J Oral Maxillofac Surg, 1987, 45(5):386-392.

[25] Segura-Castillo JL, Aguirre-Camacho H, González-Ojeda A, et al. Reduction of bone resorption by the application of fibrin glue in the reconstruction of the alveolar cleft[J]. J Craniofac Surg, 2005, 16(1):105- 112.

[26] Carstens MH, Chin M, Li XJ. In situ osteogenesis: regeneration of 10-cm mandibular defect in porcine model using recombinant human bone morphogenetic protein-2(rhBMP-2) and Helistat absorbable collagen sponge[J]. J Craniofac Surg, 2005, 16(6):1033-1042.

[27] Chin M, Ng T, Tom WK, et al. Repair of alveolar clefts with recombinant human bone morphogenetic protein(rhBMP-2) in patients with clefts[J]. J Craniofac Surg, 2005, 16(5):778-789.

[28] Shimakura Y, Yamzaki Y, Uchinuma E. Experimental study on bone formation potential of cryopreserved human bone marrow mesenchymal cell/hydroxyapatite complex in the presence of recombinant human bone morphogenetic protein-2[J]. J Craniofac Surg, 2003, 14(1):108-116.

[29] Dickinson BP, Ashley RK, Wasson KL, et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects[J]. Plast Reconstr Surg, 2008, 121(1): 209-217.

[30] Marx RE, Carlson ER, Eichstaedt RM, et al. Plateletrich plasma: growth factor enhancement for bone grafts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(6):638-646.

[31] Marukawa E, Oshina H, Iino G, et al. Reduction of bone resorption by the application of platelet-rich plasma(PRP) in bone grafting of the alveolar cleft[J]. J Craniomaxillofac Surg, 2011, 39(4):278-283.

[32] 柴岗, 张艳, 胡晓洁, 等. 自体骨髓基质干细胞在齿槽裂骨缺损修复中的应用[J]. 中华整形外科杂志, 2006, 22(6):409-411. Chai G, Zhang Y, Hu XJ, et al. Repair alveolar cleft bone defects with bone marrow stromal cells[J]. Chin J Plast Surg, 2006, 22(6):409-411.

[33] Gimbel M, Ashley RK, Sisodia M, et al. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix[J]. J Craniofac Surg, 2007, 18(4):895-901.

[34] Hibi H, Yamada Y, Ueda M, et al. Alveolar cleft osteoplasty using tissue-engineered osteogenic material[J]. Int J Oral Maxillofac Surg, 2006, 35(6): 551-555.

[35] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates[J]. Clin Orthop Relat Res, 2002(395):81-98.

[36] Feinberg SE, Weisbrode SE, Heintschel G. Radiographic and histological analysis of tooth eruption through calcium phosphate ceramics in the cat[J]. Arch Oral Biol, 1989, 34(12):975-984.

[37] Letic-Gavrilovic A, Piattelli A, Abe K. Nerve growth factor beta(NGF beta) delivery via a collagen/hydroxyapatite(Col/HAp) composite and its effects on new bone ingrowth[J]. J Mater Sci Mater Med, 2003, 14 (2):95-102.

[38] 袁奎封, 来庆国, 綦成, 等. 倍骼生修复牙槽突裂的初步临床观察[J]. 上海口腔医学, 2004, 13(5):465 468. Yuan KF, Lai QG, Qi C, et al. Clinical study of bioglass for repairing alveolar cleft[J]. Shanghai J Stomatol, 2004, 13(5):465-468.

[39] Pradel W, Tausche E, Gollogly J, et al. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105(4):440-444.

[40] Hossain MZ, Kyomen S, Tanne K. Biologic responses of autogenous bone and beta-tricalcium phosphate ceramics transplanted into bone defects to orthodontic forces[J]. Cleft Palate Craniofac J, 1996, 33(4):277- 283.

[41] 杨超, 石冰. 牙槽突裂植骨术的技术改进与初步评价[J]. 中国实用口腔科杂志, 2012, 5(6):327-332. Yang C, Shi B. Technology improvement and the preliminary evaluation of alveolar bone graft[J]. Chin J Pract Stomatol, 2012, 5(6):327-332.

[42] 杨超, 石冰, 刘坤, 等. 腭侧入路牙槽突裂植骨术的初步应用与评价[J]. 华西口腔医学杂志, 2013, 31 (1):30-33. Yang C, Shi B, Liu K, et al. Initial study and evaluation on alveolar bone graft by palate side approach [J]. West Chin J Stomatol, 2013, 31(1):30-33.

[43] Alonso N, Tanikawa DY, Freitas Rda S, et al. Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients[J]. Tis Eng Part C Meth, 2010, 16(5):1183- 1189.

