APP下载

应用高分辨率磁共振成像评估脑动脉粥样硬化斑块的研究进展①

2016-01-30于瑾白皛吴士文徐蔚海吴卫平

中国康复理论与实践 2016年2期
关键词:动脉粥样硬化磁共振成像高分辨率

于瑾,白皛,吴士文,徐蔚海,吴卫平



应用高分辨率磁共振成像评估脑动脉粥样硬化斑块的研究进展①

于瑾1,2a,白皛2b,吴士文2a,徐蔚海3,吴卫平1

[摘要]高分辨率磁共振成像(HRMRI)是一项安全、无创、经济和可重复的检查方法,可以精确反映动脉粥样硬化的程度,对未来的临床事件有较高的预测价值。其核磁扫描像素可达到亚毫米级,采用“黑血”技术,广泛应用于动脉管壁及斑块成分的研究。应用HRMRI评估脑动脉粥样硬化斑块的易损性,包括动脉重塑、斑块负荷、斑块内出血和强化、斑块分布等特点,具有重要的临床意义。

[关键词]高分辨率;磁共振成像;脑动脉;动脉粥样硬化;斑块;综述

[本文著录格式]于瑾,白皛,吴士文,等.应用高分辨率磁共振成像评估脑动脉粥样硬化斑块的研究进展[J].中国康复理论与实践, 2016, 22(2): 164-167.

CITED AS: Yu J, Bai X, Wu SW, et al. Progress of high-resolution magnetic resonance imaging in evaluating cerebral atherosclerotic plaques (review) [J]. Zhongguo Kangfu Lilun Yu Shijian, 2016, 22(2): 164-167.

作者单位:1.解放军总医院老年神经内科,北京市100853;2.武警总医院,a.神经内科;b.南一科,北京市100039;3.中国医学科学院北京协和医院神经科,北京市100730。作者简介:于瑾(1980-),女,汉族,河北保定市人,医学硕士,主治医师,主要研究方向:颅内动脉的高分辨率磁共振研究。通讯作者:吴卫平,男,医学博士,主任医师。E-mail: wuwp@vip.sina.com。

对于脑动脉粥样硬化性疾病,理想的成像方法应该是安全、无创、经济和可重复的,并且可以精确反映动脉粥样硬化的程度,对未来的临床事件有较高的预测价值。高分辨率磁共振成像(high-resolution MRI, HRMRI)能够在常规血管影像检查检测到斑块之前发现动脉粥样硬化斑块,提供更敏感和更客观的信息。它是一项符合上述要求,且最具潜力的影像技术。近年来HRMRI在临床中得到广泛应用,发展迅速,已应用于颈动脉[1]、主动脉[2]、外周动脉[3-4],冠状动脉[5]以及颅内血管,包括大脑中动脉[6]和基底动脉[7]。本文对近年来应用HRMRI评估脑动脉粥样硬化斑块的研究予以综述。

1 HRMRI的相关成像技术

用于血管成像的磁共振成像脉冲序列包括“亮血”和“黑血”技术。目前广泛应用的三维时间飞跃法磁共振血管造影(three-dimension time of flight magnetic resonance angiography, 3D TOF MRA)即“亮血”技术,此技术基于血液的流入增强效应,采集时间短。然而此技术仅能评估管腔的狭窄率,随着对管壁结构和动脉粥样硬化斑块成分的关注,研究人员对磁共振成像硬件和序列设计提出新的要求。

