宫内环境变化对子代大脑海马发育影响的分子机制
2016-03-09孙乐倪云翔丁之德
孙乐,倪云翔,丁之德
产科生理及产科疾病
宫内环境变化对子代大脑海马发育影响的分子机制
孙乐,倪云翔,丁之德△
海马是执行大脑认知、记忆等高级神经活动的重要区域,其结构与功能的改变与多种行为学异常和神经精神疾病的发生密切相关。海马的发育受到基因与环境的共同影响,其中胚胎期各种母体和外界环境因素引起的宫内环境变化均可对胎儿及出生后新生儿的海马组织结构与功能产生不可忽视的作用,其分子机制包括影响脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、糖皮质激素受体(glucocorticoid receptor,GR)、胰岛素样生长因子1(insulin-like growth factor1,IGF-1)、IGF-2等与海马代谢和神经发育相关基因的表达水平和信号转导的改变等。现主要从产前应激(prenatalstress,PS)、母体慢性疾病和子宫胎盘功能不全等各种孕期宫内环境改变对胎儿神经系统,尤其是对海马结构和功能的影响及分子机制进行综述。
子宫;宫内环境;海马;胚胎发育;遗传学,医学;表观遗传学;基因表达;脑源性神经营养因子
海马是大脑边缘系统(limbic system)的重要组成部分,在信息编码、短期与长期记忆以及空间定位(spatialnavigation)、认知功能等高级神经活动中发挥重要作用[1-2]。近年来,海马发育异常与癫痫、智力障碍、阿尔茨海默病、自闭症等多种神经精神疾病的相关性逐渐引起学者们的重视[1]。海马发育可从胚胎期一直持续至出生后,但胚胎期和出生后早期为海马发育的最重要时期,此阶段其发育过程对外界环境的变化尤其敏感,而各种母体宫内环境的改变可通过表观遗传学等多种机制对海马的结构与认知功能产生不可逆的长期影响,增加子代成年后对多种神经精神疾病的易感性[3]。
1 海马的解剖结构与胚胎发育
海马位于脑颞叶内部,在结构上分为齿状回(dentate gyrus,DG)和海马角(cornu ammonis,CA),后者又分为CA1、CA2和CA3共3个亚区。海马在功能上与其他脑结构相互联系,与下托(subiculum)、前下托(presubiculum)、旁下托(parasubiculum)和内嗅皮质(entorhinal cortex)一同构成海马结构(hippocampal formation),实现接收来自其他脑区的感觉投射与整合信息的功能[1,4]。人类大脑的海马发育始于胚胎期第9周,海马原基(hippocampal primordium)从终板背侧发生,随后齿状回和海马角逐渐折叠,海马沟渐渐闭合,至第18~20孕周时已与成人海马结构相近[1]。海马的发育受到激素、神经营养因子、基因组修饰相关酶类等多种因子的共同作用,其中包括下丘脑-垂体-肾上腺(HPA)轴调控应激反应,Wnt信号通路调控海马可塑性和记忆形成,DNA甲基化转移酶1(DNA methyltransferase 1,Dnmt1)调控神经干细胞的迁移和神经元生长[5]等;多种环境因素如产前应激(prenatalstress,PS)、母体营养不良、精神疾病、药物和(或)酒精滥用、感染等均可引起上述通路失衡,并对海马的表观遗传学编程、神经发生和突触可塑性产生不良影响或引起记忆与认知功能障碍[6-7]。
2 宫内应激与海马发育
胚胎期宫内应激会引起胎儿海马中糖皮质激素(glucocorticoid,GC)受体(glucocorticoid receptor,GR)的数量减少,并导致出生后长期情感与认知障碍,其机制包括海马中基因组DNA甲基化和微小RNA(miRNA)水平的改变[8]。产前应激包括感染、营养、激素水平、药物、心理应激等,可在突触可塑性、海马神经发生(hippocampalneurogenesis)、神经内分泌、精神障碍等方面对子代产生性别特异性(sex-specific)影响[6,9]。
2.1 妊娠期感染宫内感染(intrauterine infection)及母体免疫系统激活是胎儿早产和精神分裂症、自闭症、智力低下等精神障碍的主要危险因素[10],近年来也有研究证实其与抑郁样行为(depressive-like behavior)和焦虑样行为(anxiety-like behavior)的发生有关[11-12]。
