菌斑生物膜产碱代谢与龋病
2016-03-10周双双郑欣周学东徐欣
周双双 郑欣 周学东 徐欣
口腔疾病研究国家重点实验室 华西口腔医院牙体牙髓病科(四川大学) 成都 610041
菌斑生物膜产碱代谢与龋病
周双双郑欣周学东徐欣
口腔疾病研究国家重点实验室华西口腔医院牙体牙髓病科(四川大学) 成都 610041
口腔微生态内酸碱代谢是调控口腔微生态平衡的重要因素,影响着微生物群落组成和菌斑生物膜形成。菌斑生物膜的产碱代谢可能阻碍产酸耐酸菌在低pH值环境中获得优势地位,恢复并维持微生态平衡;同时也直接升高微生态内pH值,遏制牙表面脱矿。菌斑生物膜主要的产碱活动包括精氨酸脱亚胺酶系统介导的精氨酸代谢和尿素酶介导的尿素水解反应。精氨酸代谢可抑制生物膜中产酸菌生长,促进产碱共生菌生长,促进龋状态下的口腔微生态恢复平衡。尿素代谢可抑制龋病发生,含产碱底物的口腔卫生护理产品具有良好的龋病防治效果。本文就近年来菌斑生物膜的产碱代谢及其与龋病关系等研究进展作一综述。
龋病;菌斑生物膜;口腔细菌;产碱代谢
This study was supported by the National Key Technologies R and D Program of China during the 12th Five-Year Plan Period(2012BAI07B03),the National Natural Science Foundation of China(81170959,81200782) and Doctoral Fund of Ministry of Education of China(20120181120002).
[Abstract]Alkali production within oral microecology is necessary to modulate the balance of the microenvironment,which influences the configuration and characteristics of the oral microflora. Alkali production impedes the predominance of acidogenic and aciduric bacteria in a low-pH microenvironment and restores micro-ecological balance. Alkali production directly increases environmental pH,attenuates demineralization,and promotes tooth surface remineralization. Alkali production is mainly attributed to microbial arginine metabolism mediated by the arginine deiminase system and urea hydrolysis. Arginine metabolism prevents the growth of acid-generating bacteria but stimulates the growth of alkaliproducing bacteria;thus,the restoration of microbial disequilibrium in a cariogenic biofilm can be facilitated. Similar caries resistance has been observed in a population with increased urea metabolism. In vivo and in vitro data have indicated that the regulation of microbial alkali production represents a promising ecological approach to caries management. This paper aims to review current studies on the alkali production within oral biofilm,to elucidate the effects of alkali production on microbial ecology,and to describe the onset/progression of dental caries.
[Key words]caries;dental biofilm;oral bacteria;alkali production