HRMRI是指核磁扫描像素达到亚毫米级,采用“黑血”技术,使用脉冲抑制血流信号,血流呈黑色低信号,而周围组织为高信号,从而产生对比,衬托出管壁斑块的影像。目前临床上为了使管壁影像获得充足的空间分辨率和对比,使用3 T 或7 T的核磁扫描机和专用的高频线圈以获得较高的信噪比(signal-to-noise ratio, SNR)、对比噪声比(contrast-to-noise ratio, CNR)和信号穿透深度。动脉粥样硬化斑块的成分依靠磁共振成像信号强弱进行辨别,而多模式序列显示斑块成分更有意义[8],包括2维T1加权图像(T1weighted imaging, T1WI),T2加权图像(T2weighted imaging, T2WI)和质子密度加权图像(proton density weighted imaging, PDWI)。脂质成分在T1WI、PDWI是高信号,在T2WI是低信号;纤维蛋白成分在3个序列都是高信号;钙离子在3个序列都是低信号;血栓在3个序列也都是高信号,但比纤维蛋白的信号稍低[9]。T1WI易于观察出血,但不能清楚地显示外边界。PDWI比T1WI及T2WI的图像对比度高,可以更好地分辨管壁和管腔,而T1WI及T2WI图像更有利于显示斑块的不均质成分[1]。

3D HRMRI具有各向同性体素,可以通过减少部分容积效应检测细微的血管壁病变,同时可以更好地抑制脑脊髓液流进行任何平面的自由重建。然而,3D影像的缺点是空间分辨率不如2D影像。

2 HRMRI在血管评估上的应用进展

1996年,Toussaint等最早提出MRI可以精确测量和分辨体内的颈动脉斑块[10]。颈动脉因其位置表浅,不易移动,比主动脉和冠状动脉更适合磁共振成像检查。动物实验和临床研究都证实,HRMRI可以显示颈动脉斑块的成分和性质,对判断斑块的易损性具有非常高的应用价值[11-12]。

2000年,Fayad等最先建立体内冠状动脉斑块的MRI影像检查方法[5]。冠状动脉与主动脉一样,MRI影像易受到呼吸运动和心脏跳动的影响,且冠状动脉位置较深,走行迂曲,获取影像更加困难。最初,完成冠状动脉斑块MRI影像需要屏气采集,后在提高空间分辨率的同时成功克服心脏和呼吸的伪影,可在自由呼吸情况下完成[13]。

在外周血管的研究中,2002年Corti等在经股动脉行经皮腔内血管成形术(percutaneous transluminal angioplasty, PTA)后24 h,利用HRMRI横断面影像观察到,动脉闭塞层动脉粥样硬化斑块严重破裂,形成一个形状不规则的内腔,进一步证实球囊成形术可引起斑块的广泛破裂,能够解释侵入性治疗潜在并发症的发生机制[3]。

2005年,Klein首先证实HRMRI评估颅内动脉粥样硬化斑块的有效性,包括大脑中动脉和基底动脉[6-7]。2010年,Klein等采用增强HRMRI检查,发现73%的急性脑桥深部梗死患者的基底动脉中存在斑块,证实HRMRI可用于分析卒中的病因及发生机制,如既往认为的脑小血管病变,部分可以重新归类为继发于基底动脉粥样硬化的穿支动脉闭塞[14]。

3 HRMRI对易损斑块的评估

与稳定斑块相比,易损斑块具有较大的脂质核心、薄纤维帽、混杂的炎性细胞以及新生血管形成。临床上颈动脉剥脱术的样本可提供有效的组织病理学依据。Yuan等研究表明HRMRI能辨别脂质核心、斑块出血和纤维帽,其识别的斑块特征与组织学的结果有很好的一致性,并进一步证实不稳定纤维帽与近期发生短暂性脑缺血发作(transient ischemic attack, TIA)或卒中是一致的[1,15-17]。颅内动脉和颈动脉斑块具有相同的病理特征。应用HRMRI评估脑动脉粥样硬化斑块的易损性,包括动脉重塑、斑块负荷、斑块内出血和强化、斑块分布等特点,具有重要的临床意义。

