MicroRNAs与肝纤维化及相关中医药研究的进展*
2016-03-06郭鑫昕苏式兵商嘉玮史苗娟
郭鑫昕,苏式兵,商嘉玮,史苗娟,张 辉
(上海中医药大学中医复杂系统研究中心 上海 201203)
MicroRNAs与肝纤维化及相关中医药研究的进展*
郭鑫昕,苏式兵,商嘉玮,史苗娟,张 辉**
(上海中医药大学中医复杂系统研究中心 上海 201203)
肝纤维化是由多种原因引起的慢性肝损害所导致的病理改变。肝星状细胞(HSC)激活、增殖和凋亡等是肝纤维化发生、发展的中心环节。MicroRNAs(miRNAs)是19-24核苷酸长度的内源性单链非编码小RNA分子,在转录后水平调控多基因的表达,是表观遗传基因调控网络中的重要部分。肝纤维化过程中多种miRNAs异常表达,miRNAs通过调控其靶基因参与HSC相关信号通路,从而介导肝纤维化的发生发展;miRNAs在肝纤维化诊断及治疗中具有重要作用;miRNAs可作为治疗肝纤维化干预的靶点,用以阐释中药的抗肝纤维化机制研究;miRNAs与慢性肝病的中医证候相关,在肝纤维化的证候研究方面具有很大的前景。本文就miRNAs在肝纤维化及与中医药的相关研究进展作一综述。
肝纤维化 miRNAs 中医药 研究 进展
肝纤维化是由多种原因,包括炎症反应、持续性病毒感染、酒精性、药物毒性或遗传因素等[1]引起的慢性肝损害所致的病理改变,是肝内细胞外基质(Extracellular Matrix,ECM)中成分过度异常沉积的结果,影响肝脏的正常功能,是发展到肝硬化的必经阶段。肝星状细胞(Hepatic Stellate Cells,HSC)是ECM的主要来源。HSC是肝纤维化发生、发展的关键细胞,HSC由静息型被激活转变为活化型,是肝纤维化发生的中心环节。HSC生物学活性由多个信号通路调控,HSC活化机制是肝纤维化防治的研究热点。
微小RNAs(microRNAs,miRNAs)是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约19-24个核苷酸。成熟的miRNAs由较长的初级转录物经过一系列核酸酶剪切加工而产生,随后组装进RNA诱导的沉默复合体,通过碱基互补配对的方式识别靶mRNA,并根据互补程度的不同指导沉默复合体降解靶mRNA或者阻遏靶mRNA的翻译[2]。近年研究表明,在肝纤维化过程中许多miRNAs的表达上调或下调[3-43],miRNAs通过负调控靶基因参与TGF-β/Smads、Hh、Wnt、PI3K/ Akt、NF-κB、Caspase等信号通路[3-34],介导HSC的活化、增殖和凋亡等,从而在肝纤维化的发生、发展过程中发挥重要作用。
随着miRNAs研究的深入和研究领域的扩展及其重要的生物功能,miRNAs在阐明中药抗肝纤维化作用机制及中医证候研究等方面有着重要的应用前景。因此,本文就miRNAs与肝纤维化及相关中医药研究的进展作一综述,探讨其学术意义。
1 肝纤维化过程中表达异常的miRNAs
MiRNAs表达的改变对肝纤维化的发生发展有着重要的影响。近年来诸多学者和研究人员利用动物肝组织模型、患病人体肝组织和相关细胞对miRNAs的表达及影响肝纤维化的病理机制进行相关探究。据现有文献报道,约有40种miRNAs在肝纤维化过程中呈异常表达,具体见表1。
表1 肝纤维化相关miRNAs及其靶基因和参与的信号通路
2 肝纤维化中miRNAs的作用机制
HSC的激活及其激活后ECM异常表达和沉积是肝纤维化发生的关键。HSC的生物活性由多个信号通路参与,如TGF-β/ Smads、Hh、Wnt、PI3K/ Akt、NF-κB、Caspase等信号通路,这些通路中有多种不同的基因参与,而miRNAs通过其靶基因参与HSC相关信号通路的调控,影响HSC的活化、增殖或凋亡等,从而介导肝纤维化的发生发展。
2.1 MiRNAs参与TGF-β信号通路