2.1.1 细菌感染Nouel等[13]用大肠杆菌脂多糖(lipopolysaccharide,LPS)腹腔注射孕期大鼠为感染模型,证实胚胎期LPS暴露可引起GABA能神经元的标记蛋白谷氨酸脱羧酶67(glutamic acid decarboxylase 67,GAD67)和络丝蛋白(Reelin)表达下降,子代表现出苯丙胺诱导的自主活动(amphetamine-induced locomotion)和工作记忆下降等与精神分裂症相关的行为学改变。此外,大鼠胚胎的多巴胺能(DA)和5-羟色胺(5-HT)神经元在发育期如有LPS暴露可引起成年后海马区的脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)表达下调和神经再生减少,习得性无助(learned helplessness)和抑郁样行为增加等[14]。
2.1.2 病毒感染小鼠孕中期感染甲型流感病毒H1N1亚型能引起胎儿Aqp4、Mbp、Nrcam等自闭症和精神分裂症候选基因的表达显著下调和海马体积减小[15];Khan等[12]用聚肌胞苷磷酸盐(polyinosinic: polycytidylic phosphate salt,poly I:C)刺激小鼠建立的病毒感染模型,发现母体免疫系统激活后可引起子代海马中血管内皮生长因子A(vascularendothelial growth factor A,VEGFA)和血管内皮生长因子受体2(VEGFR2)的表达显著下调,以及海马长时程增强效应(long-term potentiation,LTP)和双脉冲易化(paired pulse facilitation,ppF)减弱,子代行为学上表现为抑郁样行为;而妊娠早期注射流感疫苗能够通过调控母体的细胞因子水平和免疫状态,促进齿状回神经元的增殖与分化并改善子代的空间工作记忆(spatial workingmemory)[16]。
2.2 应激激素与HPA轴功能海马中含有丰富的GR,并被公认为在HPA轴的调节中起中枢作用[17]。血液循环中的GC通过作用于海马区GR参与HPA轴的负反馈调节。妊娠期母体血循环GC水平受皮质醇摄入、焦虑、抑郁等多种因素影响,而病理性GC水平升高可引起HPA轴功能异常[18],进而导致子代情感发育异常和精神障碍的易感性增加[6]。正常状态下,妊娠晚期母体可出现生理性GC高峰(glucocorticoid surge),此GC峰在胎儿正常发育和器官成熟,以及全基因组启动子的甲基化编程中发挥至关重要的作用。然而,在非足月妊娠中,生理性GC峰前母体摄入高水平的合成GC(synthetic glucocorticoid,sGC)会引起胎儿海马中多个基因启动子的甲基化水平增加和H3K9乙酰化水平降低,此表观遗传学改变可在出生后长期存在,最终造成胎儿HPA轴功能失调及出生后神经行为异常[17]。
2.3 母体营养失衡胎儿神经元生长与脑发育需要多种营养成分,而围生期至关重要的大量和微量营养素包括必需氨基酸、长链多不饱和脂肪酸、铁、锌、碘、叶酸、胆碱和各种维生素等更是不可缺少[3],妊娠期营养状态直接参与甲基供体补给、DNMTs和相关转录因子活性的调控以及胎儿基因组的表观遗传学修饰等过程[3,11]。
2.3.1 母体饮食饮食中叶酸、维生素B6、维生素B12、胆碱等甲基供体与DNA和组蛋白的甲基化密切相关。研究证实,限制蛋白饮食的大鼠血液中同型半胱氨酸浓度升高,并伴有DNMT1表达下调及其与GR启动子结合的减少,子代出现海马结构和功能的异常以及认知、记忆功能的长期受损。另外,胚胎脑发育阶段胆碱的缺乏会引起基因表达、信号转导、HPA轴活性及神经元分化的异常,而母体饮食中补充胆碱能够增加胎儿大脑的神经元发生,改善子代记忆功能[3]。Li等[19]报道,在孕期母猪的饮食中补充甜菜碱(betaine)可上调幼猪海马中甜菜碱-同型半胱氨酸甲基转移酶(betaine-homocysteine methyltransferase,BHMT)、甘氨酸-N-甲基转移酶(glycine N-methyltransferase,GNMT)和DNMT1基因的表达,引起胰岛素样生长因子2(insulin-like growth factor2,IGF-2)基因的差异性甲基化区域1(differentiallymethylated region 1,DMR1)和DMR2过度甲基化及IGF-2表达上调,进而IGF-2蛋白下游信号通路激活,新生幼猪海马神经元增殖和神经发生(neurogenesis)增加。