3.1动脉重塑

动脉重塑最早在冠状动脉粥样硬化的患者中发现,又称为Glagov现象[18]。动脉重塑有两种发展模式,即正性重构(positive remodeling, PR)和负性重构(negative remodeling, NR)。正性重构表现为血管向外扩张,有利于保证血管内腔的大小[19];负性重构则为血管向内收缩,会加重狭窄程度[20-21]。冠状动脉的相关研究已显示正性重构更多见于症状性患者中[22],这可能是由于正性重构在扩大管腔面积的同时增加了斑块破裂的风险。相反负性重构因富含纤维成分而不易破裂。颅内动脉研究有相同的发现,有症状的大脑中动脉狭窄患者具有较高的正性重构,而无症状的大脑中动脉狭窄患者有更多的负性重构[23]。马宁等利用HRMRI观察30例基底动脉重度狭窄患者,提示与负性重构相比,正性重构占63.3%,且包含较大斑块[24]。

3.2斑块负荷

斑块的面积被认为是颅内动脉卒中发生的一个危险因素[25-26]。研究表明与无症状的大脑中动脉狭窄患者相比,有症状的大脑中动脉狭窄患者具有较大的斑块厚度。徐蔚海对照有症状和无症状大脑中动脉狭窄的管壁特点,发现患者在血管狭窄率相似的情况下,管壁面积具有统计学差异,有症状的患者管壁面积大,多表现为正性重构;而无症状的患者管壁面积较小,多表现为负性重构,提示管壁的形态学特征可能与症状相关[23]。

3.3斑块内出血

颈动脉的研究显示斑块内出血是缺血性卒中的重要预测指标[27]。近期一项关于779例患者随访1个月以上的Meta分析显示,颈动脉MRI显示斑块内出血作为脑卒中或TIA的预测危险率是4.59(95%CI 2.91~7.24)[28]。Ryu等发现部分大脑中动脉的斑块在T1WI和/或T2WI图像中可见局限性高信号,这种表现更多出现在有症状的患者中[26],依据颈动脉斑块的研究结果,推测可能是一种斑块内出血[29]。徐蔚海等对109例大脑中动脉狭窄(>70%)的患者进行回顾性研究,HRMRI发现斑块内高信号更多见于有症状的患者,而较少见于无症状的患者(19.6% vs. 3.2%, P=0.01)[23]。这一结果与Chen等[30]对45岁以上大脑中动脉粥样硬化性狭窄病变的尸检结果一致。一项关于74例基底动脉狭窄(>50%)患者的研究发现,有症状的损害更多出现在HRMRI发现斑块内出血阳性组中,较少见于阴性组中(80.0% vs. 48.8%, P<0.01),且斑块内出血多出现在狭窄程度重的患者中[31]。

3.4斑块的强化

斑块的强化也与稳定性相关,其表明斑块内血供增加,并且内膜的通透性增加促进造影剂从血浆进入到斑块内。Swartz等首先报道,对于颅内动脉,即使具有多个狭窄病变,也仅仅在急性脑梗死的责任血管壁上观察到斑块的强化[32]。Skarpathiotakis等证实在4周内发生缺血性卒中的所有患者,其颅内责任动脉斑块显示病理性强化,同时发现随着卒中事件发生时间的延长,强化逐渐减弱[33]。Vakil等提供的一项回顾性研究显示,在有症状和无症状组之间,斑块强化具有显著性差异[34]。该研究中22例重度颅内动脉狭窄患者,其中70%的症状患者斑块强化,8%的无症状患者斑块强化。娄昕等利用增强HRMRI观察56例症状性基底动脉重度狭窄患者的动脉管壁情况,结果认为狭窄近端的管壁强化程度与新发梗死和后期缺血事件相关[35]。然而,对于斑块强化是否可以作为一个急性缺血性卒中的预测因素还存在争议。少数患者在急性脑梗死发生数月后仍可见强化,是否表明斑块仍处在不稳定状态,尚需要进一步的前瞻性研究[34]。