TGF-β是肝脏发生纤维化病变极其重要的一种细胞因子,与Smad家族蛋白结合形成TGF-β/Smad信号通路,是调节HSC活化和ECM沉积的重要途径之一[44]。研究发现,miR-19b在HSC活化进程中下调,恢复miR-19b可抑制靶基因TGFβRII表达而影响ECM的生成[3]。MiR-146a在CCl4诱导的大鼠肝纤维化模型中表达下调,miR-146a调控靶基因Smad4而抑制TGF-β诱导的HSC增殖[5]。MiR-144在人肝纤维化组织中呈下调,miR-144或许能调控TGF-β1诱导的HSC活化[6]。MiR-155通过调节Smad3和C/EBPβ的活性影响脂肪性肝炎过程中的肝纤维化[7]。MiR-16在HCV感染诱导的肝纤维化组织细胞中呈上调,通过对HGF和Smad7的靶向负调控而影响肝纤维化进程[9]。
MiR-30c和miR-193在CCL4诱导的小鼠肝纤维化组织和人肝纤维化组织中呈下调,通过调控SNAIL和TGF-β2参与肝纤维化的发生发展[12]。MiR-101在CCL4诱导的小鼠肝纤维化组织中下调,miR-101通过调控靶基因ZEBI影响肝纤维化过程中的上皮间质转换[15];miR-101亦能通过对靶基因TGFβRI和KLF6的调控影响HSC活化[14]。MiR-17-5p通过抑制Smad7的表达而对TGF-β/Smad信号通路起调控作用,进而促进HSC的增殖和活化[16]。MiR-21在小鼠模型中的HSCs和Kupffer细胞中表达上调,其调控机制与TGF-β1/Smad通路相关[45]。MiR-454在活化HSC中表达下调,miR-454能调控Smad4而抑制HSC的活化[16]。MiR-483-5p/3p在CCl4诱导的大鼠模型HSCs中表达下调,通过调控靶基因PDGF-β和TIMP2参与TGF-β信号通路调节肝纤维化进程[17]。
2.2 MiRNAs参与Hedgehog(Hh)信号通路
Hh信号通路在HSC激活过程中起着重要的作用[23]。miR-152在肝纤维化中表达下调,其靶基因DNA甲基化转移酶1(DNMT1)表达增加,致使Hh信号通路的负调控因子PTCH1甲基化程度升高,从而影响肝纤维化过程中的EMT发生[22]。MiR-125b在CCL4诱导的大鼠肝纤维化模型中呈下调,miR-125b通过调控靶基因Smo促进肝细胞再生、抑制Hh信号通路的活性进而影响肝纤维化进程[23]。研究发现,miR-29b在CBDL诱导的小鼠肝纤维化模型表达下调,通过调控Col1&IV、C-MYC、PDGF-β、PI3K/AKT等抑制Hh信号通路的活性,减少ECM的沉积[21]。MiR-200a在大鼠HSCs活化后表达下调,miR-200a能靶向调控GLi2抑制Hh信号通路的活性,减少其通路中有关基因的表达,阻止EMT的过程[24]。MiR-378a-3p、miR-378b、miR-378d均 在HSC活化过程中表达下调,miR-378a-3p调控Hh信号通路中锌指转录因子Gli3抑制HSC的活性[25]。
2.3 MiRNAs参与Wnt信号通路
Wnt蛋白是一类富含半胱氨酸的高度保守的分泌型糖蛋白,它可以通过HSC自分泌的方式释放到细胞外,与HSCs细胞膜上的Frizzled/低密度脂蛋白(LPS)受体相关蛋白(Fz/LRP)结合,进而调节HSC的活化[46]。MiR-146a-5p在HSC活化进程中表达下调,通过负调控Wnt1和Wnt5a抑制HSC活化和增殖[26]。MiR-17a-5p在肝纤维化进程中呈高表达,通过负调控WIF1而激活Wnt/β-catenin。
2.4 MiRNAs参与PI3K/Akt信号通路
PI3K/Akt信号通路参与肝纤维化调控。PTEN是PI3K/AKT 信号通路中的一种负调控因子,可以通过阻止PI3K/AKT通路的磷酸化降低肝星状细胞的活化[47]。MiR-200b在HSC中呈上调,通过调控靶基因FOG2增强Akt的磷酸化过程促进HSC的增殖及迁移[28]。MiR-181b抑制p27促进HSCs的增殖[29],miR-181b也可通过调控PTEN参与PTEN/AKT 信号通路从而使HSCs活化[30]。MiR-222在肝纤维化表达上调,抑制miR-222的表达抑制人HSC(LX-2)的增殖,并可以影响Akt信号通路下游的传导[31]。