口腔微生态内酸碱代谢是调控口腔微生态平衡的重要因素,影响着微生物群落组成和菌斑生物膜的形成。细菌的产酸代谢在龋病发生过程中的作用已有较多研究,且结论较为统一[1-4]。近年来一些研究[5-13]还指出:菌斑生物膜内产碱活动可促进口腔微生态平衡,有利于龋病的防治;含产碱底物的口腔卫生护理产品具有良好的抗龋效果,在龋病防治领域有一定应用前景。本文就近年来口腔微生态内产碱代谢在龋病防治领域的研究作一综述。
1 口腔微生态内的产碱代谢
口腔微生态内最重要的产碱活动包括精氨酸脱亚胺酶系统(arginine deiminase system,ADS)介导的精氨酸代谢和尿素酶介导的尿素水解反应。精氨酸代谢主要存在于血链球菌、副血链球菌、格氏链球菌和缓症链球菌以及某些乳杆菌属和放线菌属中[14-16];尿素水解反应则主要存在于唾液链球菌、内氏放线菌和口腔嗜血菌属中[17-20]。
1.1精氨酸代谢产碱
口腔中的精氨酸主要来源于唾液中的多肽,游离精氨酸浓度大约为50 μmol·L-1[21]。在口腔中,精氨酸代谢产碱主要通过ADS进行,终产物为鸟氨酸、氨、二氧化碳和腺苷三磷酸(adenosine triphosphate,ATP);ADS由一系列酶构成,包括精氨酸脱亚胺酶、鸟氨酸氨甲酰基转移酶和氨基甲酸激酶。编码ADS的基因通常位于一个操纵子中,环境刺激可调控其表达;在多数口腔细菌中,精氨酸及低pH可上调ADS相关基因的表达[22]。
1.2尿素代谢产碱
唾液和龈沟液中皆含有尿素成分,其与血清中的尿素浓度相同,在健康人群中为3~10 mmol·L-1。口腔细菌产生尿素酶,分解代谢尿素,生成氨与二氧化碳[5,7]。尿素酶发挥功能至少需要7个基因表达产物,这些基因通常位于一个操纵子中;尿素及氮源缺乏,可上调尿素酶相关基因;在某些细菌中,尿素酶的表达在低pH环境下被激活[23]。
1.3其他产碱代谢
口腔微生态内还存在着其他的产碱代谢,例如精胺代谢[24-25]。口腔微生态内的精胺主要来源于精氨酸代谢的中间产物,也可来自一些食物,例如米饭、牛奶和啤酒等。精胺在牙菌斑生物膜和唾液中的浓度分别为0.75和0.2 μmol·L-1,其代谢主要通过鲱精氨酸脱亚氨酶系统(agmatine deiminase system,AgDS)进行,终产物分别为腐胺、氨、二氧化碳和ATP。AgDS与ADS十分相似,主要存在于变异链球菌、表兄链球菌、汗毛链球菌、大鼠链球菌、乳房链球菌、缓症链球菌、仓鼠链球菌、唾液乳杆菌和短乳杆菌中[25]。值得注意的是,其中一些与龋病发生密切相关的细菌中有较高水平的AgDS表达。由于精胺代谢活性较弱,无法升高菌斑pH;所以,精胺代谢可能系通过升高胞质内pH来增强细菌的耐酸能力,使得一些细菌在低pH环境下生存。
2 产碱代谢对生物膜组成的影响
过量摄入糖类,菌斑生物膜内细菌的产酸代谢增强,pH降低,产酸耐酸菌成为优势菌,这一菌群演替可使菌斑内pH进一步下降,牙表面脱矿形成龋坏[1-4]。Bradshaw等[26]利用9种代表性口腔细菌在体外构建多菌种生物膜,当生物膜内pH降至5.0以下时,变异链球菌属及乳杆菌属在数量上成为优势菌,而非变异链球菌属及放线菌属数量急剧下降。一些学者[5-7]认为,牙菌斑生物膜内低pH环境是导致菌群失衡的重要原因,口腔微生态内的产碱代谢将有助于维持生态平衡。
2.1产碱代谢影响生物膜组成的体外研究
黄雪莲[27]发现,当在液体培养基中加入质量分数为1.6%的精氨酸时,体外生物膜中的血链球菌和格氏链球菌等产碱共生菌的数量明显上升,此变化在无糖条件下更为明显。Shu等[28]构建10菌种人工生物膜,当此模型中存在尿素代谢时,生物膜菌群可保持多样性及稳定性;当此模型中尿素酶功能缺失后,生物膜菌群丧失多样性,产酸耐酸菌成为优势菌。Zheng等[29]发现精氨酸与氟化钠联合应用:可协同抑制变异链球菌的生长、生物膜的形成及其产胞外多糖的产生,对血链球菌没有协同抑制作用;在多菌种生物膜中可降低变异链球菌的比例,同时促进血链球菌获得竞争优势。精氨酸与氟化钠联合应用有望成为龋病生态防治的新方法。
2.2产碱代谢影响生物膜组成的临床试验
Nascimento等[30]将19例龋失补牙(decayed missing filled tooth,DMFT)为0者分为无龋组,19例DMFT≥2者分为高龋组,两组经含质量分数1.5%的精氨酸无氟牙膏刷牙4周后,高龋组菌斑产氨量明显增加,菌斑内细菌种类下降;口腔微生物组鉴定芯片分析显示,高龋组与无龋组在菌群组成上存在明显差异;使用含质量分数1.5%的精氨酸牙膏后,高龋组菌斑组成明显变化,与无龋组相似。精氨酸牙膏可促进龋活跃人群口腔微生态恢复平衡。王琳等[31]选择无龋(DMFT=0)和高龋(DMFT>4)受试者各15名,嘱其使用含质量分数8%的精氨酸牙膏刷牙2周,采集其龈上、龈下菌斑及其唾液样本,利用荧光定量聚合酶链反应技术检测样本中常见的口腔细菌数量,结果显示,经含质量分数8%的精氨酸牙膏处理前,高龋组人群龈上、龈下菌斑中变异链球菌数量明显高于无龋组,龈上、龈下菌斑及其唾液中的血链球菌数量明显低于无龋组;经过处理后,高龋组样本中的变异链球菌数量明显降低,血链球菌数量明显上升,且两种细菌组成比例与无龋组间无明显差异。该试验提示,精氨酸可抑制口腔产酸菌生长,促进产碱共生菌生长,促进龋病状态下的口腔微生态恢复平衡。