3.5斑块分布

研究表明鉴于颅内动脉的解剖特点,其斑块分布研究比颅外动脉更具有临床意义[37]。既往冠状动脉研究发现,斑块易形成于血管分支的对侧壁[38]。徐蔚海利用3.0 T HRMRI观察中度狭窄的大脑中动脉斑块分布也得出类似结果,斑块多位于腹侧壁和下壁,少数位于背侧壁和上壁[39]。解剖学研究显示,大脑中动脉的穿支血管多从管壁的背侧壁及上壁发出[40]。同时徐蔚海还将有症状和无症状的患者进行对比,发现斑块更多位于血管上壁,较少位于下壁。同时对于有症状的一组,伴有穿支动脉梗死的患者与不伴有穿支动脉梗死的患者相比,斑块也多位于上壁,较少位于腹侧壁和下壁。因此,上壁斑块更容易导致脑卒中,这可能是由于斑块更易堵塞穿支血管开口而导致梗死发生。另外,脱落的栓子也容易进入穿支的开口而堵塞下游血管[41]。然而关于基底动脉的一项研究却与既往大脑中动脉斑块分布规律不一致。黄飚等利用3.0 T HRMRI观察38例基底动脉狭窄≥30%的有症状患者最窄层斑块的分布,发现位于腹侧的斑块最多[42]。临床解剖发现基底动脉的穿支动脉分布于背部和侧壁,腹部没有穿支分布[43]。这一结果与解剖结构相矛盾,基底动脉的斑块分布特点还需要进一步的相关研究。

4 存在问题及展望

目前,在动脉粥样硬化斑块的观察研究中,HRMRI得到广泛应用。同时,通过HRMRI可以明确斑块位置与穿支动脉关系,指导临床上对于缺血性卒中的病因分型和介入治疗,避免支架植入后引起穿支动脉闭塞[44]。然而,HRMRI仍存在不足,首先,一些患者因为幽闭恐惧症、体内有心脏起搏器或除颤器、动脉瘤夹等金属物而无法进入磁共振成像环境。其次,为了分辨斑块成分,获取高空间分辨率需要较高的信噪比和较长的扫描成像时间。此外,HRMRI评估斑块形态通常局限于单个斑块或血管段,不能评估大段的动脉系统。

未来,希望能够在临床医师和影像专家的共同努力下,建立一个可以定量评估斑块成分的方法和自动化分析软件。同时通过对斑块的定量和定性的检测能够鉴定高危斑块,明确患者的高危分层,精准预测脑血管事件的发生。

[参考文献]

[1] Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid- rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques [J]. Circulation, 2001, 104(17): 2051-2056.

[2] Fayad ZA, Nahar T, Fallon JT, et al. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography [J]. Circulation, 2000, 101(21): 2503-2509.

[3] Corti R, Wyttenbach R, Alerci M, et al. Images in cardiovascular medicine. Effect of percutaneous transluminal angioplasty on severely stenotic femoral lesions: in vivo demonstration by noninvasive magnetic resonance imaging [J]. Circulation, 2002, 106(12): 1570-1571.

[4] Coulden RA, Moss H, Graves MJ, et al. High resolution magnetic resonance imaging of atherosclerosis and the response to balloon angioplasty [J]. Heart, 2000, 83(2): 188-191.

[5] Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black- blood magnetic resonance imaging [J]. Circulation, 2000, 102(5): 506-510.

[6] Klein IF, Lavallee PC, Touboul PJ, et al. In vivo middle cerebral artery plaque imaging by high-resolution MRI [J]. Neurology, 2006, 67(2): 327-329.

[7] Klein IF, Lavallee PC, Schouman-Claeys E, et al. High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct [J]. Neurology, 2005, 64(3): 551-552.

[8] Ryu CW, Kwak HS, Jahng GH, et al. High-resolution MRI of intracranial atherosclerotic disease [J]. Neurointervention, 2014, 9(1): 9-20.

[9] Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging [J]. Ann N Y Acad Sci, 2000, 902: 173-186.

[10] Toussaint JF, LaMuraglia GM, Southern JF, et al. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo [J]. Circulation, 1996, 94(5): 932-938.

[11] Saam T, Hatsukami TS, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment [J]. Radiology, 2007, 244(1): 64-77.