2.5 MiRNAs参与NF-κB信号通路
NF-κB是肝纤维化发生过程中的重要调节途径之一[48]。Feng X等[32]研究发现,miR-126在HSC中表达上调,miR-126通过抑制靶基因IκBα的表达活性,使NF-κB信号通路的活性增强并且相关蛋白的表达量增加,从而在肝纤维化进程中起到重要的作用。
2.6 MiRNAs参与ERK1/2信号通路
细胞外调节蛋白激酶(Extracellular Regulated Protein Kinases,ERK)分为ERK1和ERK2,统称为ERK1/2,对HSC的活化、增殖、凋亡等均有影响[4]。MiR-21在肝纤维化进程中呈上调,miR-21通过靶向调控SPRY2和HNF4α参与ERK1信号通路,分别使TGF-β1表达量增加和促进EMT[34]。MiR-19b在大鼠肝纤维化模型中呈下调,miR-19b通过调控GRB2抑制HSC的增殖[4]。
2.7 MiRNAs通过Caspase信号通路
Caspase家族是一组存在于胞质溶胶中含半胱氨酸的天冬氨酸蛋白水解酶,在细胞凋亡机制网络中处于中心地位[49],与HSC凋亡相关。MiR-15b和miR-16在大鼠HSC中低表达,增加miR-15b和miR-16的表达能减少Bcl-2的表达,增加caspases 3/8/9的表达,从而诱导激活的HSC凋亡[50]。
2.8 MiRNAs参与HSC脂肪滴代谢
MiR-27a/b在原代培养大鼠HSC激活后表达上调,减少miR-27a(b)表达可抑制HSC增殖,HSC胞浆中消失的脂滴重新出现,其机制为miR-27a可靶向调控RXRα抑制脂肪细胞分化[51]。MiR-155在酒精诱发脂肪性肝炎和纤维化的过程中呈上调,抑制miR-155的表达使其靶基因PPRE和PPARα表达上调,可使小鼠免受酒精引起的脂肪性堆积和炎症反应的伤害[8]。
3 肝纤维化患者血清中miRNAs的表达
研究发现,乙肝后肝纤维化患者血清中miRNAs可作为疾病的标志物,并与疾病的进程相关[52]。MiR-138和miR-143在慢乙肝后肝硬化循环中表达上调,miR-138可作为早期肝纤维化的标志物,miR-138结合miR-143可作为晚期肝纤维化的标志物[53]。MiR-33a在慢乙肝后肝纤维化患者血清中的表达下调,与肝纤维化进程相关[54]。Trebicka J等[55]研究发现,肝纤维化严重时,肝内miR-122水平明显下降,循环中miR-122水平与纤维化程度呈负相关,但纤维化进程中这种负相关由血清和肝脏内miR-122共同调节。Yu F等[56]研究发现,miR-181b在慢乙肝患者和肝纤维化患者的血清中表达上调,与乙肝病毒DNA和疾病进程密切相关。
4 MiRNAs与中医药在肝纤维化中的相关研究
4.1 MiRNAs与中药作用机制研究
中医药治疗肝纤维化的机制研究多侧重中药及其有效成分调控编码蛋白基因的表达,而随着miRNAs研究深入,发现miRNAs的调控机制与中医药治疗干预密切相关。
4.1.1 MiRNAs与中药复方
Wang Q等[57]体外研究发现,扶正化瘀方药物血清通过激活p38和抑制SAPK/JNK诱导大鼠HSC-T6的凋亡,其机制与调控miRNAs表达相关;体内研究表明[58],扶正化瘀方能调控miR-322、miR-342-3p和miR-296-5p介导的通路,如MAPK信号通路、Wnt信号通路、Ras信号通路等,这可能是扶正化瘀方抗肝纤维化的作用机制之一。加味四逆散或许通过促进miR-146a的表达实现对肝纤维化的逆转[59]。丹芍化纤干预大鼠肝纤维化模型,对miR-200s表达的调控可能是其抗纤维化机制之一[60]。叶下珠复方Ⅱ号通过调控miR-16/Bcl-2通路[61]和miR-122/KLF6通路[62]影响HSC-T6细胞增殖及诱导其凋亡。
4.1.2 MiRNAs与中药单体