3 产碱代谢与龋病发生的关系
3.1回顾性研究
有学者[21,32-37]经过回顾性比较无龋人群与龋活跃人群菌斑、唾液等样本中的产碱代谢相关指标证实,产碱代谢与龋病发生呈负相关性。关于尿素代谢与龋病发生的关系,早期有学者[33-34]发现,慢性肾功能患者龋病发生率较低,这些受试者唾液中尿素浓度为健康人群唾液总尿素浓度的10~50倍,菌斑及唾液pH均高于健康人群,提示尿素代谢产碱活性与龋病发生率呈负相关。Shu等[36]发现,无龋人群组龈上菌斑中尿素酶活性明显高于高龋人群组,即可通过菌斑尿素酶活性来评估个体的龋易患性。
对于精氨酸代谢与龋病发生的关系,van Wuyckhuyse等[21]发现,无龋人群腮腺唾液中游离的精氨酸浓度明显高于有患龋经历人群;Nascimento等[37]对100名2~14岁儿童进行了详细的口腔检查后将其分为无龋组、牙釉质龋组和牙本质龋组,通过其样本采集及ADS活性分析发现,无龋组龈上菌斑中的ADS活性明显高于釉质龋组和牙本质龋组,但是三组唾液样本中的ADS活性无明显差异。Reyes等[38]在检测分析了23名成年人唾液及其龈上菌斑中尿素酶和ADS活性后发现,无龋人群唾液样本中尿素酶活性为龋活跃人群6.9倍,ADS活性为4.5倍;菌斑样本中无龋人群尿素酶活性为龋活跃人群49.0倍,ADS活性为7.3倍。
3.2前瞻性研究
Clancy等[39-40]将唾液链球菌57.I中的尿素酶基因(ureABCDEFGD)重组于变异链球菌UA159中,此重组产尿素酶变异链球菌在体外可利用尿素产氨;将重组变异链球菌与野生型变异链球菌分别接种于无特定病原体(specific pathogen free,SPF)老鼠中时,接种前者的SPF老鼠在给予致龋性食谱后龋病发生率明显低于接种后者的SPF老鼠,表明尿素代谢活动可以抑制龋病发生。Acevedo等[8-9]给予726名11~12岁龋活跃儿童(DMFT为3~6)含质量分数2%的精氨酸与碳酸钙复合物的牙膏(CaviStat)刷牙后,DMFT(1年期:5.50± 0.24;2年期:6.99±0.28)明显低于对照组儿童(1年期:8.00±0.24;2年期:7.92±0.30);他们还给予另200名10岁半至11岁的儿童CaviStat牙膏刷牙6个月,受试组DMFT较对照组下降75.6%,1年后下降50%。以上研究表明,含产碱底物的口腔卫生护理产品具有良好的龋病防治效果。
Srisilapanan等[10]利用定量光诱导荧光技术检测前牙光滑面早期龋损发现,使用含质量分数1.5%精氨酸及1 450 mg·L-1氟化物牙膏刷牙3个月和6个月后,受试者早期龋损面积及荧光缺失量均明显低于对照组(使用含1 450 mg·L-1氟化物牙膏)。Kraivaphan等[13]将6 000名6~12岁的儿童随机分为3组,分别给予含质量分数1.5%的精氨酸、1 450 mg·L-1的氟化物和磷酸二钙牙膏,含质量分数1.5%的精氨酸、1 450 mg·L-1的氟化物和碳酸钙牙膏,含1 450 mg·L-1的氟化物牙膏刷牙,2年后使用前两种新型牙膏受试者的DMFT和龋失补牙面均低于对照组,使用新型牙膏的两组受试者间DMFT及龋失补牙面差异不明显。Cummins[41]认为,精氨酸可能与氟化物存在协同抗龋效应。
4 小结
增强口腔微生态内的产碱代谢,一方面可阻碍产酸耐酸菌在低pH环境中获得优势地位,恢复并维持微生态平衡;另一方面可直接升高微生态内pH,遏制牙体表面的脱矿,促进其再矿化。目前,临床已将兼备强竞争力与强产碱能力的益生菌用于龋病的替代治疗。大量研究也表明,含精氨酸的口腔卫生产品,如CaviStat和同时含有精氨酸及氟化物的牙膏具有良好的龋病防治效果;然而,关于产碱代谢与口腔微生物间相互作用的研究仍处于起步阶段,需要更多的体内外试验进行深入的探究。
[1]Kleinberg I. A mixed-bacteria ecological approachto understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis[J]. Crit Rev Oral Biol Med,2002,13(2):108-125.