[44] Canan LW Jr, da Silva Freitas R, Alonso N, et al. Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients[J]. J Craniofac Surg, 2012, 23(6):1627-1633.

[45] Neovius E, Lemberger M, Docherty Skogh AC, et al. Alveolar bone healing accompanied by severe swelling in cleft children treated with bone morphogenetic protein-2 delivered by hydrogel[J]. J Plast Reconstr Aesthet Surg, 2013, 66(1):37-42.

[46] van Hout WM, Mink van der Molen AB, Breugem CC, et al. Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2[J]. Clin Oral Investig, 2011, 15(3): 297-303.

[47] Foster TE, Puskas BL, Mandelbaum BR, et al. Platelet-rich plasma: from basic science to clinical applications[J]. Am J Sports Med, 2009, 37(11):2259- 2272.

[48] Matthews D. Rapid expansion in clefts[J]. Plast Reconstr Surg, 1975, 56(4):396-401.

[49] Capelozza Filho L, De Almeida AM, Ursi WJ. Rapid maxillary expansion in cleft lip and palate patients [J]. J Clin Orthod, 1994, 28(1):34-39.

[50] Robertson NR, Fish J. Some observations on rapid expansion followed by bone grafting in cleft lip and palate[J]. Cleft Palate J, 1972, 9:236-245.

[51] Bajaj AK, Wongworawat AA, Punjabi A. Management of alveolar clefts[J]. J Craniofac Surg, 2003, 14 (6):840- 846.

[52] da Silva Filho OG, Boiani E, de Oliveira Cavassan A, et al. Rapid maxillary expansion after secondary alveolar bone grafting in patients with alveolar cleft [J]. Cleft Palate Craniofac J, 2009, 46(3):331-338.

[53] Newlands LC. Secondary alveolar bone grafting in cleft lip and palate patients[J]. Br J Oral Maxillofac Surg, 2000, 38(5):488-491.

[54] Semb G. Alveolar bone grafting[J]. Front Oral Biol, 2012, 16:124-136.

[55] Craven C, Cole P, Hollier L Jr, et al. Ensuring success in alveolar bone grafting: a three-dimensional approach[J]. J Craniofac Surg, 2007, 18(4):855-859.

[56] Habel A, Sell D, Mars M. Management of cleft lip and palate[J]. Arch Dis Child, 1996, 74(4):360-366.

[57] 陆斌, 周龙. 牙槽突裂植骨的术后评价[J]. 中国实用口腔科杂志, 2012, 5(6):336-340. Lu B, Zhou L. Post-operative evaluation of alveolar cleft bone grafting[J]. Chin J Pract Stomatol, 2012, 5(6):336-340.

[58] Hynes PJ, Earley MJ. Assessment of secondary alveolar bone grafting using a modification of the Bergland grading system[J]. Br J Plast Surg, 2003, 56(7):630-636.

[59] Witherow H, Cox S, Jones E, et al. A new scale to assess radiographic success of secondary alveolar bone grafts[J]. Cleft Palate Craniofac J, 2002, 39(3): 255-260.

[60] Lee C, Crepeau RJ, Williams HB, et al. Alveolar cleft bone grafts: results and imprecisions of the dental radiograph[J]. Plast Reconstr Surg, 1995, 96(7):1534- 1538.

[61] Rosenstein SW, Long RE Jr, Dado DV, et al. Comparison of 2-D calculations from periapical and occlusal radiographs versus 3-D calculations from CAT scans in determining bone support for cleftadjacent teeth following early alveolar bone grafts[J]. Cleft Palate Craniofac J, 1997, 34(3):199-205.

[62] Iino M, Ishii H, Matsushima R, et al. Comparison of intraoral radiography and computed tomography in evaluation of formation of bone after grafting for repair of residual alveolar defects in patients with cleft lip and palate[J]. Scand J Plast Reconstr Surg Hand Surg, 2005, 39(1):15-21.

[63] van der Meij AJ, Baart JA, Prahl-Andersen B, et al. Bone volume after secondary bone grafting in unilateral and bilateral clefts determined by computed tomography scans[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001, 92(2):136-141.

[64] van der Meij Aj, Baart JA, Prahl-Andersen B, et al. Outcome of bone grafting in relation to cleft width in unilateral cleft lip and palate patients[J]. Oral SurgOral Med Oral Pathol Oral Radiol Endod, 2003, 96(1):19-25.

[65] Feichtinger M, Zemann W, Mossböck R, et al. Three-dimensional evaluation of secondary alveolar bone grafting using a 3D-navigation system based on computed tomography: a two-year follow-up[J]. Br J Oral Maxillofac Surg, 2008, 46(4):278-282.

[66] Kawakami S, Hiura K, Yokozeki M, et al. Longitudinal evaluation of secondary bone grafting into the alveolar cleft[J]. Cleft Palate Craniofac J, 2003, 40 (6):569-576.