[12] Li M, Le WJ, Tao XF, et al. Advantage in bright-blood and black-blood magnetic resonance imaging with high-resolution for analysis of carotid atherosclerotic plaques [J]. Chin Med J (Engl), 2015, 128(18): 2478-2484.

[13] Botnar RM, Stuber M, Kissinger KV, et al. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging [J]. Circulation, 2000, 102(21): 2582-2587.

[14] Klein IF, Lavallée PC, Mazighi M, et al. Basilar artery atherosclerotic plaques in paramedian and lacunar pontine infarctions: a high- resolution MRI study [J]. Stroke, 2010, 41(7): 1405-1409.

[15] Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitativemeasurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology [J]. Circulation, 2005, 112(22): 3437-3444.

[16] Mitsumori LM, Hatsukami TS, Ferguson MS, et al. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques [J]. J Magn Reson Imaging, 2003, 17(4): 410-420.

[17] Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke [J]. Circulation, 2002, 105(2): 181-185.

[18] Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries [J]. N Engl J Med, 1987, 316(22): 1371-1375.

[19] Kim YS, Lim SH, Oh KW, et al. The advantage of high-resolution MRI in evaluating basilar plaques: acomparison study with MRA[J].Atherosclerosis, 2012, 224(2): 411-416.

[20] Nishioka T, Luo H, Eigler NL, et al. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: an in vivo intravascular ultrasound study [J]. JAm Coll Cardiol, 1996, 27(7): 1571-1576.

[21] Pasterkamp G, Wensing PJ, Post MJ, et al. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries [J]. Circulation, 1995, 91 (5): 1444-1449.

[22] Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study [J]. Circulation, 2000, 101(6): 598-603.

[23] Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis [J]. Atherosclerosis, 2010, 212(2): 507-511.

[24] Ma N, Jiang WJ, Lou X, et al. Arterial remodeling of advanced basilar atherosclerosis: a 3-tesla MRI study [J]. Neurology, 2010, 75(3): 253-258.

[25] Chung GH, Kwak HS, Hwang SB, et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis [J]. Eur J Radiol, 2012, 81(12): 4069-4074.

[26] Ryu CW, Jahng GH, Kim EJ, et al. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla [J]. Cerebrovasc Dis, 2009, 27(5): 433-442.

[27] Saam T, Hetterich H, Hoffmann V, et al. Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging [J]. JAm Coll Cardiol, 2013, 62(12): 1081-1091.

[28] Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta- analysis [J]. Stroke, 2013, 44(11): 3071-3077.

[29] Kampschulte A, Ferguson MS, Kerwin WS, et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging [J]. Circulation, 2004, 110(20): 3239-3244.

[30] Chen XY, Wong KS, Lam WWM, et al. Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study [J]. Cerebrovasc Dis, 2008, 25(1-2): 74-80.

[31] Yu JH, Kwak HS, Chung GH, et al. Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque [J]. Stroke, 2015, 46(10): 2768-2772.

[32] Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using high- resolution 3- tesla contrast- enhanced MRI [J]. Neurology, 2009, 72(7): 627-634.

[33] Skarpathiotakis M, Mandell DM, Swartz RH, et al. Intracranial atherosclerotic plaque enhancement in patients with ischemic stroke [J].AJNRAm J Neuroradiol, 2013, 34(2): 299-304.

[34] Vakil P, Vranic J, Hurley MC, et al. T1 gadolinium enhancement of intracranial atherosclerotic plaques associated with symptomatic ischemic presentations [J]. AJNR Am J Neuroradiol, 2013, 34(12): 2252-2258.

[35] Lou X, Ma N, Ma L, et al. Contrast-enhanced 3T high-resolution MR imaging in symptomatic atherosclerotic basilar artery stenosis [J].AJNRAm Neuroradiol, 2013, 34(3): 513-517.

[36] Vergouwen MDI, Silver FL, Mandell DM, et al. Fibrous cap enhancement in symptomatic atherosclerotic basilar artery stenosis [J].Arch Neurol, 2011, 68(5): 676.