[2]Takahashi N,Nyvad B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res,2011,90(3):294-303.
[3]Marsh PD. Microbial ecology of dental plaque and its significance in health and disease[J]. Adv Dent Res,1994,8(2):263-271.
[4]Marsh PD. Are dental diseases examples of ecological catastrophes[J]. Microbiology,2003,149(Pt 2):279-294.
[5]Burne RA,Marquis RE. Alkali production by oral bacteria and protection against dental caries[J]. FEMS Microbiol Lett,2000,193(1):1-6.
[6]Burne RA,Zeng L,Ahn SJ,et al. Progress dissecting the oral microbiome in caries and health[J]. Adv Dent Res,2012,24(2):77-80.
[7]Liu YL,Nascimento M,Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries[J]. Int J Oral Sci,2012,4(3):135-140.
[8]Acevedo AM,Machado C,Rivera LE,et al. The inhibitory effect of an arginine bicarbonate/calcium carbonate CaviStat-containing dentifrice on the development of dental caries in Venezuelan school children[J]. J Clin Dent,2005,16(3):63-70.
[9]Acevedo AM,Montero M,Rojas-Sanchez F,et al. Clinical evaluation of the ability of CaviStat in a mint confection to inhibit the development of dental caries in children[J]. J Clin Dent,2008,19(1):1-8.
[10]Srisilapanan P,Korwanich N,Yin W,et al. Comparison of the efficacy of a dentifrice containing 1.5% arginine and 1 450 ppm fluoride to a dentifrice containing 1 450 ppm fluoride alone in the mana-gement of early coronal caries as assessed using quantitative light-induced fluorescence[J]. J Dent,2013,41 (Suppl 2):S29-S34.
[11]Souza ML,Cury JA,Tenuta LM,et al. Comparing the efficacy of a dentifrice containing 1.5% arginine and 1 450 ppm fluoride to a dentifrice containing 1 450 ppm fluoride alone in the management of primary root caries[J]. J Dent,2013,41(Suppl 2):S35-S41.
[12]Yin W,Hu DY,Fan X,et al. A clinical investigation using quantitative light-induced fluorescence(QLF)of the anticaries efficacy of a dentifrice containing 1.5% arginine and 1 450 ppm fluoride as sodium monofluorophosphate[J]. J Clin Dent,2013,24:A15-A22.
[13]Kraivaphan P,Amornchat C,Triratana T,et al. Twoyear caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine,an insoluble calcium compound and 1,450 ppm fluoride[J]. Caries Res,2013(6):582-590.
[14]Marqui RE,Bende GR,Murra DR,et al. Arginine deiminase system and bacterial adaptation to acid environments[J]. Appl Environ Microbiol,1987,53 (1): 198-200.
[15]Rogers AH. Utilization of nitrogenous compounds by oral bacteria[J]. Aust Dent J,1990,35(5):468-471.
[16]Liu Y,Nascimento MM,Schulte R,et al. Characterization of the arginolytic microflora of human dental biofilms[J]. J Dent Res,2012,91(A):1262.
[17]Liu Y,Yaling L,Hu T,et al. Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis[J]. Microbiol Res,2006,161(4):304-310.
[18]Liy Y,Yaling L,Dan J,et al. Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate[J]. Oral Microbiol Immunol,2008,23(4):315-319.
[19]Morou-Bermudez E,Burne RA. Analysis of urease expression in Actinomyces naeslundii WVU45[J]. Infect Immun,2000,68(12):6670-6676.
[20]Chen YY,Weaver CA,Burne RA. Dual functions of Streptococcus salivarius urease[J]. J Bacteriol,2000,182(16):4667-4669.
[21]van Wuyckhuyse BC,Perinpanayagam HE,Bevacqua D,et al. Association of free arginine and lysine concentrations in human parotid saliva with caries experience[J]. J Dent Res,1995,74(2):686-690.
[22]Liu Y,Dong Y,Chen YY,et al. Arginine deiminase gene regulation in Streptococcus gordonii[J]. J Dent Res,2008,87(B):714.
[23]Chen YY,Weaver CA,Mendelsohn DR,et al. Transcriptional regulation of the Streptococcus salivarius 57.I urease operon[J]. J Bacteriol,1998,180(21):5769-5775.
[24]Sakakibara Y,Yanagisawa H. Agmatine deiminase from cucumber seedlings is a mono-specific enzyme:purification and characteristics[J]. Protein Expr Purif,2003,30(1):88-93.