2.3.2 微量元素不足铁元素缺乏是妊娠期十分常见的一种微量元素不足,全球发生率约为30%。Tran等[20]研究证实,胚胎期至新生儿期的铁缺乏能够抑制大鼠海马胰岛素样生长因子(insulin-like growth factor,IGF)和蛋白激酶B(protein kinase B,PKB)信号通路,并上调细胞外信号调节激酶1/2信号通路(extracellular signal-regulated kinase 1/2 signaling,ERK1/2)和缺氧诱导因子1α(hypoxia-inducible factor 1α,HIF-1α)的表达,从而抑制神经发生并引起海马解剖结构与功能异常;胚胎期铁缺乏还可引起大鼠成年后海马中BDNF位点的染色质重塑(chromatin remodeling)的改变,包括BDNF启动子Ⅳ位点的组蛋白去乙酰化酶1(histone deacetylase 1,HDAC1)水平升高,伴有K27me3、K4me1印迹的显著增加和K4me3印迹减少,上述去乙酰化酶和甲基化水平的变化分别引起该位点组蛋白乙酰化水平降低和甲基化水平升高,BDNF表达下调,而BDNF正是调控海马可塑性的重要蛋白之一[21]。此外,雌性大鼠孕期边缘性碘缺乏(marginal iodine deficiency)可引起出生后早期生长应答蛋白(early growth response protein,EGR1)和BDNF的表达下调及空间学习记忆能力下降等[22]。
2.4 孕期有毒物质暴露
2.4.1 尼古丁胚胎期母体吸烟可引起胎儿基因组DNA甲基化和miRNA表达异常,并可增加出生后青少年期患注意力缺陷和多动障碍(attention deficit and hyperactivity disorder,ADHD)、重度抑郁症和毒品滥用(drug abuse)的风险[23]。Blustein等[24]发现,吸烟引起的尼古丁暴露和宫内缺氧可在细胞与分子水平上对豚鼠胚胎的海马产生多种影响,包括CA1区突触素(synaptophysin)和基质金属蛋白酶(matrix metalloproteinase,MMP)表达水平,神经元和星形胶质细胞的数量等,且这些改变可延续至成年。另外,宫内尼古丁暴露可引起胎儿海马中GR表达水平的显著升高,而下丘脑促肾上腺皮质激素释放激素(CRH)和肾上腺类固醇激素急性调节蛋白(steroid acute regulatory protein,StAR)及胆固醇侧链裂解酶(cholesterol side-chain cleavage enzyme,P450scc)水平下降,提示尼古丁可引起外周血循环中GC水平升高,后者通过负反馈调节抑制胎儿HPA轴,最终导致胎儿生长受限(fetal growth restriction,FGR)的风险增加及子代出生后长期的糖脂代谢异常[25-26]。
2.4.2 酒精妊娠期酒精暴露(prenatal alcohol exposure,PAE)是子代认知缺陷的另一个重要诱因之一。Caldwell等[27]发现PAE能够引起子代小鼠海马中FK506-结合蛋白51(FK506-binding protein51,FKBP51)下调和11β-羟甾类固醇脱氢酶I(11-βhydroxysteroid dehydrogenaseⅠ,11-β-HSDⅠ)上调及GR表达升高,并在细胞核内定位增加,上述神经细胞生化特性的改变与子代行为学中环境辨别(contextdiscrimination)能力的降低密切相关。此外,Elibol-Can等[28]发现PAE能引起突触素和突触后致密物质95(postsynaptic density 95,PSD-95)的表达显著升高,同时伴随有突触棘密度(spine density)的增加,子代出现了显著的认知障碍症状。
2.4.3 其他有毒物质目前已证实,多种重金属及化工药品的孕期暴露能引起胎儿神经发育异常和子代亚临床脑功能障碍(subclinicalbrain dysfunction)的发生;其中,双酚A(bisphenol A,BPA)广泛应用于塑料、树脂和纸制品中,现代社会中由于工业化和经济的发展,人群BPA暴露尤为普遍。Elsworth等[29]研究发现,妊娠晚期雌性恒河猴的低剂量BPA暴露能够引起子代脑多巴胺神经元和海马CA1区轴棘突触数目减少;而出生14~18个月的幼年猴BPA暴露却未能引起上述改变,提示胚胎期哺乳动物的神经发育远较幼年期或青年期敏感。另外,胚胎期甲基苯丙胺暴露也可引起子代海马的表观遗传学变化,包括海马组织DNA甲基化水平的差异性改变,对咖啡因兴奋性的增加以及对条件性恐惧反应的减弱等[30]。
3 母体疾病对海马发育的影响
母体慢性疾病是导致宫内环境病理性改变的重要因素,如孕妇的精神障碍、糖尿病、肥胖、子痫前期等疾病状态均可通过胎盘传递给胎儿,影响其大脑结构及功能的发育[31]。