[37] Watanabe H, Yoshida K, Akasaka T, et al. Intravascular ultrasound assessment of plaque distribution in the ostium of the left anterior descending coronary artery [J]. Am J Cardiol, 1996, 78(7): 827-829.

[38] Marinkovic SV, Milisavljevic MM, Kovacevic MS, et al. Perforating branches of the middle cerebral artery. Microanatomy and clinical significance of their intracerebral segments [J]. Stroke, 16(6): 1022-1029.

[39] Xu WH, Li ML, Gao S, et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance [J]. Stroke, 2011, 42(10): 2957-2959.

[40] Umansky F, Gomes FB, Dujovny M, et al. The perforating branches of the middle cerebral artery. A microanatomical study [J]. J Neurosurg, 1985, 62(2): 261-268.

[41] Ryoo S, Lee MJ, Cha J, et al. Differential vascular pathophysiologic types of intracranial atherosclerotic stroke: a high-resolution wall magnetic resonance imaging study [J]. Stroke, 2015, 46(10): 2815-2821.

[42] Huang B, Yang WQ, Liu XT, et al. Basilar artery atherosclerotic plaques distribution in symptomatic patients: a 3.0 T high- resolution MRI study [J]. Eur J Radiol, 2013, 82(4): 199-203.

[43] Saeki N, Rhoton AL Jr. Microsurgical anatomy of the upper basilar artery and the posterior circle of Willis [J]. J Neurosurg, 1977, 46(5): 563-578.

[44] Jiang WJ, Yu W, Ma N, et al. High resolution MRI guided endovascular intervention of basilar artery disease [J]. J Neurointerv Surg, 2011, 3(4): 375-378.

Progress of High-resolution Magnetic Resonance Imaging in Evaluating Cerebral Atherosclerotic Plaques (review)

YU Jin1,2a, BAI Xiao2b, WU Shi-wen2a, XU Wei-hai3, WU Wei-ping1
1. Department of Geriatric Neurology, People's Liberation Army General Hospital, Beijing 100853, China; 2. a. Department of Neurology; b. Department of Cadre Ward, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China; 3. Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China

Correspondence to WU Wei-ping. E-mail: wuwp@vip.sina.com

Abstract:High-resolution magnetic resonance imaging (HRMRI) is a safe, non-invasive, inexpensive, accurate and reproducible clinical imaging modality, and the results can acutely reflect the extent of atherosclerotic disease and have high predictive values for future clinical events. It uses black blood imaging techniques and can obtain sufficient sensitivity for submillimetre imaging. HRMRI has been used widely to visualize the vessel wall and differentiate the components of atherosclerotic plaques. It is of important clinical meaning to evaluate plaque vulnerability with HRMRI, which is related to the remodeling pattern, plaque burden, intraplaque hemorrhage and contrast enhancement, and plaque distribution, etc.

Key words:high-resolution; magnetic resonance imaging; cerebral arteries; atherosclerosis; plaque; review

(收稿日期:2015-11-02修回日期:2015-12-01)

DOI:10.3969/j.issn.1006-9771.2016.02.009

[中图分类号]R543.5

[文献标识码]A

[文章编号]1006-9771(2016)02-0164-04

展开全文▼
展开全文▼

猜你喜欢

动脉粥样硬化磁共振成像高分辨率
高分辨率合成孔径雷达图像解译系统
弥漫性轴索损伤CT、MR动态观察
椎动脉型颈椎病的磁共振成像分析
瑞舒伐他汀治疗老年冠心病合并高脂血症的临床分析
扩大的血管周围间隙与脑小血管病变关系的临床研究
短暂性脑缺血发作患者ABCD2评分与血浆同型半胱氨酸水平的关系
磁敏感加权成像(SWI)在脑内海绵状血管瘤诊断中的应用
氙同位素应用及生产综述
山楂水煎液对高脂血症大鼠早期动脉粥样硬化形成过程的干预机制
高分辨率对地观测系统