[25]Griswold AR,Nascimento MM,Burne RA. Distribution,regulation and role of the agmatine deiminase system in mutans streptococci[J]. Oral Microbiol Immunol,2009,24(1):79-82.
[26]Bradshaw DJ,Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro[J]. Caries Res,1998,32(6):456-462.
[27]黄雪莲. 精氨酸调节牙菌斑生物膜微生态系的研究[D]. 成都: 四川大学,2012. Huang XL. Study of arginine' effect on dental microcosm[D]. Chengdu: Sichuan Univ,2012.
[28]Shu M,Browngardt CM,Chen YY,et al. Role of urease enzymes in stability of a 10-species oral biofilm consortium cultivated in a constant-depth film fermenter[J]. Infect Immun,2003,71(12):7188-7192.
[29]Zheng X,Cheng X,Wang L,et al. Combinatorial effects of arginine and fluoride on oral bacteria[J]. J Dent Res,2015,94(2):344-353.
[30]Nascimento MM,Browngardt C,Xiaohui X,et al. The effect of arginine on oral biofilm communities [J]. Mol Oral Microbiol,2014,29(1):45-54.
[31]王琳,郝玉庆,周学东,等. 精氨酸牙膏对口腔菌群组成影响的临床研究[J]. 华西口腔医学杂志,2014,32(增刊):87-91. Wang L,Hao YQ,Zhou XD,et al. Clinical trial on the effects of an arginine-containing toothpaste on the microbial ecology[J]. West Chin J Stomatol,2014,32(Suppl):87-91.
[32]许鹏程,邓盟,周学东,等. 精氨酸牙膏对釉质早期龋再矿化作用的研究[J]. 华西口腔医学杂志,2014,32(1):32-35. Xu PC,Deng M,Zhou XD,et al. Effect of arginine dentifrice on remineralization of initial enamel carious lesions[J]. West Chin J Stomatol,2014,32(1):32-35.
[33]王琳,刘敏,郝玉庆,等. 格氏链球菌自溶酶AtlS的研究进展[J]. 国际口腔医学杂志,2013,40(5):667-669. Wang L,Liu M,Hao YQ,et al. Research progress on Streptococcus gordonii AtlS autolysis[J]. Int J Stomatol,2013,40(5):667-669.
[34]Nascimento M,Liu Y,Kalra R,et al. Arginine metabolism may confer caries resistance in children[J]. J Dent Res,2012,91(A):714.
[35]Peterson S,Woodhead J,Crall J. Caries resistance in children with chronic renal failure: plaque pH,salivary pH,and salivary composition[J]. Pediatr Res,1985,19(8):796-799.
[36]Shu M,Morou-Bermudez E,Suárez-Pérez E,et al. The relationship between dental caries status and dental plaque urease activity[J]. Oral Microbiol Immunol,2007,22(1):61-66.
[37]Nascimento MM,Liu Y,Kalra R,et al. Oral arginine metabolism may decrease the risk for dental caries in children[J]. J Dent Res,2013,92(7):604-608.
[38]Reyes E,Martin J,Moncada G,et al. Caries-free subjects have high levels of urease and arginine deiminase activity[J]. J Appl Oral Sci,2014,22(3):235-240.
[39]Clancy A,Burne RA. Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity[J]. FEMS Microbiol Lett,1997,151(2):205-211.
[40]Clancy KA,Pearson S,Bowen WH,et al. Characterization of recombinant,ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity[J]. Infect Immun,2000,68(5):2621-2629.
[41]Cummins D. The development and validation of a new technology,based upon 1.5% arginine,an insoluble calcium compound and fluoride,for everyday use in the prevention and treatment of dental caries [J]. J Dent,2013,41(Suppl 2):S1-S11.
(本文采编王晴)
Relationship of alkali production by plaque biofilm and dental caries
Zhou Shuangshuang,Zheng Xin,Zhou Xuedong,Xu Xin.(State Key Laboratory of Oral Diseases,Dept. of Conservative Dentistry and Endodontics,West China Hospital of Stomatology,Sichuan University,Chengdu 610041,China)
R 780.2
A
10.7518/gjkq.2016.05.018
2015-12-15;[修回日期]2016-02-01
“十二五”国家科技支撑计划(2012BAI07B03);国家自然科学基金(81170959,81200782);高等学校博士学科点专项科研基金(20120181120002)
周双双,硕士,Email:1101032104@qq.com
徐欣,副教授,博士,Email:nixux1982@hotmail.com