3.1 糖尿病母体糖尿病可引起子代神经发育和认知的障碍,Hami等[32]检测了糖尿病大鼠子代出生后胰岛素受体(insulin receptor,INSR)和海马中IGF-1的表达,发现仔鼠出生后不同时段的InsR和IGF-1R在转录和蛋白水平上均有显著的改变,而胰岛素和IGF-1被证实为调控中枢神经发育与认知功能的重要因子。母体糖尿病并发的慢性高血糖还可激活糖基化终末产物受体(receptor for advanced glycation end-products,RAGE)信号通路,导致子代海马发育异常[33]。
3.2 肥胖与高脂饮食母体肥胖和妊娠期高脂饮食可造成一个营养过剩(over nutrition)的宫内环境,后者与子代多种代谢性疾病和精神障碍的发生密切相关。Sasaki等[34]研究发现,孕鼠高脂饮食可引起后代海马中GR和相关炎症因子的表达上调,并在子代的青春期和成年期分别导致不同程度焦虑行为的发生。此外,孕鼠高脂饮食还可引起子代突触可塑性相关基因Arc、BDNF、NGF的表达下调,行为学表现为空间定位能力的下降[35]。
3.3 子痫前期子痫前期与幼儿发育迟缓和多种成年性疾病的发生显著相关。子痫前期引起的子宫胎盘病理性改变可削弱胎儿与母体之间的营养物质交换,造成宫内营养不良的环境,进而对胎儿的神经发育产生不良影响。子痫前期大鼠其后代成年后海马中神经元增殖显著减少,同时伴有神经再生相关基因如成纤维细胞生长因子2(fibroblast growth factor 2,FGF-2)、环磷酸腺苷反应元件结合蛋白(cAMP-response element binding protein,Creb)和E1A结合蛋白P300(EIA-binding protein P300,Ep300)的表达下调;虽然子痫前期孕鼠所生产的仔鼠成年后其脑结构无大体改变,但行为学研究发现其空间学习能力和记忆能力明显下降[36]。
4 子宫胎盘功能不全(uterop lacental insufficiency,UPI)
在正常妊娠中,胎盘通过氧气和营养物质交换、分泌激素和生长因子、对胎儿免疫保护等作用以维持宫内环境的稳定,胎盘发育不良等因素引起的UPI可导致宫内缺氧、FGR等病理状态,并进一步对胎儿的脑发育产生长期影响[31]。
4.1 产前缺氧(prenatal hypoxia,PH)Hartley等[37]通过体外实验发现,海马神经元原代培养初期如一过性缺氧可引起基因组DNA甲基化状态的持续变化,进而在转录组水平调控神经发育和功能相关基因的表达。体内试验证实,生理状态下,妊娠晚期胎儿海马CA3区钾-氯共转运体2(KCC2)数量增加,KCC2可通过调控氯离子的胞外转运参与神经环路的调节;然而,妊娠晚期宫内缺氧可引起大鼠出生后其幼年期海马中KCC2的上调被阻断,并伴有海马CA3亚区超微结构的完整性受损[38]。另外,N-甲基-D-天冬氨酸受体(N-methyl-D-aspartate receptor,NMDAR)参与突触可塑性、记忆功能和LTP的调控,PH出生后的幼鼠海马中NMDAR的亚基Grin1/ NR1、Grin2a/NR2A、Grin2b/NR2B表达下调,NMDARWnt-Catenin信号通路失衡[39],而Wnt信号通路已被证实在调节海马的学习记忆中发挥重要作用[7]。
4.2 FGR其影响雄性大鼠海马中GR基因表达及其组蛋白修饰。Brahma相关基因1(Brahmarelated gene 1,Brg1)是交配型转换/蔗糖不发酵(SWItch/Sucrose Nonfermentable,SWI/SNF)复合体家族成员,其可通过影响核小体定位、招募转录因子参与GR基因的ATP依赖性染色质重塑,进而调控GR的表达水平。Ke等[40]发现FGR可上调新生雄性大鼠海马中染色质重构因子Brg1的表达及其与GR外显子1.7启动子的结合,进而可促使出生后的雄性大鼠海马中GR和GR外显子1.7的mRNA变异体表达增加,以及GR外显子1.7的三甲基H3/K4(histone H3 lysine 4 trimethylation,H3K4me3)聚集,此组蛋白修饰参与GR表达的调控,对出生后的HPA轴编程和子代神经精神疾病的发生产生长期影响[41]。
5 结语
胚胎期是各器官系统对外界因素影响尤为敏感的时期,各种宫内不良环境(adverse intrauterine environment)如宫内应激、母体慢性疾病、子宫胎盘功能不全等均会通过胎盘向子代传递,影响胎儿宫内和出生后发育过程中的编程,增加其成年后对各类代谢性疾病、神经精神疾病等的易感性[31,42]。其中,海马作为实现大脑认知、记忆和成年后神经再生等功能的重要组织结构,胚胎期和出生早期各种环境因素的改变均可通过表观遗传学机制等途径影响其组织结构的构建与功能的完善,进而导致出生后脑功能受损[3]。因此,充分了解各种宫内环境改变对胚胎神经发育,尤其是对大脑海马影响的分子机制及其与成年后多种疾病发生的相关性,与此同时,针对相关的不良影响,在妊娠期内采取有效的干预措施,这对预防胎儿神经系统的发育异常和后期的相关疾病,以及对胚胎源性疾病制定有效的靶向治疗方案均有着至关重要的临床和社会意义。
