一类带非局部项的抛物型方程爆破时间的下界问题*
2016-02-07王忠谦宋明亮
王忠谦 , 宋明亮,2*
(1.江苏第二师范学院 数学与信息技术学院,江苏 南京 210013;2.南京师范大学 数学科学学院,江苏 南京 210046)
一类带非局部项的抛物型方程爆破时间的下界问题*
王忠谦1, 宋明亮1,2*
(1.江苏第二师范学院 数学与信息技术学院,江苏 南京 210013;2.南京师范大学 数学科学学院,江苏 南京 210046)
爆破时间;Dirichlet边界条件;Sobolev不等式
在[1]中,Payne和Schaefer得到了半线性抛物方程ut=Δu+f(u)在齐次Dirichlet边界条件下解的爆破时间的下界,这里,f满足某些适当的假设.从那以后,带Dirichlet边界条件的各类抛物方程解的爆破时间的下界被广泛研究(见[2-6]及其参考文献).在[7]中,作者研究了问题
(1)
u(x,t)=0,x∈∂Ω,t>0,
(2)
u(x,0)=u0(x),x∈Ω,
(3)
受到以上工作的启发,本文中对于问题(1)~(3),在1
我们有如下主要结论:
为证明定理1,需要先证明如下引理.
‖v(u)‖.特别地,‖v(u)‖.
‖v(u)‖.
(4)
特别地,当q=n-1时,(4)可写作‖v(u)‖≤C(Ω ,n).
下面我们估计爆破时间t*的下界和爆破率的下界.
定理1的证明:设φ(t):=∫Ωumdx,则利用分部积分公式和引理2,
(5)
(6)
再由Sobolev不等式(见[12])
(7)
(8)
(9)
(10)
由于Y(φ)关于φ单调递减,故Y存在反函数Y-1且Y-1仍为单调递减函数.由(10)可得爆破率的下估计,φ(t)≥Y-1(t*-t).
[1] PAYNE L E,SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. J Math Anal Appl,2007,328:1196-1205 .
[2] PAYNE L E,PHILIPPIN G A,SCHAEFER P W. Blow-up phenomena for some nonlinear parabolic problems[J]. Nonlinear Anal,2008,69:3495-3502.
[3] PAYNE L E, SONG J C. Lower bounds for blow-up time in a nonlinear parabolic problem [J]. J Math Anal Appl,2009,354:394-396.
[4] SONG J C. Lower bounds for the blow-up time in a non-local reaction-diffusion problem[J]. Applied Mathematics Letter,2011,24:793-796.
[5] LIU D M,MU C L,QIAO X. Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation[J]. Acta Math Sci Ser B Engl Ed,2012,32:1206-1212.
[6] BAGHAEI K, MOHAMMAD B G, MAHMOUD H. Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source[J]. Applied Mathematics Letter,2014,27:49-52.
[7] LIU B,MA L. Invariant sets and the blow up threshold for a nonlocal equation of parabolic type[J]. Nonlinear Anal,2014,110:141-156.
[8] LACEY A A. Thermal runaway in a non-local problem modelling Ohmic beating: Part 1: Model derivation and some special cases[J].European J Appl Math 1995,6(2):127-144.
[9] GOURLEY S A. Travelling front solutions of a nonlocal Fisher equation[J]. J Math Biol,2000,41(3):272-284.
[10] OU C,WU J. Persistence of wavefronts in delayed nonlocal reaction-diffusion equations[J]. J Differential Equations,2007,235(1):219-261.
[11] SO J W H,WU J,ZOU X. A reaction-diffusion model for asingle species with age structure.I Travelling wavefronts on unbounded domains[J]. Proc Lond Math Soc A,2012,457:1841-1853.
[12] TALENTI G. Best constant in Sobolev inequality [J].Ann Mat Pura Appl,1976,110:353-372.
责任编辑:龙顺潮
Lower Bound for a Nonlocal Equation of Parabolic Type
WANGZhong-qian1,SONGMing-liang1,2*
(1. Mathematics and Information Technology School, Jiangsu Second Normal University, Nanjing 210013;2. School of Mathematical Sciences,Nanjing Normal University, Nanjing 210046 China)
blow-up time; Dirichlet boundary; Sobolev inequality
2016-04-08
国家自然科学基金项目(11601193);江苏省高校自然科学基金项目(15KJB110003,16KJD110001);江苏第二师范学院“十二五”科研规划第四期课题 (JSNU2014YB01)
宋明亮(1972-),男,湖北 襄樊人,教授.E-mail:mlsong2004@163.com.
O175.26
A
1000-5900(2016)03-0008-03