除了中药复方对miRNAs调控的报道外,还有一些中药单体的相关报道。丹参酚酸B(SalB)能通过调控大鼠肝纤维化模型中和体外肝星状细胞miR-17a-5p介导Wnt/β-catenin的信号通路减缓肝纤维化进程[17];SalB也能通过诱导miR-152而减少DNMT1的表达抑制肝纤维化进程[22]。姜黄素通过调控miR-29b/DNMT3b参与HSC的活化调控[46],也可以影响miR-199和miR-200介导的通路减缓肝纤维化进程[63]。青蒿琥酯抑制HSC中miR-154的表达,从而影响Wnt/β-catenin信号通路抑制肝纤维化进程[64]。
4.2 MiRNAs与肝纤维化中医证候研究
肝纤维化是各种慢性肝病发展过程中的共同病理组织学变化。肝炎、脂肪肝、酒精肝等在内的大部分肝病都可能导致肝纤维化。目前,也有miRNAs与慢性肝病中医证候研究的相关报道。MiR-583和miR-663在乙肝肝胆湿热证和肝肾阴虚证患者血清中存在显著差异表达,这些证候差异的miRNAs可能是慢乙肝肝胆湿热证和肝肾阴虚证的标志性分子,miR-583和miR-663可能分别通过调控其相应的靶基因而参与了证候的发生发展[65]。原发性肝癌气虚血瘀证、肝郁血瘀证和肝胆湿热证及肝瘀痰结证患者肝组织miRNAs水平存在显著性差异,如miR-122-3p各证型组均明显高于正常组(P<0.05),气虚血瘀组明显高于其他各证型组(P<0.05)[66]。曹海明等[67]用生物学方法分析了肝癌不同证型组miRNAs表达的差异,包括气虚血瘀组、肝郁血瘀组、肝胆湿热组和肝郁痰结组,发现不同证型组肝癌组织中miRNAs的表达谱有各自独特的特征,为各证型组的区分提供了一定的客观依据。现有研究表明,miRNAs与慢性肝病的中医证候相关,提示在肝纤维化的证候研究方面具有很大的前景。
5 讨论
目前的研究表明,miRNAs参与调节肝纤维化发生进展,miRNAs通过调控HSC相关信号通路在HSC的活化、增殖和凋亡中发挥着重要作用[3-43],miRNAs的调控机制丰富了对肝纤维化发生、发展的机制的进一步认识,为肝纤维化治疗提供新的靶点。循环miRNAs可能成为疾病的良好诊断指标。肝纤维化患者血清/血浆中均存在疾病特异性miRNAs表达谱,可以用来进行疾病的诊断、分类及临床病理情况分析等[52-56],这为肝纤维化诊断及药物疗效提供新的生物标志物,从而做到及时有效预防和治疗。MiRNAs靶向HSC活化、增殖以及凋亡过程中的相关信号分子及其网络靶标,为中医药治疗肝纤维化的机理和中医证候研究研究提供了新的视角。
然而,肝纤维化机制是复杂的调节系统,涉及HSC 在内的多种细胞和细胞因子的动态变化过程,是与肝窦内皮细胞、枯否细胞、干细胞以及HSC 旁分泌细胞和自分泌多种细胞因子协同作用的结果。而且,miRNAs是表观遗传基因调控网络中的重要部分,参与生物体的各种生理病理过程。MiRNAs在HSC和除HSC之外的细胞及其分子调控机制尚未全部明确,很多miRNAs的作用靶点和通路等尚未可知,寻找与肝纤维化密切相关并且能够预测肝纤维化进程的miRNAs,明确其调控机制,有待我们进一步深入研究。
综上所述,miRNAs研究已成为当前生命科学领域的前沿热点,让人们对遗传信息表达调控有了新的认识。MiRNAs具有重要的生物学功能,并与肝纤维化的发生发展、诊断、治疗密切相关,miRNAs的研究拓展人们对于肝纤维化病变过程的理解,而且开启了生物学研究的新方向。随着miRNAs研究的深入和研究领域的扩展,为现代中医药研究提供了新的途径和技术方法,在中医证候研究、阐明中药的作用机制研究等方面有着重要的应用前景。
1 Miao C G, Yang Y Y, He X, et al. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie, 2013, 95(12): 2326-2335.
2 张清清,陆伦根. MiRNA诊断慢性肝病及肝纤维化价值的研究进展.诊断学理论与实践, 2015, 14(4): 367-370.