[1]Khalaf-NazzalR,Francis F.Hippocampaldevelopment-old and new findings[J].Neuroscience,2013,248:225-242.
[2]Qin S,Cho S,Chen T,et al.Hippocampal-neocortical functional reorganization underlies children′s cognitive development[J].Nat Neurosci,2014,17(9):1263-1269.
[3]Lucassen PJ,Naninck EF,van Goudoever JB,et al.Perinatal programming of adult hippocampal structure and function;emerging roles of stress,nutrition and epigenetics[J].Trends Neurosci,2013,36(11):621-631.
[4]Schultz C,EngelhardtM.Anatomy of the hippocampal formation[J]. FrontNeurolNeurosci,2014,34:6-17.
[5]Noguchi H,Murao N,Kimura A,et al.DNA Methyltransferase 1 Is Indispensible for Development of the Hippocampal Dentate Gyrus[J].JNeurosci,2016,36(22):6050-6068.
[6]Bock J,Wainstock T,Braun K,et al.Stress In Utero:Prenatal Programming of Brain Plasticity and Cognition[J].Biol Psychiatry,2015,78(5):315-326.
[7]Fortress AM,Frick KM.Hippocampal Wnt Signaling:Memory Regulation and Hormone Interactions[J].Neuroscientist,2016,22(3):278-294.
[8]Babenko O,Kovalchuk I,Metz GA.Stress-induced perinatal and transgenerational epigenetic programming of brain development and mentalhealth[J].NeurosciBiobehav Rev,2015,48:70-91.
[9]Bock J,Rether K,Gröger N,et al.Perinatal programming of emotional brain circuits:an integrative view from systems to molecules[J].FrontNeurosci,2014,8:11.
[10]Jiang P,Zhu T,Zhao W,et al.The persistent effects of maternal infection on the offspring′s cognitive performance and rates of hippocampal neurogenesis[J].Prog Neuropsychopharmacol Biol Psychiatry,2013,44:279-289.
[11]Hoeijmakers L,Lucassen PJ,Korosi A.The interplay of early-life stress,nutrition,and immune activation programsadulthippocampal structureand function[J].FrontMolNeurosci,2014,7:103.
[12]Khan D,Fernando P,Cicvaric A,etal.Long-term effectsofmaternal immune activation on depression-like behavior in the mouse[J]. TranslPsychiatr,2014,4:e363.