[67] Koberg WR. Present view on bone grafting in cleft palate. (A review of the literature)[J]. J Maxillofac Surg, 1973, 1(4):185-193.

[68] Oberoi S, Chigurupati R, Gill P, et al. Volumetric assessment of secondary alveolar bone grafting using cone beam computed tomography[J]. Cleft Palate Craniofac J, 2009, 46(5):503-511.

[69] 吴军, 王国民. 牙槽突裂植骨术后植入骨的定位分析[J]. 华西口腔医学杂志, 2010, 28(2):181-184. Wu J, Wang GM. Identify the position of bone bridge after alveolar cleft bone grafting[J]. West Chin J Stomatol, 2010, 28(2):181-184.

[70] 吴军, 王国民, 钱玉芬, 等. 牙槽突裂植骨术后的植骨效果评价[J]. 华西口腔医学杂志, 2008, 26(3): 284-286. Wu J, Wang GM, Qian YF, et al. Evaluation of bone volume of alveolar cleft before and after bone graft [J]. West Chin J Stomatol, 2008, 26(3):284-286.

[71] Denny AD, Talisman R, Bonawitz SC. Secondary alveolar bone grafting using milled cranial bone graft: a retrospective study of a consecutive series of 100 patients[J]. Cleft Palate Craniofac J, 1999, 36 (2):144-153.

[72] Kalaaji A, Lija J, Friede H. Bone grafting at the stage of mixed and permanent dentition in patients with clefts of the lip and primary palate[J]. Plast Reconstr Surg, 1994, 93(4):690-696.

[73] Trindade IK, Mazzottini R, Silva Filho OG, et al. Long-term radiographic assessment of secondary alveolar bone grafting outcomes in patients with alveolar clefts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 100(3):271-277.

[74] Hall HD, Posnick JC. Early results of secondary bone grafts in 106 alveolar clefts[J]. J Oral Maxillofac Surg, 1983, 41(5):289-294.

[75] Jia YL, James DR, Mars M. Bilateral alveolar bone grafting: a report of 55 consecutively-treated patients [J]. Eur J Orthod, 1998, 20(3):299-307.

[76] Giudice G, Gozzo G, Sportelli P, et al. The role of functional orthodontic stress on implants in residual alveolar cleft[J]. Plast Reconstr Surg, 2007, 119(7): 2206-2217.

[77] Takahashi T, Inai T, Kochi S, et al. Long-term followup of dental implants placed in a grafted alveolar cleft: evaluation of alveolar bone height[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105 (3):297-302.

[78] Mori S, Sato T, Hara T, et al. Effect of continuous pressure on histopathological changes in denturesupporting tissues[J]. J Oral Rehabil, 1997, 24(1): 37-46.

[79] Feichtinger M, Mossböck R, Kärcher H. Evaluation of bone volume following bone grafting in patients with unilateral clefts of lip, alveolus and palate using a CT-guided three-dimensional navigation system[J]. J Craniomaxillofac Surg, 2006, 34(3):144-149.

[80] Lukash FN, Zingaro EA, Salig J. The survival of free nonvascularized bone grafts in irradiated areas by wrapping in muscle flaps[J]. Plast Reconstr Surg, 1984, 74(6):783-788.

[81] Okawachi T. Evaluation of autogenous iliac bone gra fting for alveolar cleft of cleft lip and palate patients [J]. J Jap Cleft Palate Assoc, 2001, 26(1):55-67.

[82] Trotman CA, Long RE Jr, Rosenstein SW, et al. Comparison of facial form in primary alveolar bonegrafted and nongrafted unilateral cleft lip and palate patients: intercenter retrospective study[J]. Cleft Palate Craniofac J, 1996, 33(2):91-95.

[83] Suzuki A, Goto K, Nakamura N, et al. Cephalometric comparison of craniofacial morphology between primary bone grafted and nongrafted complete unilateral cleft lip and palate adults[J]. Cleft Palate Craniofac J, 1996, 33(5):429-435.

[84] Grisius TM, Spolyar J, Jackson IT, et al. Assessment of cleft lip and palate patients treated with presurgical orthopedic correction and either primary bone grafts, gingivoperiosteoplasty, or without alveolar graftingprocedures[J]. J Craniofac Surg, 2006, 17(3):468- 473.

[85] Jolleys A, Robertso NR. A study of the effects of early bone-grafting in complete clefts of the lip and palate—five year study[J]. Brit J Plast Sur, 1972(3): 229-237.

[86] Wang YC, Liao YF, Chen PK. Outcome of gingivoperiosteoplasty for the treatment of alveolar clefts in patients with unilateral cleft lip and palate[J]. Br J Oral Maxillofac Surg, 2013, 51(7):650-655.