3 Lakner A M, Steuerwald N M, Walling T L, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology, 2012, 56 (1): 300-310.
4 Ge S, Xie J, Liu F, et al. MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol. J Cell Biochem, 2015, 116: 2455-2464.
5 He Y, Huang C, Sun X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signa, 2012, 24 (10): 1923-1930.
6 Liu Z, Yi J, Ye R, et al. MiR-144 regulates transforming growth factor-β1 induced hepatic stellate cell activation in human fibrotic liver. Int J Clin Exp Pathol, 2015, 8(4): 3994-4000.
7 Timea Csak, Shashi Bala, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS One, 2015, 10(6): e0129251.
8 Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol, 2016, 64(6): 1378-1387.
9 Zhu B, Wei X X, Wang T B, et al. Increased miR-16 expression induced by hepatitis C virus infection promotes liver fibrosis through downregulation of hepatocyte growth factor and Smad7. Arch Virol, 2015, 160(8): 2043-2050.
10 Okada H, Honda M, Campbell J S, et al. Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Sci, 2015, 106(9): 1143-1152.
11 Ji D, Li B, Shao Q, et al. MiR-22 suppresses BMP7 in the development of cirrhosis. Cell Physiol Biochem, 2015, 36(3): 1026-1036.
12 Roy S, Benz F, Vargas Cardenas D, et al. MiR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis. Journal of Digestive Diseases, 2015, 16(9): 513–524.
13 Hu J, Chen C, Liu Q, et al. The role of the miR-31/FIH1 pathway in TGF-β-induced liver fibrosis. Clin Sci (Lond), 2015, 129(4): 305-317. 14 Tu X, Zhang H, Zhang J, et al. MicroRNA-101 suppresses liver firosis by targeting the TGFβ signalling pathway. J Pathol, 2014, 234(1): 46-59.
15 Zhao S, Zhang Y, Zheng X, et al. Loss of MicroRNA-101 promotes epithelial to mesenchymal transition in hepatocytes. J Cell Physiol, 2015, 230(11): 2706-2717.
16 Yu F, Guo Y, Chen B, et al. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Invest, 2015, 95(7): 781-789.
17 Yu F, Lu Z, Huang K, et al. MicroRNA-17-5p activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget, 2015, 7(1): 81-93.
18 Zhu D, He X, Duan Y, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum. Parasit Vectors, 2014, 7: 148.
19 Li F, Ma N, Zhao R, et al. Overexpression of miR-483–5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-beta stimulated HSCs in transgenic mice. J. Cell. Mol. Med. 2014, 18(6): 966-974.
20 Iizuka M, Ogawa T, Enomoto M, et al. Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair, 2012, 5(1): 12.
21 Kumar V, Mondal G, Dutta R, et al. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials,2016, 76: 144-156.
22 Yu F, Lu Z, Chen B, et al. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation. J Cell Mol Med, 2015, 19(11): 2617-2632.
23 Hyun J, Wang S, Kim J, et al. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep, 2015, 5:14135.
24 Yu F, Zheng Y, Hong W, et al. MicroRNA-200a suppresses ephethelial- to- mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Mol Med Rep, 2015, 12(6): 8121-8128.
25 Hyun J, Wang S, Kim J, et al. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun, 2016, 7: 10993.
26 Du J, Niu X, Wang Y, et al. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep, 2015, 5: 16163.
27 Li Z J, Ou-Yang P H, Han X P. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal, 2014, 26(1): 141-148.
28 Xiao Y, Wang J, Chen Y, et al. Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stellate cells by activating PI3K/Akt signaling. Cell Signal, 2014, 26(5): 925-932.