[13]Nouel D,Burt M,Zhang Y,et al.Prenatal exposure to bacterial endotoxin reduces the number of GAD67-and reelinimmunoreactiveneurons in thehippocampusof ratoffspring[J].Eur Neuropsychopharmacol,2012,22(4):300-307.
[14]Lin YL,Wang S.Prenatal lipopolysaccharide exposure increases depression-like behaviorsand reduceshippocampal neurogenesis in adult rats[J].Behav Brain Res,2014,259:24-34.
[15]FatemiSH,Folsom TD,Reutiman TJ,etal.Prenatal viral infection of mice atE16 causes changes in gene expression in hippocampiof the offspring[J].Eur Neuropsychopharmacol,2009,19(9):648-653.
[16]Xia Y,QiF,Zou J,etal.Influenza A(H1N1)vaccination during early pregnancy transiently promotes hippocampal neurogenesis and workingmemory.Involvement of Th1/Th2 balance[J].Brain Res,2014,1592:34-43.
[17]Crudo A,Suderman M,Moisiadis VG,et al.Glucocorticoid programming of the fetal male hippocampal epigenome[J]. Endocrinology,2013,154(3):1168-1180.
[18]Provençal N,Binder EB.The effects of early life stress on the epigenome:From the womb to adulthood and even before[J].Exp Neurol,2015,268:10-20.
[19]Li X,Sun Q,Li X,et al.Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions[J].Eur JNutr,2015,54(7):1201-1210.
[20]Tran PV,Fretham SJ,Wobken J,et al.Gestational-neonatal iron deficiency suppressesand iron treatment reactivates IGF signaling in developing rat hippocampus[J].Am JPhysiol Endocrinol Metab,2012,302(3):E316-E324.
[21]Tran PV,Kennedy BC,Lien YC,et al.Fetal iron deficiency induces chromatin remodelingat the Bdnf locus in adult rathippocampus[J]. Am JPhysiol Regul Integr Comp Physiol,2015,308(4):R276-R282.
[22]Liu Y,Zhang L,Li J,et al.Maternal marginal iodine deficiency affects the expression of relative proteins during brain development in ratoffspring[J].JEndocrinol,2013,217(1):21-29.
[23]Knopik VS,Maccani MA,Francazio S,et al.The epigenetics of maternal cigarette smoking during pregnancy and effects on child development[J].Dev Psychopathol,2012,24(4):1377-1390.
[24]Blutstein T,Castello MA,Viechweg SS,et al.Differential responses ofhippocampalneuronsand astrocytes to nicotineand hypoxia in the fetalguinea pig[J].Neurotox Res,2013,24(1):80-93.
[25]Xu D,Liang G,Yan YE,et al.Nicotine-induced over-exposure to maternal glucocorticoid and activated glucocorticoid metabolism causes hypothalamic-pituitary-adrenal axis-associated neuroendocrinemetabolic alterations in fetal rats[J].Toxicol Lett,2012,209(3):282-290.
[26]Liu L,Liu F,Kou H,et al.Prenatal nicotine exposure induced a hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in intrauterine growth retardation offspring rats[J].Toxicol Lett,2012,214(3):307-313.
[27]Caldwell KK,Goggin SL,Tyler CR,et al.Prenatal alcohol exposure is associated with altered subcellular distribution of glucocorticoid and mineralocorticoid receptors in the adolescent mouse hippocampal formation[J].Alcohol Clin Exp Res,2014,38(2):392-400.
[28]Elibol-Can B,Kilic E,Yuruker S,etal.Investigation into the effects of prenatal alcohol exposure on postnatal spine development and expression of synaptophysin and PSD95 in rathippocampus[J].Int J Dev Neurosci,2014,33:106-114.
[29]Elsworth JD,Jentsch JD,Vandevoort CA,et al.Prenatal exposure to bisphenol A impactsmidbrain dopamine neurons and hippocampal spine synapses in non-human primates[J].Neurotoxicology,2013,35:113-120.
[30]Itzhak Y,Ergui I,Young JI.Long-term parentalmethamphetamine exposure of mice influences behavior and hippocampal DNA methylationoftheoffspring[J].MolPsychiatr,2015,20(2):232-239.
[31]Bronson SL,Bale TL.The PlacentaasaMediator of Stress Effectson NeurodevelopmentalReprogramming[J].Neuropsychopharmacology,2016,41(1):207-218.