[87] Meazzini MC, Tortora C, Morabito A, et al. Alveolar bone formation in patients with unilateral and bilateral cleft lip and palate after early secondary gingivoalveoloplasty: long-term results[J]. Plast Reconstr Surg, 2007, 119(5):1527-1537.

[88] Meazzini MC, Rossetti G, Garattini G, et al. Early secondary gingivo-alveolo-plasty in the treatment of unilateral cleft lip and palate patients: 20 years experience[J]. J Craniomaxillofac Surg, 2010, 38(3): 185-191.

[89] van Aalst JA, Eppley BL, Hathaway RR, et al. Surgical technique for primary alveolar bone grafting[J]. J Craniofac Surg, 2005, 16(4):706-711.

[90] Friede H, Johanson B. Adolescent facial morphology of early bone-grafted cleft lip and palate patients[J]. Scand J Plast Reconstr Surg, 1982, 16(1):41-53.

[91] Rosenstein SW, Monroe CW, Kernahan DA, et al. The case of early bone grafting in cleft lip and cleft palate[J]. Plast Reconstr Surg, 1982, 70(3):297-309.

[92] Rosenstein S, Dado DV, Kernahan D, et al. The case for early bone grafting in cleft lip and palate: a second report[J]. Plast Reconstr Surg, 1991, 87(4): 644-654.

[93] Rosenstein SW, Grasseschi M, Dado DV. A longterm retrospective outcome assessment of facial growth, secondary surgical need, and maxillary lateral incisor status in a surgical-orthodontic protocol for complete clefts[J]. Plast Reconstr Surg, 2003, 111(1):1-16.

[94] Sameshima GT, Smahel Z. Facial growth in adulthood after primary periosteoplasty or primary bone grafting in UCLP[J]. Cleft Palate Craniofac J, 2000, 37(4):379-384.

[95] Matic DB, Power SM. Evaluating the success of gingivoperiosteoplasty versus secondary bone grafting in patients with unilateral clefts[J]. Plast Reconstr Surg, 2008, 121(4):1343-1353; discussion 1368- 1369.

[96] Brusati R, Mannucci N. The early gingivoalveoloplasty. Preliminary results[J]. Scand J Plast Reconstr Surg Hand Surg, 1992, 26(1):65-70.

[97] Levitt T, Long RE Jr, Trotman CA. Maxillary growth in patients with clefts following secondary alveolar bone grafting[J]. Cleft Palate Craniofac J, 1999, 36 (5):398-406.

[98] Semb G. Effect of alveolar bone grafting on maxillary growth in unilateral cleft lip and palate patients [J]. Cleft Palate J, 1988, 25(3):288-295.

[99] Chang HP, Chuang MC, Yang YH, et al. Maxillofacial growth in children with unilateral cleft lip and palate following secondary alveolar bone grafting: an interim evaluation[J]. Plast Reconstr Surg, 2005, 115(3):687-695.

[100] Trotman CA, Papillon F, Ross RB, et al. A retrospective comparison of frontal facial dimensions in alveolar-bone-grafted and nongrafted unilateral cleft lip and palate patients[J]. Angle Orthod, 1997, 67(5): 389-394.

(本文编辑 张玉楠)

Advances in cleft alveolar repair

Xu Xue1, Yang Chao1, Liu Kun1, Huang Ning2, Zheng Qian1, Shi Bing1. (1. State Key Laboratory of Oral Diseases, Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; 2. State Key Laboratory of Oral Diseases, Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)

Cleft alveolar repair have become to be an important role in cleft treatment procedure. Alveolar bone graft was proposed in the early 20th century, but controversies existed in many issues in alveolar repair. This paper makes a review regarding advances in timing of alveolar repair, implantation materials and surgical methods, and etc.

cleft alveolar; bone graft; surgery

R 782.2

A

10.7518/gjkq.2016.04.014

2015-11-12;

2016-03-11

徐雪,博士,Email:xuxue2008hx@163.com

石冰,教授,博士,Email:shibingcn@sina.com

猜你喜欢

上颌骨尖牙植骨
CBCT研究阻生尖牙与正常尖牙根尖位置的差异
瘢痕对唇腭裂上颌骨生长影响的有限元分析
正畸和外科联合治疗上颌尖牙埋伏阻生的临床效果观察
下颌尖牙异位至对侧阻生1例
上颌骨切除术后上颌骨缺损的修复
“上颌骨切除术后上颌骨缺损的修复”点评
椎管减压并椎间植骨融合内固定治疗腰椎滑脱症的疗效分析
多孔钽棒联合植骨治疗成年股骨头坏死的临床研究
腰椎附件结构性骨块植骨内固定治疗腰椎滑脱症疗效观察
口腔正畸排齐阶段两种牵引尖牙方法的对比探析