29 Yu F, Zhou G, Li G, et al. Serum miR-181b is correlated with hepatitis B virus replication and disease progression in chronic hepatitis B patients. Dig Dis Sci, 2015, 60(8): 2346-2352.
30 Zheng J, Wu C, Xu Z, et al. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem,2015, 398(1-2): 1-9.
31 Dong R, Zheng Y, Chen G, et al. MiR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr Gastroenterol Nutr, 2015, 60(1): 84-90.
32 Feng X, Tan W, Cheng S, et al. Upregulation of microRNA-126 in Hepotic Stellate Cells May Affect Pathogenesis of Liver Fibrosis Through the NF-κB Pathway. DNA Cell Biol, 2015, 34(7): 470-480.
33 Qi F, Hu J F, Liu B H, et al. MiR-9a-5p regulates proliferation and migration of hepatic stellate cells under pressure through inhibition of sirt1. World J Gastroenterol, 2015, 21(34): 9900-9915.
34 Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One, 2014, 9(10): 1-10.
35 Lu L, Wang J, Lu H, et al. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study. Biochem Biophys Res Commun, 2015, 465(3): 387-393.
36 Knabel M K, Ramachandran K, Karhadkar S, et al. Systemic delivery of scAAV8-encoded miR-29a ameliorates hepatic fibrosis in carbon tetrachloride-treated mice. PLoS One, 2015, 10(4): e0124411.
37 Kim H J, Joe Y, Yu J K, et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta, 2015, 1852(7): 1550-1559.
38 Li S G, Zhou J, Zhong J H, et al. Effects of miR-9 and tetramethylpyrazine on activation of hepatic stellate cells. Biol Pharm Bull, 2015, 38(3): 396-401.
39 王建雄,谢渭芬. MiRNA在肝纤维化中的作用及其机制研究.上海:第二军医大学硕士学位论文,2014 .
40 Halasz T, Horvath G, Pár G, et al. MiR-122 negatively correlates with liver fibrosis as detectited by histology and Fibro Scan. World J Gastroenterol, 2015, 21(25): 7814-7823.
41 Sekiya Y, Oqawa T, Iizuka M, et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol, 2011, 226(10): 2535-2542.
42 Lu, C H, Hou, Q R, Deng L F, et al. MicroRNA-370 attenuates hepatic fibrogenesis by targeting smoothened. Dig Dis Sci, 2015, 60(7): 2038-2048.
43 Zheng J, Wu C, Lin Z, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation–a novel mechanism suppressing liver fibrosis. FEBS J, 2014, 281(1): 88-103.
44 Li J, Chen K, Li S, et al. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy. Drug Des Devel Ther, 2016, 10: 619-630.
45 Sombetzki M, Loebermann M, Reisinger E C. Vector-mediated microRNA-21 silencing ameliorates granulomatous liver fibrosis in schistosoma japonicum infection. Hepatology, 2015, 61(6): 1787-89.
46 朱志杰,阮君山,李尧,等. Wnt信号通路诱导肿瘤细胞上皮间质转化的研究进展.中国药理学通报,2012,28(7):904-907.
47 潘澎,刘绍能. PI3K/AKT信号通路与肝纤维化.临床肝胆病杂志,2013,29 (5):389-396.
48 史艳晖,卢圣栋.转录因子NF-κB的研究现状及其应用前景.中国生物工程杂志,2007,27(4):104-110.
49 Nicholson D W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999, 6(11): 1028-1042.
50 Guo C J, Pan Q, Li D G, et al. MiR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol, 2009, 50(4): 766-778.
51 Ji J, Zhang J, Huang G, et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009, 583(4): 759-766.
52 Zhang Q, Xu M, Qu Y, et al. Analysis of the different expression of circulating microRNAs during the progression of hepatic fibrosis in patients with chronic hepatitis B virus infection. Mol Med Rep, 2015, 12(4): 5647-5654.
53 El-Ahwany E, Nagy F, Zoheiry M, et al. Circulating miRNAs as predictor markers for activation of hepatic stellate cells and progression of HCV-induced liver fibrosis. Electron Physician, 2016, 8(1): 1804-1810.
54 Huang C F, Sun C C, Zhao F, et al. MiR-33a levels in hepatic and serum after chronic HBV-induced fibrosis. J Gastroenterol, 2015, 50(4): 480-490.