[32]Hami J,Sadr-Nabavi A,Sankian M,et al.The effects ofmaternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus[J].Brain Struct Funct,2013,218(1):73-84.
[33]Chandna AR,Kuhlmann N,Bryce CA,et al.Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases RAGE expression,augments hippocampal excitability,and alters behaviorof theoffspring[J].Neuroscience,2015,303:241-260.
[34]Sasaki A,de VegaWC,St-Cyr S,et al.Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood[J]. Neuroscience,2013,240:1-12.
[35]Page KC,Jones EK,Anday EK.Maternal and postweaning high-fat diets disturb hippocampal gene expression,learning,and memory function[J].Am JPhysiol Regul Integr Comp Physiol,2014,306(8):R527-R537.
[36]Liu X,Zhao W,Liu H,et al.Developmental and Functional Brain Impairment in Offspring from Preeclampsia-Like Rats[J].Mol Neurobiol,2016,53(2):1009-1019.
[37]Hartley I,Elkhoury FF,Heon Shin J,et al.Long-lasting changes in DNAmethylation following short-term hypoxic exposure in primary hippocampalneuronal cultures[J].PLoSOne,2013,8(10):e77859.
[38]Jantzie LL,Getsy PM,Denson JL,et al.Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure,Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone[J].Front Cell Neurosci,2015,9:347.
[39]Wei B,Li L,He A,et al.Hippocampal NMDAR-Wnt-Catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatalhypoxia[J].Brain Res,2016,1631:157-164.
[40]Ke X,McKnight RA,Gracey Maniar LE,et al.IUGR increases chromatin-remodeling factor Brg1 expression and binding to GR exon 1.7 promoter in newborn male rat hippocampus[J].Am J PhysiolRegul IntegrComp Physiol,2015,309(2):R119-R127.
[41]Ke X,Schober ME,McKnight RA,et al.Intrauterine growth retardation affectsexpression and epigenetic characteristicsof the rat hippocampal glucocorticoid receptor gene[J].Physiol Genomics,2010,42(2):177-189.
[42]El Hajj N,Schneider E,Lehnen H,et al.Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment[J].Reproduction,2014,148(6):R111-R120.
The Epigenetic Influence of Intrauterine Environment Changes on Offspring′s Hippocampal Development
SUN Le,NI
Yun-xiang,DING Zhi-de.Department of Clinical Medicine,Grade 2012(English Program),School of Medicine,Shanghai Jiao Tong University,Shanghai 200025,China(SUN Le);Department of Gynaecology and Obstetrics,Tong Ren Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai 200336,China(NI Yun-xiang);Department of Anatomy,Histology and Embryology,SchoolofMedicine,Shanghai Jiao Tong University,Shanghai200025,China(DINGZhi-de)
s:NIYun-xiang,E-mail:niyy@hotmail.com;DINGZhi-de,E-mail:zding@shsmu.edu.cn
Hippocampus isa remarkable brain structure playing important roles in advanced neuronalactivities including cognitive function and memory,of which the structural and functional alterations are closely associated with behavioral abnormalities,neurological diseases and psychiatric disorders.Hippocampal development is influenced by both genetic and environmental factors,among which changes of the intrauterine environment from thematernal and external factors exerthuge influences on the structure and function of both fetal and infanthippocampus.Themolecularmechanisms include variations in the expression levelsofgenesassociated with hippocampalmetabolism and neurogenesis such as BDNF,GR,IGF-1 and IGF-2,aswell as alterations of signaling transduction in the hippocampus.This review attempts to summarize the changes of structure and function as well as the molecular mechanisms in fetal nervous system,especially in the hippocampus induced by the alterations of intrauterine environmentsuch as prenatalstress,maternal chronic diseasesand uteroplacental insufficiency during pregnancy.
Uterus;Intrauterine environment;Hippocampus;Embryonic development;Genetics,medical;Epigenetics;Gene expression;BDNF(JIntObstetGynecol,2016,43:547-551,560)
2016-02-22)
[本文编辑王昕]
200025上海交通大学医学院临床医学系2012级临床五年制英文班(孙乐);上海交通大学医学院附属同仁医院妇产科(倪云翔);上海交通大学医学院解剖学与组织胚胎学系(丁之德)
倪云翔,E-mail:niyy@hotmail.com;
丁之德,E-mail:zding@shsmu.edu.cn
△审校者