55 Trebicka J, Anadol E, Elfimova N, et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis. J Hepatol, 2013, 58(2): 234-239.
56 Yu F, Zhou G, Li G, et al. Serum miR-181b is correlated with hepatitis B virus republication and disease progression in chronic hepatitis B patients. Dig Dis Sci, 2015, 60(8): 2346-2352.
57 Wang Q, Du H, Li M, et al. MAPK signal transduction pathway regulation: A novel mechanism of rat HSC-T6 cell apoptosis induced by FUZHENGHUAYU tablet. Evid Based Complement Alternat Med, 2013.
58 王清兰,陶艳艳,吕靖,等.扶正化瘀方调节差异微小RNA表达抗肝纤维化的作用机制.临床肝胆病杂志,2016,32(3):503-508.
59 晁旭,董昌虎.加味四逆散对肝纤维化大鼠肝组织miRNA-146a表达的影响.陕西中医,2015,36(3):371-373.
60 韩冰,谢汝佳,洪琴,等. MiR-200s在中药丹芍化纤干预大鼠肝纤维化过程中的表达变化.中国病理生理杂志,2012,28(11):1950-1954.
61 夏曦,赵敏.叶下珠复方Ⅱ号对肝星状细胞凋亡和miR-16/Bcl-2表达的影响.广州中医药大学学报,2013,5:86-92,171.
62 罗来育,李常青.叶下珠复方Ⅱ号对肝星状细胞增殖和miR-122/ KLF6表达的影响.热带医学杂志,2015,1:14-18.
63 Hassan Z K, Al-Olayan E M. Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac J Cancer Prev, 2012, 13(11): 5405-5408.
64 张英,张洪,彭锐,等.青蒿琥酯抑制肝星状细胞microRNA-154/ β-catenin治疗肝纤维化的机制研究.中国医药导报,2016,16(1):1-4.
65 Zhang H, Guan Y, Lu YY, et al. Circulating miR-583 and miR-663 refer to ZHENG differentiation in chronic hepatitis B. Evid Based Complement Alternat Med, 2013, 2013: 751341.
66 李梦萍,曹海明,武哲丽,等.原发性肝癌不同血瘀证患者肝组织微小RNA表达差异的初步研究.山东医药,2014,54(38):1-4.
67 曹海明,武哲丽,叶小卫,等.基于生物信息学方法分析不同证型组肝癌组织中差异表达miRNA.时珍国医国药,2015,26(10):2549-2552.
A Research Progress on MicroRNAs in Liver Fibrosis and Traditional Chinese Medicine
Guo Xinxin, Su Shibing, Shang Jiawei, Shi Miaojuan, Zhang Hui
(Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)
Liver fibrosis is a class of pathologic changes caused by chronic liver injury with many different factors. Hepatic stellate cells (HSCs) activation, proliferation and apoptosis are central parts of the development of liver fibrosis. MiRNAs are endogenous single-stranded untranslated coded small RNAs, and 19-24 bp long generally. MiRNAs play a significant role in the gene-regulation network in the field of epigenetics, regulating post-transcriptional gene expressions and participating in a series of cellular process, the abnormal expressions of miRNAs always trigger the genesis and development of diseases. Many studies demonstrated a number of miRNAs that were differentially expressed in liver fibrosis. MiRNAs mediated the development and the progression of liver fibrosis by regulating their own target genes and related signal pathways. MiRNAs brought a significant performance in the diagnosis and the treatment of liver fibrosis, which probably clarified the mechanisms of anti-liver fibrosis through traditional Chinese medicine (TCM). Moreover, miRNAs were also associated with TCM syndromes. In this review, we summarized the research progress of miRNAs and TCM in liver fibrosis, and prospected researches in the future.
Liver fibrosis, miRNAs, traditional Chinese medicine, research, progression
10.11842/wst.2016.09.014
R2-031
A
(责任编辑:朱黎婷,责任译审:朱黎婷)
2016-07-12
修回日期:2016-08-29
* 国家自然科学基金委面上项目(81373518):慢乙肝患者中医证候差异表达的miR-583和miR-663作用研究,负责人:张辉。
** 通讯作者:张辉,副研究员,硕士生导师,主要研究方向:中医证候和中药药理研究。